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Resumen

La cognición humana depende en las fluctuaciones de la actividad cortical para realizar

tareas o entrar en la percepción consciente. Las fluctuaciones también ocurren espontáneamente,

lo que está influido por condicionantes fisiológicas y anatómicas. Un tipo de fluctuación es la

ignición, en la cual la actividad cortical realiza rápidas transiciones desde un régimen de baja a

uno de alta tasa de disparo. La ignición ha sido estudiada sistemáticamente en conductas

relacionadas a tareas tales como la memoria de trabajo o el acceso a la percepción consciente, así

como también en el paradigma de estado de reposo. La conectividad estructural subyacente (i.e.,

el mapa anatómico de conexiones excitatorias de corto y largo alcance) ha sido propuesta como

uno de los factores clave para entender en parte las fluctuaciones de la actividad cortical. Sin

embargo, aún no se comprende cómo la ignición de la actividad cortical está relacionada a la

estructura subyacente. Esta tesis explora cómo la organización estructural del córtex humano es

un factor en la “ignitabilidad” (i.e. la posibilidad de realizar ignición) de las regiones corticales

en el paradigma de estado de reposo. Utilizando un enfoque de simulación de cerebro completo

con modelo de campo medio, abordé dos preguntas: ¿la ignición de la actividad cortical está

influenciada por la organización estructural del conectoma humano? Más aún, si este es el caso,

¿a qué nivel de la organización de la red (i.e., organización local o mesoescala; red sin peso o

con peso) ocurre esta relación?

En el capítulo 1, muestro cómo en el modelo de campo medio embebido en la conectividad

del córtex humano genera ignición a nivel de red. Esto fue estudiado tangencialmente en los

trabajos de Deco en 2013 y de Hansen en 2015. Sin embargo, los parámetros que ellos utilizan

no se encuentran optimizados para el estudio de la ignición en la red. He extendido su trabajo,

optimizando el paso de integración y el tiempo de simulación. Asimismo, he definido un rango

específico de las condiciones iniciales para el estudio de la ignición de la red en el modelo de



cerebro completo. El resultado principal del capítulo es la maximización del rango de ignición

en el parámetro de acoplamiento de la excitabilidad global G. Esto se logra con la optimización

de las condiciones iniciales en dos rangos específicos.

En el capítulo 2, muestro cómo la actividad cortical es influenciada por la estructura, tanto

a nivel local como de mesoescala. He validado los resultados obtenidos para el conectoma

humano usando modelos subrogados que preservan ya sea su patrón de conectividad,

distribución de grado, relación integración/segregación, o su distribución de pesos en las

conexiones (i.e. sus pesos sin un orden específico). Todos los modelos subrogados presentan un

rango de biestabilidad. Sin embargo, la ignición en el conectoma humano presenta rasgos

excepcionales relativos a su organización en núcleo. Primero, éste proporciona un umbral

excepcionalmente bajo de excitabilidad global G para la ignición de la red. El núcleo con

conexiones de mayor fuerza contiene al mismo tiempo las regiones en ignición cuando ésta se

gatilla en el menor valor del parámetro G, llamado G-, en el conectoma humano. En contraste,

los modelos subrogados presentan ignición fuera de dicho núcleo y a valores más altos del

parámetro G. Segundo, la secuencia de ignición de las áreas, asociada al parámetro G, se explica

por la organización en núcleo y capas del conectoma humano. Esta relación no es replicada por

los conectomas subrogados, confirmando la excepcionalidad de la relación entre la ignición de la

actividad neural del córtex humano y su organización en núcleo y capas. Por lo tanto, la

secuencia de ignición está organizada de manera específica en núcleo-periferia dado por los

pesos de las conexiones en el conectoma humano.

Finalmente, se estudió la relación entre ignición y organización estructural como un

principio arraigado en la evolución, más que una singularidad del conectoma humano. Usando

los conectomas disponibles de organismos relativos, macaco (Macaca mulatta), rata (Rattus

norvegicus), ratón (Mus musculus), y mosca de la fruta (Drosophila melanogaster), el modelo



evidenció que la ignición está explicada por la organización local y mesoescala de los diversos

conectomas.

En el capítulo 3, utilice un enfoque diferente para confirmar cómo la organización

estructural sostiene la ignición de las regiones corticales en estado de reposo. Para aquello, se

cortó selectivamente las conexiones del núcleo o de las regiones altamente conectadas. Luego se

analizó los cambios en los puntos de ignición G- y colapso G+ de la ignitabilidad cortical. La

selección se basó en el criterio de grado, fuerza, y descomposición de k-núcleo o s-núcleo. El

corte selectivo del núcleo, como también de las regiones altamente conectadas, aumenta los

valores (o umbrales) para los puntos de G- y G+. Por lo tanto, la ignitabilidad de cada región

cortical y de la red está influenciada por la organización estructural.

En conclusión, esta forma específica de organización en núcleo y capas da cuenta de un

principio estructural de la ignición neural. Este da un marco de trabajo para el estudio de la

influencia estructural en este tipo de fluctuaciones de la actividad cortical. Más aún, las regiones

altamente conectadas y que forman núcleos son fundamentales para dar forma y sostener el

estado de ignición en la red del conectoma humano.





Abstract

Human cognition relies on fluctuations of cortical activity to perform tasks or realize

conscious perception. The fluctuations also occur spontaneously, influenced by physiological

and anatomical constraints. One type of fluctuation is the “ignition,” in which the cortical

activity realizes fast transitions from a low to a high firing rate regime. Ignition has been studied

systematically in task-related behaviors such as working memory or conscious perception access,

as well as in the resting-state paradigm. The underlying structural connectivity (i.e., the

anatomical map of short- and long-range excitatory connections) has been proposed as one of the

key factors to understand fluctuations in cortical activity. However, it is not well understood how

the ignition in cortical activity is related to the underlying structure. This thesis investigates how

the human cortex’s structural organization is a factor in the “ignitability” (i.e., the possibility of

realizing ignition) of the cortical regions in the resting-state paradigm. Using a whole-brain

mean-field model approach, I address two questions: does the human connectome’s structural

organization influence ignition in cortical activity? Moreover, if it were the case, at which level

of the network organization (i.e., local or mesoscale organization, or global; unweighted or

weighted network), does this relationship occur?

Chapter 1 shows how a mean-field model embedded in human cortex connectivity

generates ignition at the network level. It was studied tangentially in the works of Deco in 2013

and Hansen in 2015. However, the parameters that they used are not optimized to study the

network ignition. I extend their work, optimizing the time step and the time of simulation

parameter. Also, I define a specific range of the initial conditions for the study of network

ignition in the whole-brain model. The main result of this chapter is the maximization of the

ignition range in the parameter of global coupling excitability G. It is achieved with the

optimization of the initial conditions in two specific ranges.



Chapter 2 shows how cortical activity is influenced by the structure at the local or

mesoscale level. I validated the human connectome results using surrogate models that preserve

either its connectivity pattern, degree distribution, integration/segregation ratio, or weight

distribution of the connections (i.e., its weights without a specific order). All the surrogate

models have ignition in a bistable range. However, the ignition in the human connectome has

exceptional features related to the core organization. First, it has a low excitability threshold for

the network ignition. The core with the strongest connections includes, at the same time, the

ignited regions when it is triggered at the lowest value of the coupling gain G, called G-, in the

human connectome. In contrast, the surrogate models present ignition outside of the mentioned

core and with higher values of the parameter G. Second, the ignition sequence of the areas

associated with the parameter G is explained by the weighted core-shell organization of the

human connectome. This relationship is not replicated by the surrogate connectomes, confirming

the exceptionality of the relationship between the ignition of the cortex’s neural activity and its

organization in core and shells. Therefore, the ignition sequence is organized by a specific

weighed core-shell arrangement in the human connectome.

Finally, I study the relationship between ignition and structural organization as a neural

principle rooted in evolution, rather than a human connectome uniqueness. Using the available

connectomes of related organisms, macaque (Macaca mulatta), rat (Rattus norvegicus), mouse

(Mus musculus), and fruit fly (Drosophila melanogaster), the model reveals that ignition is

explained by the local and mesoscale organization of the different connectomes.

Chapter 3 uses a different approach to confirm how the structural organization sustains the

ignition in cortical regions in the resting state. For that, I pruned selectively the connections of

the core or the highly connected nodes. Then, I analyzed the changes in the ignition G- and

collapse G+ points of the cortical ignitability. The selection was based on the degree, strength,

k-core, or s-core criteria. The selective pruning of the core, as well as the highly connected



regions, increases the values (or thresholds) for the G- and G+ points. Therefore, the ignitability

of each cortical region and the network is influenced by the structural organization. In

conclusion, this specific core-shell organization seems to be a structural principle of neural

ignition It gives a framework to study the structural influence in this type of cortical activity

fluctuations. Moreover, the highly connected and core regions are fundamental to shape and

sustain the human connectome’s network ignition state.





Introduction

1. Spontaneous fluctuations and ignition in cortical activity

Human (Homo sapiens) cognition relies on the coordinated recruitment of distributed

brain-wide networks, which are flexibly reconfigured depending on external context and internal

brain state (Bressler and Menon, 2010). Even at rest, the functional connectivity (FC) between

brain regions is restless, switching between a multiplicity of meta-stable configurations (Fox and

Raichle, 2007; de Pasquale et al., 2010), which are reminiscent of cognitive networks evoked

during specific tasks (Cole et al., 2014; Kieliba et al., 2019). Such dynamic FC has been

considered to stem from the complex collective dynamics of brain networks (Deco, Jirsa and

McIntosh, 2013). In particular, based on theoretical neuroscience insights (Battaglia et al., 2012;

Kirst, Timme and Battaglia, 2016), one expects that a repertoire of multi-stable brain dynamical

states, called “dynome” (Kopell et al., 2014), generates the observed repertoire of FC

configurations, the “chronnectome” (Calhoun et al., 2014). Then, understanding how the

fluctuations in the neural dynamics arise is key to lay the neurobiological foundations for

human cognition (Varela et al., 2001; Buzsáki, 2006; Lynall et al., 2010; Sporns, 2016).

Technical advances in imaging have provided insights into brain activity and structure in-vivo

(Cabral et al., 2017; Papegaaij et al., 2017; Battista et al., 2018). The brain activity fluctuates at

slow timescale, as observed in resting-state functional magnetic resonance imaging (fMRI)

studies (Hutchison et al., 2013; Hansen et al., 2015; Deco et al., 2017). On the other hand, the
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fast timescale fluctuations can be measured with electrocorticography (ECoG) (Golan et al.,

2016), electroencephalogram (EEG) (Del Cul, Baillet and Dehaene, 2007), and

magnetoencephalogram (MEG) (Moutard, Dehaene and Malach, 2015; Baria, Maniscalco and

He, 2017). Nevertheless, the factors that give rise to these fluctuations of brain activity remain to

be elucidated, and their functional relevance is highly debated (Messé et al., 2014; Moutard,

Dehaene and Malach, 2015; Deco and Kringelbach, 2017). Some relevant insights are, for

instance, that the fluctuations depend on local cortical features such as time delays (Deco and

Jirsa, 2012; Messé et al., 2015), the excitatory and inhibitory balance within a brain region

(Freyer et al., 2012; Messé et al., 2015; Joglekar et al., 2018), and the organization of their

structural connectivity (SC) (Messé et al., 2014, 2015; Joglekar et al., 2018; Lynn and Bassett,

2019). In this thesis, I will explore how the structural organization of the human cortex is

involved in the fluctuations of brain activity.

1.1. Fluctuations in cortical activity: Ignition

A cortical region activity switches between a low firing rate activity regime and a second

“ignited” state where the firing rate is substantially higher. This is often associated with a

functional role in working memory or input integration (Wang, 2002; Wong and Wang, 2006;

Messé et al., 2015; Moutard, Dehaene and Malach, 2015; Deco and Kringelbach, 2017; Joglekar

et al., 2018; van Vugt et al., 2018). The configurations of ignited cortical regions in time would

shape the fluctuations in cortical activity.

Ignition has been described in different spatio-temporal domains. At the single neuron

domain, ignition is observed in the up and down states of the membrane potential in recordings

of the slow-wave sleep stage (Destexhe, 2007). Operationally, up and down states refer to
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neurons that have two preferred subthreshold membrane potentials that depend on the inputs of

the neighborhood (Wilson, 2008). At the domain of neural circuits, the ignition has been

observed in local field potential (LFP) (Navarro-Lobato and Genzel, 2019) and two-photon

calcium imaging (Cossart, Aronov and Yuste, 2003), where transient increases in the neural

population activity -ignition- have been linked to domains of cognition as working memory and

attention (Cossart, Aronov and Yuste, 2003; Holcman and Tsodyks, 2006). Finally, ignition has

also been reported in macroscopic studies of fMRI (Finn et al., 2019), EEG (Moutard, Dehaene

and Malach, 2015), and MEG (de Pasquale et al., 2010, 2018), where the signal of a given brain

region exceeds a threshold value defined by a distinct reference signal. At this macroscopic

domain, ignition is linked to visual conscious perception (Noy et al., 2015; van Vugt et al., 2018)

and working memory performance (Wong and Wang, 2006). Moreover, ignition has been

described not only in humans but also in macaque (Macaca mulatta) (van Vugt et al., 2018) and

dogs (Canis familiaris) (Aulet et al., 2019). Thus, ignition is a phenomenon that plays a role in

cognitive and behavioral functions and has been observed at different spatial, temporal, and

evolutive domains of brain activity.

Given the cortical structural connectivity, if a region gets into an ignited state (either by

spontaneous fluctuations or afferent inputs), its activity could propagate to directly connected

regions, possibly inducing them to ignite as well, building together an ignition network (de

Pasquale et al., 2018). The propagation of ignition in a system has been studied in the context of

epidemic disease (Kitsak et al., 2010; Rock et al., 2014) as well as in cortical dynamics (Hütt,

Kaiser and Hilgetag, 2014; Mišić et al., 2015). There is growing experimental (Moutard,

Dehaene and Malach, 2015) and modeling (Holcman and Tsodyks, 2006; Wong and Wang, 2006;

Joglekar et al., 2018) evidence stressing how cortical ignition is non-linear, with regions only

able to get ignited if the inputs they receive -external, but also, notably, recurrent- rise above a
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threshold. Whether this threshold is crossed or not depends on structural factors such as the

number of neighboring regions and the strength of incoming connections and also on the activity

of the neighboring regions, which are, in turn, influenced by the collective network state (Deco

and Kringelbach, 2017). Thus, it is not straightforward to disentangle the relative contributions

of the cortical structure and dynamics in determining the ignitability of different regions, either

at the early or later stages of the ignition cascade (van Vugt et al., 2018).

In 2015, Moutard and colleagues proposed a mechanism to merge the explanation of

task-related and spontaneously induced ignition. In their words, “Considering (...) the ignition

dynamics that is apparent during the active mode in response to sensory stimulation or task and

the resting-state dynamics that emerges in the absence of any stimulus or task, it thus appears

that both can be explained by the same mechanism: reverberatory network dominated by

excitatory connections.” (Moutard, Dehaene and Malach, 2015).

For example, from a modeling perspective, Wong and Wang proposed a biophysically

plausible model of cortical activity that, once recurrent connections are implemented, captures

the ignition’s relevant slow timescale features during a visual task (Wong and Wang, 2006). On

the experimental side, van Vugt and colleagues studied the access to visual conscious perception

in macaques (van Vugt et al., 2018). They recorded visual cortices involved in sensory

processing (V1 and V4), as well as the dorsolateral prefrontal cortex (dlPFC), a region involved

in perceptual decisions and integrative functions. They showed that even when sensory cortices

are in an ignited stated during stimuli presentation, if dlPFC is not, the macaque will not be

visually aware. Beyond task-related paradigms, ignition has also been observed in the

resting-state of human and non-human subjects (Deco and Kringelbach, 2017). Ignition in

resting-state, contrary to task-related, has been observed as slow firing rate modulations of

cortical activity on ECoG (He et al., 2008; Nir et al., 2008), EEG (Schurger et al., 2015), and
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fMRI (Nir et al., 2006; Barttfeld et al., 2015). Together, this suggests that the recurrent

connections are the substrate where the ignition can propagate (either activated by stimuli or

spontaneously). At the cognitive domain, the ignition of specific networks could be the substrate

of conscious awareness. Moutard and colleagues framed this hypothesis into the explanatory

framework called global neuronal workspace theory (GNWT).

1.2. Global neuronalworkspace theory

The global workspace theory, proposed by Baars in the 88’, defines a network for conscious

work. In the network, the activity patterns of the central nodes define the broadcasting of

task-related signals to the conscious perception. This is called the access to the global workspace

(Baars, July 30th, 1993). Peripheral nodes compete and collaborate in a structured fashion to

broadcast their activity to central nodes of the global workspace. In principle, the global

workspace theory is a psychological framework based on cognitive explanations rather than

neurobiological ones. More recently, the global workspace theory has received more biological

grounds.

From a biological perspective, the mammalian brain could implement such a global

workspace architecture, where peripheral nodes have been related to the sensory cortices and

global workspace to more integrative regions (Connor and Shanahan, 2007). Thus, in the GNWT

framework proposed by Dehaene, Changeaux, and colleagues, the central idea is “... in this

model, sensory stimuli mobilize excitatory neurons with long-range cortico-cortical axons,

leading to the genesis of a global activity pattern among workspace neurons (...) The GNWT

model predicts that conscious presence is a non-linear function of stimulus salience; i.e., a

gradual increase in stimulus visibility should be accompanied by a sudden transition of the

neuronal workspace into a corresponding activity pattern” (Dehaene, Sergent and Changeux,
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2003; Seth, 2007). Then, the interplay between central and peripheral nodes and how their

activities are propagated in the network is key to understand the global activity pattern in the

brain.

To investigate this interplay between network nodes, Wallace and colleagues developed

network-theoretic modeling of the GNWT framework in which “the ignition of a global

workspace corresponds to the formation of a ‘giant component’ (of regions) whereby previously

disconnected sub-networks coalesce into a single network encompassing the majority of

modules. The emergence of giant components in dynamic networks can be considered as a phase

transition” (Wallace, April 14th, 2005; Seth, 2007). Adding those definitions to what Moutard

proposed as ignition, i.e., “reverberatory network dominated by excitatory connections,” it is

possible to understand what the GNWT describes as the “sudden transition of the neuronal

workspace”: peripheral nodes become transiently ignited, and their activity is integrated into the

global workspace, building up this giant component. Together, these results suggest a

fundamental role of network ignition on the conscious perception in the GNWT framework

(Moutard, Dehaene and Malach, 2015; van Vugt et al., 2018).

1.3. Hierarchical information processing

An alternative explanation for the ignition of cortical activity is the hierarchical information

processing of the cortical activity. In this framework, each cortical region belongs to a

hierarchical module, optimizing the propagation of cortical activity (Deco and Kringelbach,

2017). They argue that brain regions follow a graded non-uniform hierarchy in the intrinsic

ignition capabilities. In this sense, high hierarchy regions are ignited in almost all the ignition

events, whereas low hierarchy regions seldom display ignition. Using human resting-state and

deep sleep fMRI data and a validated methodology, they uncover a hierarchical structure of
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cortical ignition, i.e., how much each region participates in the collective ignition and,

consequently, in the information propagation on the brain (Deco and Kringelbach, 2017).

GNWT and hierarchical information processing are frameworks that bind the ignition

events of cortical activity with resting-state (slow fluctuations) and task-related (fast fluctuations)

paradigms. Besides the influence of local dynamics on the fluctuations in cortical activity, the

underlying structural connectivity is postulated as a critical factor underlying the ignition (Honey

et al., 2007, 2009; Rubinov and Sporns, 2010; Messé et al., 2014; Lynn and Bassett, 2019). The

next section will cover the backgrounds of network analysis necessary to characterize the

particular human connectome’s organization that may be shaping cortical ignition.

2. The structural organization of the human connectome

Although anatomical connections are crucial for the fluctuations of cortical activity, how

the organization of those connections influences the dynamics are a highly debated topic (Lynn

and Bassett, 2019). Network neuroscience tools are typically used to study the organization of

the human connectome (Rubinov and Sporns, 2010). In the words of Lynn and Bassett,

“Network neuroscience -an approach to understand the brain by recording, analyzing, and

modeling the interactions between its component parts- is founded upon the idea that the brain

comprises a complex web of distinct neural element” (Lynn and Bassett, 2019). The neural

elements range from neurons to large-scale cortical regions, and the complex web is

implemented from synapses to long-range tracts.

In this framework, a brain network is composed of nodes (or neural regions) connected by

edges. The edges represent connections, being either binary or real-valued. The binary case only

captures the connectivity pattern (unweighted network), while the real-valued adds a relative

strength to the connections between cortical regions (weighted network). Also, a connection is
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directed if the edges between the two regions are present only in one direction but not in the

other. Moreover, the edges between the two reciprocally connected regions can be asymmetric if

the weight of the connections differs. With these definitions, the brain network can be

characterized to unveil its structural organization and, hopefully, its role in cortical activity

dynamics.

2.1. The connectome: a neuralmap of the human cortex

The connectome, coined by Sporns, Tononi, and Kotter, describes the map of the structural

wiring of the cortex (Sporns, Tononi and Kötter, 2005) and has been used to study how the

connectivity pattern is related to the cortical activity (Alstott et al., 2009; Rubinov and Sporns,

2010; Fornito, Zalesky and Bullmore, 2016). The structural connectivity ranges from synapses to

neural circuits (Chiang et al., 2011; Shih et al., 2015) and long-range connections of whole-brain

anatomy (Hagmann et al., 2008). The first attempts to reconstruct the brain’s network were

ex-vivo, in which the connections between neural regions are revealed by histology and tracers

injected to the neural regions (for a detailed review, see Fornito et al., 2016, chapter 2). Recently,

the development of magnetic resonance imaging (MRI) has allowed the in-vivo reconstruction of

the structural connectome. There are many pipelines to reconstruct the neural map from the raw

MRI data. These pipelines typically comprise on the one side, the detection and reconstruction of

the connections and on the other side, the parcellation of cortical regions based on the standard

cortical atlas (Tzourio-Mazoyer et al., 2002; Fischl et al., 2004; Hagmann et al., 2008; Rolls,

Joliot and Tzourio-Mazoyer, 2015). The atlas can use the cortical network’s structural features

as the gyrus and sulcus of the brain, as in the case of the Desikan-Killiany atlas (DKA) (Desikan

et al., 2006). They can also use functional data as the atlas based on the resting-state networks

(RSN) of the brain (Salehi et al., 2020).
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To reconstruct the connections between cortical regions, one of the most used methods is

the diffusion spectrum imaging (DSI), which uses the fact that the myelinated tracts constrain

the diffusion of the water in the brain (Fischl et al., 2004; Desikan et al., 2006). The parcellation

assigns the reconstructed connections to cortical regions, which are defined by a given atlas. One

of the main limitations of the DSI analysis is that it lacks a priori information about the direction

of the neural tracts (Seguin, Razi and Zalesky, 2019).

As aforementioned, the recurrent connections have been proposed as a key factor in the

ignition of cortical activity (Moutard, Dehaene and Malach, 2015; van Vugt et al., 2018; Wong

and Wang, 2006; Joglekar et al., 2018). The human connectome defined by Hagmann &

colleagues has only recurrent connections because it is not possible to determine the direction of

the tracts using DSI analysis (Hagmann et al., 2008). Thus, it has a symmetrical connectivity

pattern. For example, in 2018, Joglekar and colleagues used a model-based approach to show

how the recurrent connections influence the communication of the ignited activity across the

macaque cortex (Joglekar et al., 2018). Moreover, Theodoni and colleagues demonstrated that

the recurrent connections are the most abundant type of link in the marmoset monkey, showing

that recurrent connections come along evolution (Theodoni et al., 2020).

Further, the human connectome from MRI studies is asymmetric in the weight of the

connections. This feature is a consequence of the normalization of the connection weight of two

regions by their respective volume in a selected parcellation; the volume of the cortical regions

may be highly heterogeneous in some parcellations, as the DKA (Hagmann et al., 2008). One

issue with that is, the bigger the volume of a cortical area, the more likely it is to catch a

connection in the tractography. For this reason, Hagmann’s standard normalization procedure

penalizes the regions with higher volumes and benefits those with a small volume. Nevertheless,

if this asymmetry in the weighted pattern of the brain network is relevant to the cortical activity

is far from being understood (Alstott et al., 2014). Indeed, in a network sense, there is a long
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debate about how to normalize the connectivity weights and their effective relevance in cortical

activity (Betzel et al., 2019).

2.2. Network analysis of the structural organization

Brain network analysis studies the network organization of the brain at different domains.

The domains range from local, in which only matters to know how many (or how strong) are the

interactions between two regions, to global, in which the system capabilities, as the segregative

and integrative capacities, are measured as a whole (Lynn and Bassett, 2019). Between those

domains, there is a buoyant field that studies the interactions of the mesoscale domain of the

cortical network (Hagmann et al., 2008; Harriger, van den Heuvel and Sporns, 2012; Gollo et al.,

2015; Messé et al., 2015; Betzel, Medaglia and Bassett, 2018). Network analysis is used to

unveil the SC’s organizational principles that collectively shape cortical dynamics (Fornito,

Zalesky and Bullmore, 2016).

The connectivity of each node defines its central influence on the local domain of the

organization. It could be measured as the number of connections of each node in the unweighted

network analysis or the sum of each node’s weights in the weighted analysis (de Pasquale et al.,

2018). The nodes with the highest number of connections (or the strongest connections) are

defined as hubs because they are thought of as the most prominent in the fast neural

communication through the cortical web (Lynn and Bassett, 2019). Human recordings of

resting-state fMRI evidence the functional role of hub nodes present in the default mode network

(DMN). In the DMN, the hub nodes comprise regions such as the posterior cingulate cortex

(PCC), medial prefrontal cortex (mPFC), and angular gyrus (AG) (Buckner et al., 2009; Cole,

Pathak and Schneider, 2010; Tomasi and Volkow, 2010; Zuo et al., 2012; de Pasquale et al.,

2013). Moreover, hubs nodes have also been reported in the somatomotor network (SMN)
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(supplementary motor area (SMA) and central sulcus (CS) regions), in the visual network (VIS)

and frontoparietal network (FPN) (inferior frontal gyrus (IFG) and insula regions) (Tomasi and

Volkow, 2011; Zuo et al., 2012). Then, slow macroscopic fluctuations -such as the activity of the

resting state networks- are sustained by structural hubs.

The analysis of global organization considers the network as a whole. For example, it can

be analyzed in terms of the segregative and integrative capacities of the system. Segregative

capacities allow specialized responses of cortical regions, whereas integrative capacities allow

the enaction of fast responses to the environmental challenges. In 1998, Watts and Strogatz

proposed a strategy to study the integration/segregation ratio of a network, coining the term

small-world (Watts and Strogatz, 1998). Conceptually, the small-worldness of a network is

derived from the ratio between the characteristic path length of the network (i.e., the average of

the smallest path between two cortical regions of all the system) and the clustering coefficient

(i.e., the extent in which cortical regions of the neighborhood are preferentially connected

between them) (Humphries and Gurney, 2008). Experimentally, the small world architecture has

been found in structural connectivity from MRI data (Hagmann et al., 2008; Vaessen et al., 2010)

and tract-tracing methods (Hilgetag and Kaiser, 2004), as well as in FC from MEG (Stam, 2004;

Valencia et al., 2008), fMRI (Salvador et al., 2005; Achard et al., 2006) and EEG (Smit et al.,

2008) recordings (Bassett and Bullmore, 2017). Then, macroscopic fluctuations -such as the

functional connectivity recordings- are sustained by the small-world architecture.

Several studies describe the presence of cores, a mesoscale domain of organization, in the

network dynamics (for a detailed review, see de Pasquale et al., 2018). The core corresponds to

several nodes densely interconnected between them. The density of the interconnection of a core

is defined by a threshold on the number of connections (or strength of connections) between

those nodes, defining a core-shell organization (Hagmann et al., 2008; Kitsak et al., 2010). This
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core-shell organization characterizes layers of nodes that share the same level of

interconnectivity between them. Altogether, the core-shell organization represents the gradient

of interconnectivity strengths on the network. The network’s core arrangement has been

observed in the analysis of the structural connectome (Hagmann et al., 2008; Swanson, Hahn

and Sporns, 2017; Betzel, Medaglia and Bassett, 2018). However, how the ignition is related to

the mesoscale organization is not well understood.

Despite the lack of studies relating to ignition with mesoscale organization, simple

modeling examples showed its role on activity propagation on a network. Kitsak and colleagues

showed a tight link between the level of propagation and the mesoscale organization layers. In

fact, the best spreaders of activity in social-related networks correspond with the core nodes and

not with the most highly connected nodes (Kitsak et al., 2010). Moreover, the group of Misic

showed that the core regions facilitate the inter-module propagation of cortical activity (Misic et

al., 2015). Thus, the core-shell organization could be central to understand how the network

structure facilitates the ignition in cortical activity, a main player in cognition.

3. Ignition in thewhole-brainmodel of cortical activity

Here, I search for the structural organization features that influence the ignition in cortical

activity. For this, I correlated the specific structural organization of the human connectome with

the ignition in cortical activity. The ignition was implemented using the deterministic

whole-brain mean-field model (MFM) for cortical activity. The MFM is a reduction of cortical

activity to its slowest temporal components, represented by the NMDA channels. The slow

temporal components are frequently associated with resting-state low-frequency features of RSN

(Deco et al., 2013; Hansen et al., 2015). The local dynamics of each cortical region in the

whole-brain MFM differed only in the integrated currents from the neighboring regions.
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Previous studies using the cortex-like dynamics of the MFM wired by the human

connectome have shown that several characteristics of the simulated data match with empirical

data as high correlation with the FC (~0.47) and resemble the fluctuations of cortical states

(Hagmann et al., 2008; Deco et al., 2013; Hansen et al., 2015). Remarkably, several studies

about mean-field computational models of the resting state -which were not intended to explore

cortical ignition directly- also have consistently reported that the best fit between simulated and

empirical FC is found in a critical range of global coupling where switching between ignited and

not-ignited network states are possible (Deco et al., 2013; Hansen et al., 2015).

Indeed, Deco et al. 2013 showed a range of global coupling gain, G, in which the

deterministic collective dynamics seat in at least two states, bounded by bifurcations at G- and

G+. I used the connectome-based model of the human to explain how its connectivity pattern

exerts influence over the collective cortical activity in the bifurcations. Moreover, Hansen et al.

2015 showed that the ignited regions showed a strong relationship with the core-shell

arrangement over the range of bifurcations. Thus, the goal is to evaluate how the heterogeneous

patterns of structural organization of the cortex influence cortical ignition. How structural

properties sustain and shape these dynamic attractors in the bifurcations G- and G+ has not been

elucidated yet.

The structural asymmetry of the inputs gives rise to different ignition patterns, and its

relation to the specific organization of the human connectome is the main topic of this work.

Furthermore, the network’s domain, either local, mesoscale, or global, best captures these

relationships. In chapter 1, I optimize the model for network ignition using the human

connectome. In chapter 2, the ignition is evaluated in terms of network organization. The

human cortex organization is compared against surrogate models. It assesses if topological

and/or weighted properties of the human connectome -such as connectivity pattern, randomness,
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complexity, or weighted backbone- are enough for bistable network dynamics. I found a specific

and robust correspondence between the ignition pattern and the human connectome’s core-shell

organization. Then, the result is extended to the related organisms exploring the evolutionary

roots for the ignition’s organizing principle. Chapter 3 briefly probes that ignition depends on

the connections of the local and mesoscale domain. This is evaluated by pruning connections of

the human connectome, based on their organizational identity given by the previous chapter’s

network analysis. I suggest that if core regions are pruned, the bifurcation’s stability will be lost

while pruning non-core regions have a negligible impact on bifurcation stability. Finally, in the

discussion, I analyze my results under the light of the current and related literature, stressing the

relevance of the mesoscale organization on brain dynamics, and more importantly, on the

structural determinants of human cognition.







Hypothesis

The core-shell organization of the human connectome is the most relevant structural

determinant that explains the ignition pattern on a deterministic model of bistable

cortical dynamics.





Goals

1. To implement deterministic cortical network simulations in which the ignition of the network

is optimized to the broadest possible bistable range. The optimization would be realized over

time of simulation, time step, and initial conditions.

2. To investigate the relationship between the ignition of a mean-field model and the structural

organization of the human connectome, using network analysis and surrogate models of

structural features.

3. To study the relationship between the ignition of a mean-field model and the structural

organization in connectomes of other organisms, to search principles of the neural activity in the

structural organization.

4. To test the effect of selectively pruning connections on the network ignition, based on the

network analysis of the mesoscale and local organization. Pruning is done based on unweighted

and weighted network features.





Materials and methods

1. Cortical connectomedatasets

I used the structural connectivity SC of the human cortex connectome described in the study

of Hagmann et al., 2008, which came from MRI data, and it was processed with DSI. The human

SC was parcellated with the DKA (Fischl et al. 2004; Desikan et al. 2006), which contains 66

cortical regions (Table 1). The Hagmann dataset is an average of five right-handed male subjects

(mean age = 29.4 ± 3.4) (Hagmann et al. 2008), which present 1.148 cortico-cortical connections

(network’s density ~27%) (Figure 1A).

I used another five human connectome datasets. One based on the same DKA called the

Schirner dataset, which is an average of 50 subjects, 31 females (mean age = 41.55 ± 18.44),

with 66 nodes and 4.290 connections (network’s density ~98%, Figure 1B) (Schirner et al. 2015).

The other four are based on the AAL atlas (Tzourio-Mazoyer et al. 2002; Rolls et al. 2015). The

fist is the Whirsich dataset, which is an average of 11 subjects, all male (mean age = 34 ± 4),

with 96 nodes and 8.866 connections (network’s density ~97%, Figure 1C) (Wirsich et al. 2018).

The other three connectomes came from the Deco dataset and were the average over 16 subjects

(5 women, mean age = 24.8 ± 2.5). The Deco dataset used is divided into 76 cortical regions and

2.076 connections (~36% network’s density, Figure 1D). Also, this dataset contains the cortical

+ the subcortical regions with 90 nodes and 3.162 connections (~39% network’s density Figure
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1E). Finally, this dataset also adds the cerebellum regions to sum 116 regions and 4.056

connections (~30% network’s density, Figure 1F) (Deco et al. 2018).

Additionally, I describe four additional non-human connectome datasets, which I analyzed

using the same methods as human SC. Whereas the human connectome data were reconstructed

in-vivo from diffusion-weighted images, the procedures used to reconstruct the non-human data

were more varied, ranging from retrograde tract-tracing to meta-analysis (Betzel et al. 2018).

Fruit fly. I analyzed a network reconstructed from 12.995 projection neurons in the female

fruit fly brain (Chiang et al. 2011; Shih et al. 2015). Neurons were aggregated among N = 50

local processing units, which represent network nodes. The resulting network is directed and

weighted, with 2.049 connections (network’s density ~83%) (Figure 2A).

Mouse. I also analyzed a mouse connectome reconstructed from tract-tracing experiments

made publicly available by the Allen Brain Institute (Oh et al. 2014). Tracers were tracked from

a series of injection sites to ipsi- and contra-lateral brain regions. The mouse brain was

parcellated into N = 112 regions (56 per hemisphere) and edge weights defined as the

volume-normalized number of connections between regions (Rubinov et al. 2015). The resulted

network has 6.542 connections (network’s density ~52%). Due to the directed nature of the

tract-tracing experiments, the resulting network was asymmetric (Figure 2B).
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Figure 1. The human connectome datasets. The (A) Hagmann and (B) Schirner datasets were
parcellated using the DKA. (C) The Wirsich dataset was parcellated using the AAL atlas. (D-F)
The Deco dataset was also parcellated with AAL, in which (D) contains only cortical regions
(76), (E) contains cortical + subcortical regions (90), and (F) contains cortical + subcortical +
cerebellum regions (116). All the connectomes normalize their connections to maintain the same
overall strength of the Hagmann’s dataset, 15.3 (see methods for details).

Rat. I also analyzed a rat cortical network (Bota et al. 2015). This network was constructed

by collating reports on rat tract-tracing experiments (Bota et al. 2005), extracting information

from those reports regarding the existence of connections (resulting in >16.000 connections),

and based on the consistency and quality of those results, assigning a single weight to an existing

inter-regional connection. The result is a directed network of N = 156 cortical regions and 6.805

connections (network’s density ~28%) (Figure 2C).

Macaque. Finally, I include the macaque cortical connectome, defined by the CoCoMac

group (Collation of Connectivity Data for the Macaque) (Bakker et al. 2012), which is a

compilation of several tracer studies and includes only the right hemisphere. The CoCoMac

contains 212 cortical regions and 4.090 directed and unweighted connections (network’s density

~9.1%) (Figure 2D).
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Table 1. Abbreviations of cortical regions from parcellation Desikan-Killiany atlas
(Desikan et al., 2006). The brain order is the same as in Deco & Jirsa 2012. Table extracted
from Hansen et al., 2015.

Abbreviation Cortical Region

ENT Enthorinal cortex

PARH Parahippocampal cortex

TP Temporal pole

FP Frontal pole

FUS Fusiform gyrus

TT Transverse temporal cortex

LOCC Lateral occipital cortex

SP Superior parietal cortex

IT Inferior temporal cortex

IP Inferior temporal cortex

SMAR Supramarginal gyrus

BSTS Bank of the superior temporal sulcus

MT Middle temporal cortex

ST Superior temporal cortex

PSTC Postcentral gyrus

PREC Precentral gyrus

CMF Caudal middle frontal cortex

POPE Pars opercularis

PTRI Pars triangularis

RMF Rostral middle frontal cortex

PORB Pars orbitalis

LOF Lateral orbitofrontal cortex

CAC Caudal anterior cingulate cortex

RAC Rostral anterior cingulate cortex

SF Superior frontal cortex

MOF Medial orbitofrontal cortex

LING Lingual gyrus

PCAL Pericalcarine cortex

CUN Cuneus

PARC Paracentral lobule

ISTC Isthmus of the cingulate cortex

PCUN Precuneus

PC Posterior cingulate cortex



Figure 2. The structural connectomes of other organisms. (A) The connectome of fruit fly
(Drosophila melanogaster), (B) mouse (Mus musculus), (C) rat (Rattus norvegicus), and (D)
macaque (Macaca mulatta).

All the connectomes used here, human and non-human ones, are adjusted to preserve the

same overall strength of the human dataset of Hagmann et al., 2008 (see below).

1.1. Cortico-cortical connections of the human connectome

The diffusion MRI was used to reconstruct the connections of the human cortex

(Tzourio-Mazoyer et al. 2002; Hagmann et al. 2008; Desikan et al. 2006), and it measures the

diffusion anisotropy of water across the brain. The result of the DSI analysis is the diffusion map,

a 3-dimensional vector matrix that contains the myelinated connections of the brain (Hagmann et

al. 2008). Only the vectors of the diffusion map that match with the white matter are used

because there is where the myelinated tracts exist. Tractography uses those reconstructed

connections to make the match between cortical regions defined by standard atlas (i.e., DKA or

AAL) (Tzourio-Mazoyer et al. 2002; Fischl et al. 2004; Hagmann et al. 2007; Rolls et al. 2015).

The result is the SC matrix (Figure 1), a representation of the neural map. There are different

parcellation criteria; ones are based mainly on the structural (i.e., myelinated tracts or

cytoarchitecture), and others in functional (i.e., as the resting state networks) data. For example,

the DKA is a structural parcellation that uses the gyrus and sulcus to define 66 cortical regions

(Fischl et al. 2004; Desikan et al. 2006). In the Hagmann connectome, a connection between

cortical regions i and j was defined after applying a normalization to the raw number of fibers
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that connect them. The weight of each connection was normalized by the number of tracts and

relative volume among two connected cortical regions (details in Hagmann et al., 2008).

1.2. Structural connectivitymatrix

The structural connectivity matrix, represented by the Cij matrix, shows the pair-wise

connection between cortical regions of the connectome, in which columns show the inputs and

rows the outputs of each area (Figure 3). Each entry of the matrix is a pair-wise excitatory

connection. For example, in Figure 3A, the entry C21 is a connection from node 1 to 2. The Cij

can be decomposed in the adjacency matrix (Aij) (or connectivity pattern) (Figure 3A, bottom)

and the weighted matrix (wij) (or weighted connectivity) (Figure 3B, bottom), which is shown

in equation 1:

Cij = wij Aij

Equation 1

The the adjacency matrix Aij, correspond to the binarized values of connectivity in the
network:

Figure 3. The scheme of unweighted and
weighted structural connectivity. (A) Top,
network nodes are represented in circles, in
which in the middle is showing their number
of connections. Bottom, matrix
representation of the network, the entries
indicate the presence (black) or absence
(white) of a pair-wise link between the nodes.
Rows correspond to the afferences and in
columns the efferences of each node. (B)
Top, in this case, the connections are
weighted. Bottom, the weighted matrix
representation, in which the color bar
reflects the values of the pair-wise links. In
the connectome field, those values tend to
represent the pondered weight of the
myelinated tracts, the number of tracts that
connect two circuits, or even the number of
synapsis between two neurons.



The Aij allows disentangling from the weighted variability on the connectome (Figure 3A).

The wij matrix contains the weight diversity of each network, as is shown in Figure 3B. Note that

the use of wij or Cij is equivalent (Fornito et al. 2016).

2. Network analysis

2.1. Local organization

To measure the local organization on a network, I used the degree ki for unweighted, and

strength si for weighted networks. ki is the number of connections in the node i from other j =

1 … N-1 nodes (Figure 3A). The degree is defined as (Fornito et al. 2016):

�� =
�≠�
����

Equation 2

Whereas the si is the sum of the weighted connections in a node i from j = 1…N-1 nodes of

the network (Lynall et al. 2010; Rubinov and Sporns 2010) (Figure 3B). In an weighted network,

the strength is defined as:

�� =
�≠�
����

Equation 3

The strength of a node can be decomposed as the sum of its in-strength, si-in (i.e., the sum of

inputs connections), and out-strength, si-out (i.e., the sum of outputs connections).

�� = ��−�� +��−���

Equation 4

https://paperpile.com/c/2HuPwB/CPJT
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2.2. Mesoscale organization

A network can contain subsets of nodes that are more strongly inter-linked between them

than on average. I identify this mesoscale organization of a network using a core decomposition

which reveals its core-periphery organization. Focusing first on unweighted graphs, we define as

k-core a subgraph –i.e. a subset of nodes and the links interconnecting them– in which all the

member nodes have at least k neighbours within the subgraph (Hagmann et al. 2008; Kitsak et al.

2010; Betzel et al. 2018). The larger k is, the more difficult is to identify subgraphs that satisfy

the k-core criteria, resulting in increasingly tighter cores (Figure 4). Any node member of a

k-core will also belong to any k’-core with k’ < k, resulting in an “onion-like” nesting of

progressively denser cores, up to a maximum value kmax such that no k-core exists for any k >

kmax . The largest value for kmax defines the core of the network, called kmax-core defines (see

Results 2, Figure 21C right) (Alvarez-hamelin et al. 2006; Kitsak et al. 2010; Harriger et al.

2012).

These definitions of cores and shells can be naturally generalized from unweighted to

weighted networks by replacing the notion of node degree (discrete number of outgoing and

ingoing connections) with the notion of node strength (sum of the continuous weights of

outgoing and ingoing connections). Hence, an s-core is a subgraph such that all its nodes are

connected between them with a strength larger or equal than s. There is a smax-core, such that

s-cores with s > smax do not exist anymore. In addition, one can define a smooth s-shell as a set of

nodes belonging to s’-cores with s < s’ < s+Δs but not to the inner s-core (where Δs sets a

precision at which continuous s values are quantized). After a quick exploration among the

connectomes, I set the analysis of s in a range between 0 and 0.8 with steps of Δs=0.001.

https://paperpile.com/c/2HuPwB/BAo7+zDUm+7SJY
https://paperpile.com/c/2HuPwB/BAo7+zDUm+7SJY
https://paperpile.com/c/2HuPwB/PkAz+zDUm+8Jym
https://paperpile.com/c/2HuPwB/PkAz+zDUm+8Jym


Figure 4. Diagram of the k-core decomposition algorithm. The k-core decomposition is used
to extract the unweighted core nodes in the networks. In each step, the nodes (N) that have a
degree<ki are removed in successive steps until the sub-set remains constant. The four core
nodes are interconnected with at least ki=3. In the case of weighted networks, the s-core
decomposition extracts the core nodes based on their strength (≥si).

Also, I defined the smax of the inputs and the outputs of the network. This was made by

evaluating either the in-smax and out-smax of the network for the inputs and outputs, respectively.

Similarly, cores are defined as in-smax-core in the case of inputs and the out-smax-core in the case

of the outputs.

2.3. Global organization

To measure the global organization of a network, I used the small-world index, σ. This

metric measures the ratio between integration and segregation of a network, i.e., a ratio of the

normalized characteristic path length and the normalized clustering coefficient of the network

(Humphries and Gurney 2008; Humphries et al. 2006).

The characteristic path length. The path length is the topological distance between two

nodes in the network. The characteristic path length (cpl) is the mean shortest path between all

the nodes of a network. The cpl is measured using the fact that if (Aij)n = 1, there exists a path

between i and j nodes of length n (Fornito et al. 2016, pp-214). Thus, the shortest path between i

and j is the minimal value of the exponent n such that (Aij)n is different from zero. The cpl of a

network was normalized using a cplrandom from a random equivalent network (Humphries et al.

https://paperpile.com/c/2HuPwB/SI7H+eGd3
https://paperpile.com/c/2HuPwB/CPJT
https://paperpile.com/c/2HuPwB/eGd3


2006), which was constructed using the Maslov & Sneppen algorithm over the analyzed network

(Maslov and Sneppen 2002) (described in detail in the next section). The normalized

characteristic path length λ� is the ratio:

λ =
cpl

cplrandom

Equation 5

The clustering coefficient. The clustering coefficient (cc) is measured as the triangles of

nodes formed when a node i is connected to any neighbors k and j. If the node k and j are also

connected, the triangle is closed. If the k and j are unconnected, the triangle is open (Fornito et

al. 2016). The cc of a node i is measured as:

��� =
2��

��(�� −1)

Equation 6

Where ki is the degree of the node i, and ti is the number of closed triangles attached to node

i. To calculate the clustering coefficient of the network, I averaged their local clustering values:

cc =
1
N i=1

N
cci�

Equation 7

As in the case of cpl, I normalized the clustering coefficient (γ�) with the ccrandom, built using

the method described above (Maslov and Sneppen 2002). The equation is:

https://paperpile.com/c/2HuPwB/eGd3
https://paperpile.com/c/2HuPwB/0Nah
https://paperpile.com/c/2HuPwB/CPJT
https://paperpile.com/c/2HuPwB/CPJT
https://paperpile.com/c/2HuPwB/0Nah


γ =
cc

ccrandom

Equation 8

The small-worldness (σ) metric. The small-worldness of a network (σ) is a ratio of the

normalized clustering coefficient (γ) and the normalized characteristic path length, �(λ) of the

network:

σ =
γ
λ

Equation 9

A network has the small-world property when σ > 1 (Humphries et al. 2006; Humphries and

Gurney 2008), maintaining at the same time a high clustering coefficient and a short

characteristic path length. Thus, it is a description at the global level. I found that of the human

connectome was σ = 1.63, ± 4.3x10-3, its λ was 1.07, ± 5.4x10-4, and its γ was 1.74, ± 4.6x10-3.

Figure 7A shows an example of the SWhw network, which has a similar small-worldness value of

the human connectome. Figure 7B shows the small-worldness of the Human, Humanhw, DPRhw,

and SWhw. The SWhw networks have more similar small-worldness values with Human than

DPRhw. Thus, the human connectome presents the small-world feature, and the SWhw networks

are suited to study it (Hagmann et al. 2008).

2.4. Network toolbox

Network analyses and structural models used in this thesis were carried out using the

Python modules bctpy (https://github.com/aestrivex/bctpy) and brainconn

(https://github.com/tsalo/brainconn), both python implementations of the publicly available

Brain Connectivity Toolbox (Rubinov and Sporns 2010).

https://paperpile.com/c/2HuPwB/eGd3+SI7H
https://paperpile.com/c/2HuPwB/eGd3+SI7H
https://paperpile.com/c/2HuPwB/BAo7
https://github.com/aestrivex/bctpy
https://github.com/tsalo/brainconn
https://paperpile.com/c/2HuPwB/lCFc


3. Structural surrogatemodels

To make valid comparisons with the human connectome, I used structural models that split

topological and weighted network properties (Opsahl et al. 2008; Alstott et al. 2014). Also, all

the connectomes used, either human or other organisms, were adjusted to maintain the overall

strength (15.3) of the human dataset of Hagmann and colleagues.

3.1. Unweighted surrogate connectome (uSCs)models

Unweighted surrogate connectomes (uSCs) models have a uniform weight in their

connections equal to the mean of human connection weight, 1,332x10-2. I made three types of

uSCs: Humanhw, that preserves the backbone of human connectome without its weight

distribution (Figure 5); Degree-Preserving Random (DPRhw) ensemble that maintain the degree

distribution of human connectome, but disrupt its high order relationships (Maslov and Sneppen

2002; Rubinov and Sporns 2010; Gollo et al. 2015; Fornito et al. 2016) (Figure 6); and

Small-World (SWhw) networks that preserve the ratio between segregative and integrative

capacities (Humphries and Gurney 2008; Humphries et al. 2006; Watts and Strogatz 1998)

Figure 5. The Humanhw connectome. (A-B) The structural connectivity matrix of (A) Human
and (B) Humanhw (with homogeneous weights in its connections). (C) Sorted connection
weights of Human (red) and Humanhw (blue) connectomes. Note the heterogeneity of values in
the Human. Both connectomes have 1.148 connections, and 15.3 of overall strength.

https://paperpile.com/c/2HuPwB/yZe1+NDPd
https://paperpile.com/c/2HuPwB/0Nah+lCFc+Kr0v+CPJT
https://paperpile.com/c/2HuPwB/0Nah+lCFc+Kr0v+CPJT
https://paperpile.com/c/2HuPwB/SI7H+eGd3+m0yn


(Figure 7). The specific degree distributions and node relationships are discarded in the SWhw

ensemble. Thus, the uSCs evaluate the connectivity pattern, degree distribution, and small-world

organization of the human connectome.

I built 100 DPRhw networks with the Maslov and Sneppen algorithm (Maslov and Sneppen

2002), and Figure 6B shows how it works. First, it chooses two pairs of connected nodes that

simultaneously are disconnected, and then the algorithm makes two new connections between

the unconnected pairs. In this way, the network changes its connectivity pattern, whereas each

node conserves its number of connections. The DPRhw maintain the number of nodes, edges, and

the degree distribution of the human connectome (Figure 6C) (Telesford et al. 2011; Rubinov

and Sporns 2010; Gollo et al. 2015; Fornito et al. 2016). I used the function

makerandCIJdegreesfixed from bctpy, setting the parameter from the in-degree and out-degree

of the human connectome.

Figure 6. The DPRhw connectome. (A) One representative example of the Degree-Preserving
Random (DPRhw) structural connectivity matrix with homogeneous weights. (B) An illustrative
example of the Maslov & Sneppen algorithm, adapted from Fornito et al., 2016. The algorithm
was applied one hundred times to the Human to build the DPRhw connectomes. (C) Degree
distribution of Human, Humanhw, DPRhw, and SWhw. DPRhw connectomes have the same degree
distribution, the number of connections (1.148), and overall strength (15.3) of the Human.

https://paperpile.com/c/2HuPwB/0Nah
https://paperpile.com/c/2HuPwB/0Nah
https://paperpile.com/c/2HuPwB/2DPS+lCFc+Kr0v+CPJT
https://paperpile.com/c/2HuPwB/2DPS+lCFc+Kr0v+CPJT


Figure 7. The SWhw connectome. (A) One representative example of the Small-World (SWhw)
structural connectivity matrix with homogeneous weights. (B) Small-world index of Human,
Humanhw, DPRhw, and SWhw. Note that the precise value of the small-world index depends on
the random network used to normalize. Thus, its value is not deterministic, as can see in the error
bars of the Human. The SWhw connectomes conserve the number of connections (1.148), and
overall strength (15.3) of the Human.

The SWhw networks were used to preserve the global organization of the human

connectome (Watts and Strogatz 1998; Humphries et al. 2006). In the case of SWhw networks,

1.000 networks with 66 nodes and 1.148 edges were built using the Watts and Strogatz

Small-World algorithm (Watts and Strogatz 1998). The Watts and Strogatz algorithm starts from

a lattice network. Then it is defined as the probability of reconnection p of each connection. The

one thousand SWhw networks are reduced to one hundred that had a similar value of the

small-world coefficient (σ �) of the human (Humphries and Gurney 2008; Hagmann et al. 2008;

Alstott et al. 2014; Fornito et al. 2016) (Figure 7B). The p was adjusted to fit the human

connectome to the σ parameter as well as the more similar kmax in the kmax-core sub-network.

Notice that it was challenging to obtain slower values for the kmax because of the lattice structure

of the source network (Kitsak et al. 2010).

3.2. Weighted surrogate connectome (wSCs)models

Weighted surrogate connectome (wSCs) models preserve the weight distribution of the

human connectome, disrupting its pair-wise weight relationships (Opsahl et al. 2008; Alstott et

https://paperpile.com/c/2HuPwB/m0yn+eGd3
https://paperpile.com/c/2HuPwB/m0yn
https://paperpile.com/c/2HuPwB/SI7H+BAo7+NDPd+CPJT
https://paperpile.com/c/2HuPwB/SI7H+BAo7+NDPd+CPJT
https://paperpile.com/c/2HuPwB/zDUm
https://paperpile.com/c/2HuPwB/yZe1+NDPd+CPJT


al. 2014; Fornito et al. 2016). I made a vector that contains the connection weights of the human

connectome, and with a random permutation, the weights were assigned to the connections of

the Humanhw, the DPRhw, and the SWhw networks, creating their weighted versions. I built 60

different instances of humanrw, DPRrw, and SWrw networks (Figure 8). Indeed, each of the

transformed DPRhw and SWhw networks came from a different network instance (i.e., are

different).

Figure 8. The weighted surrogate connectomes conserve the weight distribution of the
Human. The values were assigned by random permutation of Human connections to create: (A)
60 Humanrw from Humanhw; (B) 60 DPRrw, from 60 DPRhw; and (C) 60 SWrw, from 60
SWhw.

4. The whole-brain mean-field model of cortical activity

4.1. Mean-fieldmodel (MFM) of cortical activity

I used the mean-field model (MFM) as a generator of local cortical activity. The MFM

comes from a mean-field dimensionality reduction of a large network of integrate and fire

https://paperpile.com/c/2HuPwB/yZe1+NDPd+CPJT


neurons. In 2013, Deco et al. (2013b) modified it to capture only the NMDA-associated

dynamics. With this reduction, the number of neural elements to be computed drops dramatically,

and still preserves the ability to reproduce slow frequency features of resting-state functional

data in static (Deco et al. 2013; Messé et al. 2015) and dynamic conditions (Hansen et al. 2015).

Then, the MFM operates under the assumption that the time constant of the NMDA

(N-methyl-D-aspartate) receptor dominates the time evolution of the system. Thus the local

dynamics of a cortical area are explained by the variable Si, i.e., the open fraction of NMDA

channels (Hlinka et al. 2011; Deco and Jirsa 2012; Deco et al. 2013; Moutard et al. 2015). The

equations of the model are:

���
�� =−

��
��
+ (1 −��)���

�� =
(�χ� −�)

1 − �−�(�χ�−�)

χ� = ����� +���
�=1;�≠�

���� �� + �0

Equation 10

Si (do not confound with the strength lower case si) is the open fraction of NMDA channels,

Ri is the mean firing rate, and χi represents the total synaptic input of the i cortical. The coupling

gain parameter, G, was systematically explored between 0.05 ≤ G ≤ 15, with steps ΔG=0.005. Cij

is the SC matrix with the connections from node j to node i. �τs =100 ms is the NMDA decay

time constant, γ=0.641 is a kinetic parameter, a=270 (V • nC)-1, b=108 Hz, d=0.154 s, �=0.9 is

the relative strength of recurrent connections within the i region, JN=0.2609 nA is the intensity

scale for synaptic currents, and I0=0.3 nA is the basal input which sets the regional excitability

level (Table 2). The network simulations were run for 120 seconds with steps of Δt=1ms, using

https://paperpile.com/c/2HuPwB/ZSms+xCKN
https://paperpile.com/c/2HuPwB/ktH1
https://paperpile.com/c/2HuPwB/QPyn+6q3X+ZSms+qmpv


an Euler integration scheme (Butcher 2016). In the Chapter 1, I show how these parameters were

chosen.

4.2. Computer simulations and fixed-point analysis

To explore the non-linear behavior of the model and the existence of multiple attractors, I

analyzed the model dependency on initial conditions (ICs). The local dynamics of each

network’s node was started in a range of fixed ICs (0≤Si≤1) with steps of �ΔSi=0.01. Following

Deco et al., 2013b and Hansen et al., 2015, I used the maximal value of Ris at the end of the

simulation, called Rmax, a proxy for the network state (see Results chapter 1, Figure 10). I

modified the range of ICs used by Hansen et al., 2015 to the range of 0 ≤ Si ≤ 0.1 for Low ICs

and 0.3 ≤ Si ≤ 1 for High ICs because they optimize the difference between ignition and baseline

activity among the coupling gain (see Results chapter 1 Figure 14). The simulations were run

with ICs chosen from a uniform random distribution in the High and Low ICs range.

4.3. Ignition in thewhole-brainmodel: Bifurcation points andbistable range

The coupling gain of the network, the parameter G, was varied in the range 0.5≤G≤15 with

steps ΔG=0.005 to evidence the bistable range of ignition. That was done with both High and

Low ICs, and then, I extracted the Rmax vs. G vector. This vector was used to detect the

bifurcations of the bistable range at the ignition point or G-, and at the flaring point or G+, using

a customized python routine, which identifies when the difference of two consecutive points of

the Rmax vs. G vector was higher than two standard deviations.

https://paperpile.com/c/2HuPwB/R4mk


Table 2. The parameters of the MFM implemented by Hansen et al., 2015, based on Deco
et al., 2013.

Parameter name Value

JN 0.2609 nA

�τs 100 ms

�γ 0.641

I0 0.3 nA

ω 0.9

G 0.5≤G≤15

Cij 66 cortical regions

Time of simulation 15 s

Δ�t 0.1 ms

a 270 (V • nC)-1

b 108 Hz

d 0.154 s



5. Node ignition analysis

5.1. Thresholdingof node activity

The thresholding of activity is the basis for the ignition analysis (Messé et al. 2015; Deco

and Kringelbach 2017; Tagliazucchi et al. 2012). Initially, the threshold was established as a rise

of more than two standard deviations of the baseline activity for node i, in a range of parameter

G. However, this algorithm failed to detect the rise of activity in the network because it included

nodes that had low activity regime. To fix that, I examined the typical values of Ris in the

simulations and established heuristic criteria for the threshold. A node with Ri≥5 was assigned to

the ignited subset (i.e., with high mean firing rate); otherwise, it was part of the baseline subset

(i.e., low mean firing rate).

5.2 Relationship between ignition and network organization

To study the relationship between structure and cortical ignition through the bistable range,

I calculated the Spearman rank correlation (Betzel et al. 2018) between the ignition G value of

each node and its smax value (see materials and methods chapter). Note that the Spearman rank

correlation is a non-linear metric that adjusts better to the concept of core and shells. The same

procedure was repeated to calculate the correlation between the ignition G value and the (in/out)

strength of the nodes. I used a bootstrap resampling of 10.000 replicas to estimate the confidence

intervals of the Spearman rank correlation. The bootstrap resampling method provides a

statistical significance of the obtained results.

https://paperpile.com/c/2HuPwB/xCKN+ei8S+D0iQ
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6. The pruning of connectome’s connections based on the network organization

The structural connections were systematically pruned based on the local and mesoscale

organization. The pruning procedure has three steps: first (i) apply the network analysis (i.e.,

degree, strength, k-core, or s-core decomposition). Second (ii) select a node using the chosen

network level. Third (iii), randomly prune of one of its connections.

To prune the connections from highly connected node at local level (i.e., based on degree or

strength) I proceeded to: (1) analyze the degree (or strength) of the network, (2) select the node(s)

with the highest degree (or strength), and finally (3) randomly remove one of its connections. If

more than one node has the highest degree (or strength), one of them was randomly picked.

To prune the sparsely connected node at local level (i.e., based on degree or strength), I

change the point (2) from above to: “select the node(s) with the lowest degree (or strength),

which also has more than one connection (to not disconnect the node from the network after the

pruning procedure).

To prune the connections from core at mesoscale organization level (i.e., based on k-core or

s-core decomposition), I proceed to: (A) analyze network with the k-core (or s-core)

decomposition, (B) randomly select one node that was part of kmax-core (or smax-core) subset, and

(C) randomly remove one of its connections. This method could remove not only core-to-core

connections but also core-to-periphery ones.

To prune the connections from peripheral shells at the mesoscale organization level (i.e.,

based on k-core or s-core decomposition), I change the point (B) from above to: ‘randomly

select of one node that does not belong to kmax-core (or smax-core) subset.



Finally, to evaluate the null hypothesis, I realized a random pruning, in which I took a node

arbitrarily, and then randomly removed on of its connections. The pruning procedure removes 27

connections and then extract the bifurcations G- and G+ of the pruned network. This procedure is

iterated to obtain 12 pairs of bifurcation points (removing in total 648 links) from each pruning

of the network. Note that 13 pairs of bifurcation values were generated, and one comes from the

unpruned (i.e., intact) network. The whole pruning sequence was repeated on 20 network

instances of each type (20 Human, 20 Humanhw, 20 Humanrw, 20 DPRhw, 20 DPRrw, 20 SWhw, 20

SWrw).

Importantly, an additional rule was considered for the pruning procedure, in which no nodes

were disconnected from the network when connections are removed.





Results chapter 1

Optimizing the detection of cortical ignition in the whole-brain
mean-field model

The cortical ignition framework proposes that the fluctuations in the brain dynamics are

characterized by fast transitions between low and high activity periods, and that is a multi-scale

phenomenon (Moutard, Dehaene, and Malach 2015; Deco and Kringelbach 2017). To study the

structural mechanisms that contribute to this shifting in dynamics, I used a whole-brain MFM,

which shows ignition in the collective cortical activity. Ignition was studied tangentially by Deco

in 2013 and Hansen in 2015, where they showed that the model was ignitable at the network

level. However, the parameters that they used are not optimized to display the network ignition.

For example, the range of initial conditions for the network activity in which the ignition was

maximized was not well defined. Here, I do a systematic study of the ignition in the simulations

of the whole-brain MFM. Also, I optimized the detection of the network ignition for a broader

range of excitability coupling.

1. The ignition in the cortical activity of the isolatedMFM:Phase portrait and

steady-state

In the model, when a cortical region is disconnected from the other regions, its dynamics

are described as isolated, corresponding to the hypothetical idea of 1ocal activity without

https://paperpile.com/c/sr3q9b/xx8t+BUhW


Figure 9. Phase portrait and time-series of an
isolated cortical region using the MFM. (A-C)
Three solutions as a function of I0 and ω for an
isolated node (A (I0=0.3; ω=0.9), B (I0=0.3;
ω=1), and C (I0=0.32; ω=1)). The dynamics of
the isolated node gets two attractors in C. (D)
Mean firing rate (y-axis) in time (x-axis) for the
three sets of parameters. In purple (the isolated
node with two attractors), segmented and solid
lines are simulations started from High ICs
(0.9≤Si≤1) or Low ICs (0≤Si≤0.01), respectively.
The MFM with a single attractor (green and red)
only displays a low mean firing rate.

external perturbations (Holcman and Tsodyks 2006). This approach is rooted in the notion that

local changes of cortical activity could be mainly explained by the balance between excitation

and inhibition (Wong and Wang 2006; Deco and Jirsa 2012) or neuromodulation (van den Brink,

Nieuwenhuis, and Donner 2018; Medel et al. 2019; Li et al. 2019; Shine et al. 2019). Figure 9

shows the phase portrait of the MFM, in which the attractor (green circle) is the steady-state of

the isolated cortical region.

The isolated dynamics were obtained in the MFM setting SC matrix to 0, as Cij = 0

(Equation 10, see materials and methods chapter). Except this, parameters of the MFM are used

as it is described in Table 2, and the methods chapter. The dynamics of those parameters of the

MFM has a unique equilibrium point for the variable Si with value 0.034, as is shown in the

phase portrait of Figure 9A. In other words, the cortical activity of the isolated MFM drops into

a fixed-point attractor and, thus, cannot have an ignited steady-state.

To produce an ignited attractor in the isolated MFM, I followed the work of Hansen and

colleagues (2015) and made a slight shift in the parameters ω (from 0.9 to 1) and I0 (from 0.3 to

0.322). Those changes in the parameters show how the isolated MFM can have more than one

attractor (Figure 9B-C) and, therefore, can be ignitable. The ω parameter represents the gain of

the recurrent activity, and setting it in 0.9 indicates the loss of 10% of the self-excitation in each

https://paperpile.com/c/sr3q9b/gevz
https://paperpile.com/c/sr3q9b/WjOJ+vOnp
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integration step. The increase of the self-excitability to 1 (ω=1) produces a shoulder at the higher

activity of the variable Si, shown in the phase portrait of Figure 9B. Moreover, when the basal

excitatory input, I0, is increased (ω=1 and I0 = 0.322), the system makes a qualitative shift in its

space dynamics (Figure 9C), with the apparition of a stable attractor with higher activity (left

filled green circle) than the preexisting stable attractor of low activity (right filled green circle).

Also, an unstable attractor (empty green circle) emerges between the stable ones. Figure 9D

shows the time-series of these three versions of the isolated MFM. The steady-state is reached at

the end of the simulations. When the MFM has two stable attractors, the steady-state can be

sustained at a high or low mean firing rate (purple lines). In conclusion, changes in the

self-excitability and basal excitatory inputs are a plausible explanation for the local cortical

ignition.

2. The ignition in the cortical activity of thewhole-brainMFM:Human connectome

adds diversity in the steady-state and generates network ignition

Even though simulations of isolated cortical regions help to understand local ignition,

cortical regions are embedded in network topology (Lynn and Bassett 2019), with coordinated

dynamics between them (Varela et al. 2001). It has been explored using a whole-brain MFM

modeling approach that adds the human connectome and generates a richer activity landscape, in

which the network can be ignited (Deco et al. 2013; Hansen et al. 2015; Honey et al. 2009). In

this approach, each cortical region has the dynamics of the MFM, and they received ponderated

inputs according to the human connectome. The human connectome comes from an average of 5

right-hand male subjects diffusion MRI data (Fischl et al. 2004; Hagmann et al. 2008). The

connectome was parcellated following the Desikan-Killiany atlas (Desikan et al. 2006), which

has 66 cortical regions (33 per hemisphere in Table 1) and contains 1.148 cortico-cortical

https://paperpile.com/c/sr3q9b/fdBh
https://paperpile.com/c/sr3q9b/53Dy
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Figure 10. The human connectome and its collective dynamics. (A) The human connectome
and (B) the time-series of the mean firing rate of its 66 mean-field model-based nodes. In the
case of the coupled network, the simulation shows a diverse attractor landscape than the isolated
node. Even the lowest Ri values are higher than in the isolated node. Coupling gain G=2.4, High
ICs (0.9≤Si≤1), time simulated 15s, and time step Δt=0.1ms. (C) The mean firing rate of the
model with the same parameters but with Low ICs (0≤Si≤0.001). The steady-state of this
simulation stays at lower activity levels than the former, but still, its attractor landscape is more
diverse than in the isolated node. Circle in Figures B and C show the node with the higher Ri

value for the steady-state, the Rmax, and it was used to determine if the network activity was
ignited or it was at a low baseline level.

connections (Figure 10A) (Hagmann et al. 2008). The connections are long-range excitatory, and

they are represented as the entries of the Cij matrix (Equation 10, Figure 10A).

Figures 10B-C show that whole-brain simulations generate a richer attractor landscape for

each cortical region. In this landscape, each cortical region exhibits more diversity in its

steady-state than in the case of the isolated MFM (Figure 9D). Moreover, there are (at least) two

attractors at the network level. One in which all the cortical regions stay in a low baseline

network state and another in which some cortical regions make a shift in their activity and enter

in a high firing rate regime, which I call the ignited network state.

As in the case of the isolated MFM, the network activity state is determined by the initial

conditions (ICs) of the variable Si (The fraction of open NMDA channels) in each MFM. Figure

10B shows the model starting with random ICs from a low range (0≤Si≤0.1), whereas Figure

10C shows the case for High ICs (0.9≤Si≤1) (the range for Low and High ICs will be discussed

below). To the naked eye, the steady-state of the simulation started from High ICs is in at least

one order of magnitude higher than the simulation started from Low ICs (notice the difference in

https://paperpile.com/c/sr3q9b/9D0W


the scale of the y-axis). As an indicator of the collective network state in each simulation, I use

Rmax, which is the node with the highest activity at the steady-state (Ri) among all the cortical

regions, and it easily differentiates whether the network state was ignited or not.

Previous works did not have declared interest in the ignition on the network state, as they

showed it tangentially at the level of the network. Because of this, the simulation parameters

were not well optimized to display the network ignition. Thus, I evaluated the time of simulation,

the time step, and the ICs proposed by the works of Hansen et al., 2015 and Deco et al., 2013b,

detailed in Table 3.

2.1. Detection of the network steady-state is optimized by the time of simulation and time

step

Optimizing the time of simulation is crucial in the collective dynamics because not enough

time could fail to reach the steady-state in the network state. The network steady-state is

captured with a long enough simulation, but also the simulation needs to be short to save

computational resources. I optimized this trade-off to obtain the shorter time of simulation that

shows the steady-state of all the nodes. The steady-state was measured as the variance of the

Rmax in 20 simulations. Rmax values near to zero are indicative of high reliability in the network

steady-state across simulations. Figure 11A-H shows deterministic simulations that ran for 0.1,

0.5, 2, 6, 12, 24, 60, and 120 s, with time steps of Δt=1 ms using an Euler integration scheme

(Butcher 2016). Figure 11I shows in each entry of the matrix the variance of Rmax obtained for

the 20 simulations in a range of the coupling gain parameter (0.6≤G≤2.7, with steps of Δ�G=0.05)

and the time of simulation analyzed. The minimum time required to reach the steady-state was 6

s. To guarantee the steady-state of the system, I doubled it to 12 s in the following simulations.

For comparison, the time for simulations is not specified in Deco et al., 2013b, whereas Hansen

https://paperpile.com/c/sr3q9b/Y9QZ


Table 3. The time simulation parameters to reach the steady-state in MFM used in the
work of Deco (2013) and Hansen (2015).

Parameter name Deco et al., 2013 Hansen et al., 2015

Time of simulation 20 min 15 s

Δ�t Not reported 0.1 ms (also reported 0.05 ms)

ICs 0<Si<1 High 0.2<Si<1
Low 0<Si<0.2

and cols (2015) are set to 15s. Therefore, the simulation time used here is shorter than the

reported in previous works optimizing the computational cost. It is interesting to notice that the

Rmax shows a higher variance for the time of simulations in the lower values of the coupling

parameter.

Another critical issue is the determination of the time step of the numerical integration, which

has been proved as critical to observe structural effects on neural dynamics (Messé et al. 2015).

If the time steps are short, it takes more time to get the results, and if they are too large, it can

lead to integration errors. I evaluated the parameters proposed by Hansen (0.1 ms --also, they

mention having used 0.05 ms obtaining the same results)) to optimize the trade-off between the

large and short time-steps. Deco et al., 2013b do not report the time step implemented in their

study. I tested this using the integration scheme of Euler (Butcher 2016), implemented in a

python script (appendix 2). Figures 12A-H show the results for �Δt=1000 ms, Δ �t=500 ms, Δ �

t=100 ms, Δ �t=50 ms, Δ �t=10 ms, Δ �t=5 ms, Δ �t=1 ms, and �Δt=0.5 ms. Figure 12I shows the

variance of Rmax obtained for 50 simulations for each time step analyzed, in a range of the

coupling gain (0.6≤G≤2.7, with steps of �ΔG=0.05). The larger time step that maintains a low

variance in the network steady-state (Rmax) was �t=10ms, and I use it in the following simulations.

This time step is larger than the reported in previous works (Hansen et al. 2015; Deco et al.

2013); thus, it optimizes the computational costs. It is interesting to notice that the results for the

https://paperpile.com/c/sr3q9b/NjeD
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Figure 11. Optimizing the time of simulations. (A-H) The simulation was run for 0.1, 0.5, 2, 6,
12, 24, 60, and 120 s, with time steps of Δt = 1 ms using an Euler integrations scheme. The
coupling gain parameter of the time-series was set to G = 1. (I) To explore how the time of
simulation (y-axis) affect the Rmax in a range of the coupling gain G (between 0.6≤G≤2.7, with
steps of Δ�G=0.05) (x-axis), twenty simulations were run for each G. When the variance of the
20 Rmax (color bar) was minimized (i.e., near to 0), the steady-state of the time-series were more
reliable. The ICs come from a uniform random distribution between 0≤Si≤1.

time-step are affected by the coupling gain in a range of coupling gain values.

2.2. Detection of the network steady-state is optimized by the initial conditions and is

spannedby the coupling gain of theMFM

Just like changes in the basal excitability and self-excitability make an isolated node

ignitable (Figure 9), changes in the coupling gain parameter make the whole-brain model

bistable in a defined range. Previous works show that the range of coupling gain G in which the

whole-brain MFM displays ignition is also the range in which the simulations fit best with the



Figure 12. Optimizing time step for simulations. (A-H) The simulation was run 12 s with time
steps of Δt=500 ms, Δt=100 ms, Δt=50 ms, Δt=10 ms, Δt=5 ms, Δt=1 ms, Δt=0.5 ms and �Δt=0.1
ms using an Euler integration scheme. The coupling gain parameter of the time-series was set to
G=1. (I) Twenty simulations were run for each coupling gain G in a range between 0.6≤G≤2.7,
with steps of �ΔG=0.05 (x-axis) to explore how the time step (y-axis) affect the Rmax. When the
variance of the 50 Rmax (color bar) was minimized, i.e., near to zero, the integration for the
steady-state was more reliable. The ICs come from a uniform random distribution between
0.3≤Si≤1.

Figure 13. Previous works had shown a range
of ignition through the coupling gain of the
whole-brain model. (A) Deco and cols plot for
the network state, in which between the vertical
lines was observed, the bistable region of ignition.
The coupling gain was explored in the range of
0≤G≤3, without a reported time step. (B) Hansen
and cols plot for the network state, in which the
bistable region of ignition is in grey. The
coupling gain was explored between the range of
0<G<3.25, with ΔG=0.05 and a time step of 0.1
ms. Vertical black lines in A and red lines in B
empirical functional connectivity (Deco et al.
2013; Hansen et al. 2015). It was presented this
bistability range, with show the bifurcation points
G- (left) and G+ (right). Figures are extracted from
the work of Deco et al., 2013b (A). and Hansen et

al., 2015 (B), respectively.

https://paperpile.com/c/sr3q9b/FZNz+Qn5G
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boundaries at bifurcation G- and G+, in which a low baseline network state coexists with the

ignited network state that has a high firing rate in a subset of cortical regions (Figure 10B-C).

However, the coupling gain needed to maximize the range of the bistability in ignition has not

been well parameterized. For example, in the work of Deco and colleagues (2013), they

proposed a bistable range that depends on ICs, but they do not define any particular range

(0<Si<1) (Figure 13A). In 2015, Hansen and colleagues proposed a strategy to maximize the

bistable range, in which they split in two the range of ICs, with a notorious increase in the range

of bistability through G (Figure 13B). Because the procedures to optimize the bistable range was

not the primary goal of the previous works (Deco et al. 2013; Hansen et al. 2015), I proposed a

new method to obtain the broadest bistable range. A first characterization was performed with all

the nodes of the network having the same fixed value in the ICs. Figure 14A shows the

exploration of the fixed ICs in a range of 0.05≤Si<0.89 (with steps of �ΔSi=0.01) and coupling

gain 0.5≤G<4 (with steps of Δ �G=0.001). The color represents the average Rmax value for 20

simulations. Notice that here is evaluated the average and not the variance of Rmax because the

aim is obtaining the network steady-state for each fixed ICs and not the reliability of the

simulations.

The rectangle in Figure 14A shows the range in which the value of Rmax depends on both G

and ICs. The ignition network state starts at the ignition point G-= 0.945 and collapses at the

flaring point G+=2.545. In the G-, the ignited network state is obtained with ICs higher than 0.3.

Before the collapse in G+, the baseline state is kept with ICs lower than 0.1. Fixed ICs between

0.1<Si<0.3 follow a sigmoid-like shape through the range of G, as is shown in the rectangle.

Thus, the reliability of Rmax is enhanced using ICs outside this rectangle. The range for Low ICs

is set as 0≤Si≤0.1 and High ICs as 0.3≤Si≤1. Figure 14B shows the Rmax for the range of coupling

gain for Low and High ICs, showing the bistable range, similar to the work of Deco (2013b) and

https://paperpile.com/c/sr3q9b/FZNz+Qn5G


Figure 14. The ignition in the whole-brain model was optimized in two ranges of initial
conditions across the coupling gain parameter. (A) The Rmax (color bar) is evaluated in a
range of the coupling gain (between 0.5≤G<4, with steps of Δ �G=0.001) (x-axis) and the ICs
(y-axis) space. With fixed ICs in a range between 0.05≤Si<0.89, with steps of Δ�Si=0.01 (y-axis),
the ICs were explored, and thus, in each step, the initials Si are equal in all the nodes. A rectangle
shows the region in which the Rmax depends on both G and ICs. Also, the rectangle is shown the
optimization for the existence of two states, one ignited and another with baseline activity. (B)
The optimized ICs for ignition in a bistable range for the human connectome. The bifurcation G-

is 0.945 (red circle), and the G+ is 2.545 (green circle). The selected Low and High ranges for
ICs are 0≤Si≤0.1 (green) and 0.3≤Si≤1 (red), respectively. The coupling gain was varied between
0.5≤G<4, with steps ofΔ�G=0.01.

Hansen (2015). I optimized the detection of the network ignition in the broadest possible range

of the coupling gain parameter. It is important to remark that this method stresses the network

dependence of the ignition, a key feature for the successive analysis.

In conclusion, I show that the local and network ignition can be studied using the

whole-brain model based on the local dynamics of the MFM. The model was optimized to

show the network steady-state, in which the time of simulation and time-step had the

optimal trade-off. Finally, the whole-brain model was tuned to display intrinsic ignition

that was determined by the network activity state (represented by the initial conditions

regime) and the coupling gain of global excitability.







Results chapter 2

The specific core-shell organization of the human connectome
supports ignition in cortical activity

The whole-brain MFM of cortical activity can sustain ignition, a form of fluctuation in

cortical activity, at the local and network level. One of the key and not well-understood factors

underlying the fluctuations in cortical activity is the structural connectivity (Messé et al. 2014;

Christopher J. Honey et al. 2007; C. J. Honey et al. 2009; Hütt, Kaiser, and Hilgetag 2014; Mišić

et al. 2015; Messé et al. 2015; Joglekar et al. 2018; Deco et al. 2017; Lynn and Bassett 2019;

Swanson, Hahn, and Sporns 2017; Betzel, Medaglia, and Bassett 2018). Thus, is the network

organization of the human connectome a factor in the ignition of cortical activity? Moreover, if it

is the case, at which level of the network organization (i.e., local, mesoscale, or global;

unweighted or weighted) occurs this relationship? In this chapter, I show how the organization

of the human connectome is related to the ignition of the cortical activity.

1. Cortical ignition and the network organization in the human connectome

1.1. Humanconnectome:modeling of ignition and network analysis

Ignition and baseline activity are two network states and can be generated using deterministic

simulations of the whole-brain MFM (parameters of MFM in Table 2; (Deco et al. 2013;Hansen

https://paperpile.com/c/E3bCBc/b7vS+eMor+sJpE+w6U0+AU4Z+GZ8m+mzz3+O1oL+QtdS+Llqw+QKdQ
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Figure 15. The ignition in the whole-brain
mean-field model of cortical activity wired by the
human connectome. (A) The structural
connectivity matrix of the averaged five male
subjects. The color bar shows the coupling weight
between the two cortical regions. (B) Top, the
network activity level (Rmax values, y-axis) of the
human connectome as a function of coupling gain
(x-axis), starting either from Low (0≤Si≤0.1, yellow)
or High (0.3≤Si≤1, purple) ICs. The network
activity level is defined by the Rmax, which is is the
highest steady-state (Ri) value among cortical
regions. Middle, the bistability range of the ignited
network state, which is triggered at ignition point G-

from High ICs (G-=0.945, light green circle) and
collapsing at the flaring point G+ using Low ICs
(G+=2.545, dark green circle). Bottom, the fraction
of ignited nodes, Fignited (threshold Ri>5), increasing
from F-~17% (n = 11) in G- to F+~90% (n = 59) in
G+. The coupling range was 0.5≤G<4, with steps of �
G=0.001.

Hansen et al. 2015)). The whole-brain model uses the dynamics of MFM for each cortical region

wired by the human connectome, which came from MRI data and had 66 cortical regions (33 per

hemisphere) and 1.148 cortico-cortical connections (Figure 15A, Table 1; details in the

previous chapter).

The activity state of the network depends on its ICs (variable Si). The ICs are randomly

drawn from a uniform distribution in one of two ranges: 0≤Si≤0.1 (Low ICs) and 0.3≤Si≤ 1 (High

ICs). Simulations were run for both ICs in a range of the coupling gain (0.5≤G<4, with steps of �

G=0.001). To determine the network activity state, I used the highest steady-state activity (Ri) of

the network, denoted Rmax. Also, several of the analysis involves the activity state of individual

nodes (i.e., ignited or not). A node is said to be ignited when its firing rate is above a threshold

https://paperpile.com/c/E3bCBc/HuJ1+LB8F


(Ri>5); otherwise, it is classified as low baseline activity (Tagliazucchi et al. 2012; Deco and

Kringelbach 2017) (see materials and methods chapter for details).

The whole-brain model with the human connectome is ignitable in a delimited range of the

coupling gain, the bistability range, in which the network state can show either low or high Rmax

values (Figure 15B, top). This result relays on the coupling gain and, especially, in the ICs of the

model, namely High ICs and Low ICs. The network ignition is triggered at the ignition point G-,

where the simulations with High ICs generates an ignited subset of cortical regions (Ri>5) and

ends at the flaring point G+, where the simulations with Low ICs collapse into the high activity

attractor (Figure 15B, top). The bifurcations G- and G+ are stressed in the middle of Figure 15B.

Within the bistable range, the fraction of ignited nodes, Fignited, increases with the coupling gain

parameter (i.e., the level of network excitability), from Fignited~17% at G- to Fignited~90% at G+

(Figure 15B, bottom).

To study how ignition can be related to the underlying structure of the human connectome,

the structural organization is characterized at local (Deco et al. 2017), mesoscale (Kitsak et al.

2010; Messé et al. 2015; Betzel, Medaglia, and Bassett 2018; Shine et al. 2019), and global

(Mark D. Humphries and Gurney 2008; Gollo et al. 2015) level (Figure 16)

The local-level of a network is defined by the connections of each node and is used to study

how the local organization is relevant for the whole-brain activity (Figure 16A). For unweighted

network analysis, the degree (ki) is the number of connections of each node. For weighted

network analysis, the strength (si) is the sum of the weighted connections of each node (Fornito

et al., 2016). This level could be thought of as the independent hierarchy because it does not take

into account the existence of collective sub-structures. Two different network instances can have

the same degree or strength distribution. Mesoscale of the network takes into account collective

sub-structures, as groups of modules or cores. Cores are subsets of densely (for unweighted

https://paperpile.com/c/E3bCBc/1L15+j1Wd
https://paperpile.com/c/E3bCBc/1L15+j1Wd
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Figure 16. Network analysis of different levels of the structural organization. A scheme of
the local, mesoscale, and global level of organization of the network. (A) The local level is
represented by the sum of inputs and outputs of a cortical region. (B) The mesoscale level is
measured with the core decomposition, composed by shells of incremental within-connected (or
strongest) nodes. In the cartoon, blue nodes belonging to the 3-core, orange to the 2-core shell
and green to the 1-core shell. (C) The global level considers the whole network, in which the
small-worldness considers the ratio of integration to segregation.

networks) or strongly (for weighted networks) interconnected nodes (Hagmann et al. 2008;

Kitsak et al. 2010; Betzel, Medaglia, and Bassett 2018) (Figure 16B; see materials and methods

chapter for details). This measure is based on the fact that a network can contain subsets of

nodes that are more strongly interconnected between them than on average. Focusing first on

unweighted graphs, I define as k-core a subgraph -i.e., a subset of nodes and the links

interconnecting them- in which all the member nodes have at least k neighbors within the

subgraph. The larger k is, the more difficult it is to identify subgraphs that satisfy the k-core

criteria, resulting in increasingly tighter cores. Any node member of a k-core will also belong to

any k’-core with k’ < k, resulting in an “onion-like” nesting of progressively denser cores, up to

a maximum value kmax such that no k-core exists for any k > kmax (Figure 16B; see materials and

methods chapter for an explanation of the algorithmic procedure), namely kmax-core.

These definitions of cores and shells can be naturally generalized from unweighted to

weighted networks by replacing the notion of node degree (discrete number of outgoing and

ingoing connections) with the idea of node strength (sum of the continuous weights of outgoing

and ingoing connections). Hence, the s-core is the subgraph in which all the nodes have strength

greater or equal than s. There is a smax-core, such that s-cores with s > smax do not exist anymore.

https://paperpile.com/c/E3bCBc/Hvub+glWX+QKdQ
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Besides, one can define a smooth s-shell as a set of nodes belonging to s’-cores with

s < s’ < s + ∆s but not to the inner s-core (where ∆s sets a precision at which continuous s

values are quantized).

Global-scale takes into account the whole network properties, as its integrative and

segregative capacities. For example, the small-world index (σ) is defined as the ratio of

characteristic path length to local clustering of the network (Figure 16C; see materials and

methods chapter for details) (M. D. Humphries, Gurney, and Prescott 2006; Mark D. Humphries

and Gurney 2008).

1.2. Ignition in cortical activity is structurally organized

The ignition of the cortical regions was paired to the local and mesoscale organizations of

the human connectome, using the strength analysis and the s-core decomposition, respectively

(the unweighted and also the global structural analysis (small-worldness) will be covered in the

Figure 17. The cortical regions ignite through the coupling gain and its structural
organization. (A) The cortical regions (x-axis) were associated and sorted to the coupling gain
in the onset of ignition (y-axis). Initially, there is a small subset of the first ignited regions at the
bifurcation G- (i.e., the lowest G value of ignition), and then regions are recruited through the
coupling gain. The ignition of cortical regions follows a group onset rather than a linear increase
of them. (B-C) Cortical regions of the human connectome (y-axis) are sorted either by (B)
strength (y-axis) or (C) by smax (y-axis). Note that the x-axis of structural measures is inverted to
stress similarities with the onset of ignition. While the cortical regions follow a linear increase in
the strength, they are added in chunks of similar smax, i.e., the strongly interconnected cores

https://paperpile.com/c/E3bCBc/yb3F+fIiS
https://paperpile.com/c/E3bCBc/yb3F+fIiS


next section). Figure 17A shows the details of the coupling gain at which each cortical region

first ignites, called in the following ignition recruitment. The nodes are sorted in terms of its

ignition recruitment as a function of the coupling gain. Through the coupling gain, the ignition

recruitment follows a stratified sequence in which a subset of nodes ignite earlier at the ignition

point G-. Then, the increase in the coupling gain adds groups of nodes rather than individual

addition.

Is this subset of nodes that ignite at G- and then, the ignition recruitment associated with the

structural organization? Figure 17B-C shows the cortical regions sorted by their strength and smax

values to stress the hierarchy of the structural organization at the local and mesoscale level. The

strength shows a hierarchical linear organization, in which the strength of each node is different

and follows a semi-linear dependency (Figure 17B). The ignition starts in a subset of nodes.

Thus, it can not be deduced from the strength value of the nodes. Also, ignition recruitment is

not linear through the coupling gain (Figure 17A). There are evident similarities between the

ignition and smax of the nodes, showing a stratified hierarchical organization (Figure 17C). As a

matter of fact, this is not a coincidence.

I reorganize the data of Figure 17 to stress the structural organization and the ignition in the

human connectome through the bistability range. Figure 18A shows the ignition recruitment of

the nodes (y-axis) sorted by the coupling gain in which they first ignite (x-axis), and colored by

their smax value. Figure 18A shows two underscore results, (1) the trigger of ignition is supported

by the smax-core of the network (the highest smax nodes, the red rows) and (2) the ignition

recruitment seems to follow the core-shell organization through the coupling gain (in Figure 19 a

scheme of this idea).



Figure 18. Ignition in cortical activity is influenced by the core-shell organization of the
human connectome. (A) The relationship between ignition and smax of each cortical region of
the human connectome. The cortical regions in the y-axis are sorted according to the coupling
gain G (x-axis) value at which they first ignite. Colour code shows the smax for each of the ignited
cortical regions of Human. (B) The bar plot shows the fraction of nodes that are ignited (red,
orange) or not-ignited (green, blue) at the bifurcation G-, and that belong to smax-core (red, green)
or not (orange, blue). (C) The strength distribution of ignited (orange) and not-ignited (blue)
cortical regions at G-. (D) Similarly to A, the relationship between ignition and the out-strength
(left), in-strength (middle), and strength (right) of each cortical region. (E) Spearman rank
correlation squared (ρ2, explained variance) between first ignition G value of each cortical
regions and its smax (0.867, percentile (2.5, 97.5) = (0.858, 0.874), red dot), out-strength (0.386,
percentile (2.5, 97.5) = (0.369, 0.402), blue dot), in-strength (0.671, percentile (2.5, 97.5) =
(0.655, 0.684), yellow dot), and strength (0.687, percentile (2.5, 97.5) = (0.672, 0.702), green
dot). Human shows a higher explained variance by the smax than the in-, out-, or strength. The *
indicates a significant difference between the ρ2 of smax and out-, in-, or strength. The
significance of ρ2 was evaluated using 10.000 replicas from bootstrap resampling (violin plots).



Figure 19. Ignition scheme for core-shell
organization of the human connectome. The
ignition of cortical activity can be split into (1) the
trigger subset of regions, and the (2) recruitment of
them through the coupling range. The ignition is
triggered at G- and it is perfectly correlated with the
strongest core of the human connectome, the
ignition core.

Thus, I call the ignition core to the ignited nodes at the bifurcation G-, and that shows a

strikingly one-to-one correspondence with the smax-core of the human connectome (Figure 18B,

red column). Consequently, the not ignited cortical regions do not belong to the smax-core, as is

shown in the blue bar. Moreover, being a strongly connected node does not determine the early

trigger of the ignition of the cortical regions, as some of them are not ignited at the G- (Figure

18C). Thus, for the Human, strength does not have a perfect match with the ignition core as

achieved by the smax-core. The cortical regions that belong to the ignition core are the

pericalcarine cortex (PCAL), cuneus (CUN), paracentral lobule (PARC), isthmus of the

cingulate cortex (ISTC), precuneus (PCUN) and posterior cingulate cortex (PC) (Table 4).

Cortical regions of ignition core are present in both hemispheres, except in the case of PARC,

which only is part of the left hemisphere.

Similar to Figure 18A, Figure 18D shows the sorted ignition recruitment, in which the color

index is the out-strength (left), in-strength (middle), and strength (right) of each cortical region.

By visual inspection, the ignition recruitment is not well captured by the strength index at the

ignition point G-, as can be noticed in the inconsistency of the color gradient in the y-axis of

Figure 18D. To quantify the relationship between the structural organization (the strength or smax



Table 4. The identity of the ignited cortical regions at bifurcation G-. Ignited regions are
present in both hemispheres, except in the case of PARC, which is ignited only in the left
hemisphere. P, present, A, absent.

Cortical Regions Left Hemisphere Right Hemisphere

Pericalcarine Cortex
(PCAL)

P P

Cuneus
(CUN)

P P

Paracentral Lobule
(PARC)

A P

Isthmus of the cingulate
cortex
(ISTC)

P P

Precuneus
(PCUN)

P P

Posterior Cingulate Cortex
(PC)

P P

index) and the ignition recruitment, the Spearman rank correlation, ρ, was calculated between

them. The ρ evaluates paired rank relationships, rather than a linear one; thus it is best suited to

analyze the ignition recruitment because the ignition appears to take place in chunks of nodes,

rather than individual incorporation of them. Figure 18E shows the explained variance of the

Spearman rank correlation (ρ2) and it is calculated between ignition recruitment and the smax

(0.867, percentile (2.5, 97.5) = (0.858, 0.874)), out-strength (0.386, percentile (2.5, 97.5) =

(0.369, 0.402)), in-strength (0.671, percentile (2.5, 97.5) = (0.655, 0.684)), and strength (0.687,

percentile (2.5, 97.5) = (0.672, 0.702)). The * shows the significative difference between smax

and out-, in-, and strength of the human connectome. The significance of ρ2 was evaluated using

10.000 replicas from bootstrap resampling. The explained variance of ignition recruitment in

cortical regions is higher for the smax than for the in-, out-, or strength. Also, the explained

variance of the ignition recruitment and the strength is bigger than the in-strength or out-strength



values. Thus, the strength reports that not only the inputs explain the ignition recruitment but

also exist a component in the outputs. In summary, the ignition is triggered in the smax-core, and

then the recruitment follows a core-shell organization, rather than a strength-based organization

in the human connectome.

2. Ignition in cortical activity is tightly linked to theweighted core-shell organization

in the human connectome

The core is a mesoscale feature, and its structural relevance in the cortical network has been

previously reported (Hagmann et al. 2008; Deco et al. 2017; Kitsak et al. 2010; Betzel, Medaglia,

and Bassett 2018). I go one step further and probe that the ignition (i.e., a dynamic feature) is

core-shell organized on the human connectome, something that is not well captured even with

models that preserve connectivity pattern, degree distribution, the ratio of integration to

segregation ratio, or even its weight distribution. Thus, I show how this core-shell organization

is a specific feature of the human connectome that supports its ignited cortical activity.

2.1. The ignition is triggered in theweighted core of the human connectome

I used surrogate models to assess how different network features of the human connectome

pattern were involved in the ignition. As a first approach, I built the unweighted surrogate

connectome (uSCs) models (Figure 20A). The uSCs have homogeneous weights in their

connections (equal to the mean value of the human connectome, 1.332x10-2), and also conserve

the overall strength of the human connectome, 15.3. In this way, I could disentangle effects on

the network ignition that was genuinely due to the connectivity structure of the human

connectome, irrespectively of the influence of the weight of the connections.

https://paperpile.com/c/E3bCBc/Hvub+O1oL+glWX+QKdQ
https://paperpile.com/c/E3bCBc/Hvub+O1oL+glWX+QKdQ


A first surrogate connectome is the Humanhw that homogenizes the weight distribution of the

human connectome preserving its connectivity pattern (Figure 20A, left). Then, I considered an

ensemble of unweighted Degree-Preserving Random (DPRhw) networks, in which, in addition to

making all the weights homogeneous (as in Humanhw), connections were randomly rewired

between nodes, breaking the connectivity pattern of Human, but still preserving the degree of

each cortical region, as a signature of its local organization (Figure 20A, middle) (Maslov and

Sneppen 2002). Finally, I generated an ensemble of Small-World (SWhw) surrogate connectomes

optimized to conserve the global small-worldness of the Human as a signature of its global

organization (Figure 7A, right) (Watts and Strogatz 1998; Mark D. Humphries and Gurney

2008). The small-worldness is a ratio of network segregation (clustering coefficient) to

integration (small characteristic path length), postulated as a relevant structural organization in

the efficient flow of activity in the cortex (Watts and Strogatz 1998; M. D. Humphries, Gurney,

and Prescott 2006). It is important to note that SWhw ensembles do not conserve the connectivity

pattern or even the degree distribution of the human connectome. As the DPRhw and SWhw

ensembles are randomly generated, 100 instances of each were used (see materials and methods

chapter for details of the builts of the connectomes).

The deterministic simulations of Human, Humanhw, 100 DPRhw and, 100 SWhw ensembles are

summarized in Figure 20B and Table 5. Notice that DPRhw and SWhw ensembles show low

dispersion in its bifurcation points, G- and G+, despite the differences of each network instance.

Considering uSCs, the first important observation is that the bistability range of ignition is not

exclusive to the human connectome. However, the human connectome has the lowest

excitability threshold for the bifurcation G- and G+. This low excitability threshold can not be

replicated using the connectivity pattern (Humanhw), or the local (DPRhw) or global (SWhw)

organization of the human connectome. This suggests that the heterogeneous weight of

https://paperpile.com/c/E3bCBc/VbgRC
https://paperpile.com/c/E3bCBc/VbgRC
https://paperpile.com/c/E3bCBc/OwK4+fIiS
https://paperpile.com/c/E3bCBc/OwK4+fIiS
https://paperpile.com/c/E3bCBc/OwK4+yb3F
https://paperpile.com/c/E3bCBc/OwK4+yb3F


connections play a role in the low excitability threshold for the trigger and collapse of the

network ignition of the human connectome.

Second, the disruption of the connectivity pattern of the human connectome (Humanhw) but

conserving its local organization (DPRhw) produces similar values for G- and G+. Thus, the

degree distribution of the human connectome is enough to reproduce the thresholds for the

Figure 20. The human cortical connectome requires a lower coupling gain to display
ignition than unweighted surrogate models. (A) The unweighted surrogate connectomes
(uSCs) models, in which the weight value of each connection is set as equal to the mean of the
Human (1.332x10-2). Left, the Humanhw. Middle, a representative example of the 100 DPRhw

matrices. Right, a representative example of the 100 SWhw matrices. (B) Top, the network
activity state through the coupling range (x-axis) for the human connectome and a representative
case of each uSCs, using Low and High ICs. The uSCs ensembles present the ignition in the
bistability range. Bottom, a summary of the ignition G- (left circles) and flaring G+ (right circles)
points in the bistability range of the Human (red), Humanhw (blue), 100 DPRhw (orange), and 100
SWhw (green) ensembles. The orange dashes show the range of values for G-, whereas the pale
blue dashes show for G+. Notice the small dispersion in the bifurcation values on 100 different
DPRhw and SWhw networks.



Table 5. The dynamic and structural data of the human and surrogate ensembles.

Ignition Human Humanhw DPRhw SWhw Humanrw DPRrw SWrw

G- 0.945 1.212 1.193 1.158 1.32
(± 0.095)

1.369
(± 0.107)

1.501
(± 0.083)

G+ 2.525 3.002 3.052 3.737 2.606
(± 0.154)

2.666
(± 0.228)

2.976
(± 0.148)

N- 11
(~17%)

32
(~48.5%)

45.8
(~69.4%)

63.1
(~95.6%)

23.9
(~36.2%)

30.7
(~46.5%)

26.8
(~42.1%)

kmax-core
nodes

53
(~80.3%)

53
(~80.3%)

49.7
(~75.3%)

59
(~89.4%)

- - -

smax-core
nodes

11
(~17%)

- - - 22.5
(~34.1%)

27.9
(~42.3%)

31
(~46.9%)

bistability range produced by its connectivity pattern (Figure 20B, bottom). In other words, the

specific connectivity pattern by itself (Humanhw) is irrelevant for the threshold of the G- and G+

and can be captured by the weighted local level of structural organization.

Third, the SWhw networks have the most extensive bistability range, with a similar result for

the ignition point G- with the other uSCs but the largest flaring point G+ among all the ensembles

(Figure 20B, green). On the one hand, the threshold for the ignition point is not specified by the

unique connectivity pattern of the human connectome (Humanhw) but instead can be achieved

with a local (DPRhw) or global (SWhw) level of organization. On the other hand, the larger



threshold for the flaring point of the SWhw ensemble shows that local rather than global

organization captures better the threshold for the collapse of the network ignition of the human

connectome. A possible explanation is based on the fact that the SWhw ensemble has the

narrowest degree distribution among the uSCs, with comparatively fewer connections in their

high degree nodes. In this scenario, the nodes with more connections reduce the threshold for the

flaring point in Humanhw and DPRhw networks (see below, Figure 21). Therefore, local rather

than global features -degree sequence rather than the small-worldness- account for the network

ignition and bistability range that emerges from the connectivity pattern of the human

connectome.

The number of ignited nodes in the uSCs. Figure 21A shows, for each of the uSCs, the

number of ignited nodes, Nignited, in a range of coupling gain and High ICs. In the case of DPRhw

and SWhw ensembles, only one representative example is shown. The first jump reveals how

many nodes have a high activity right after the ignition point G-, i.e., how many nodes

participate in the trigger of network ignition. Figure 21A reveals that the Human not only has the

trigger for ignition at the lowest G value, but it also depends on the smallest subset of nodes (n =

11) in the earlier ignition of the nodes. This is not true for the uSCs, in which a large subset of

nodes ignites at G-; Humanhw (n = 32),

DPRhw (mean n = 45.83 ± 2.46), and SWhw (mean n = 63.12 ± 1.85). Additionally, Nignited

increases smoothly in the human connectome and sharply in the case of the uSCs, whit the

extreme case of the SWhw in which almost all the nodes ignite at G- (Figura 8A, green line). Thus,

at G-, Human presents a larger amount of not ignited nodes, compared to the uSCs.

The local and mesoscale organization in the uSCs. Figure 21B shows the degree

distribution of the human connectome and the uSCs. The Human (red) shows a broad degree



Figure 21. The ignited nodes and the unweighted network analysis. (A) The number of
ignited nodes, Nignited (threshold Ri>5), as a function of coupling gain G (0.5≤G<4, with steps of �
G=0.001) in Human (red), Humanhw (blue), and one representative example of DPRhw (orange),
and SWhw (green) ensembles. The inset shows the Nignited in the bifurcation G- for Human and all
the uSCs. (B) The degree distribution of the Human and the uSCs. The degree distribution of the
Human, Humanhw, and DPRhw are equal by construction. The SWhw have the narrowest degree
distribution, without sparsely and highly connected nodes. (C) The k-core decomposition of
Human, Humanhw, DPRhw, and SWhw. The y-axis shows the number of nodes in the shell,
whereas the x-axis shows the minimum kmax inside that shell. The inset shows the largest kmax,
kmax-core, for Human and all the uSCs. The Human has the lowest kmax (11) and an intermediary
kmax-core value (53 nodes, ~80.3% of network nodes).

distribution (mean ki = 17.39 ± 7.42); the Humanhw (orange) and DPRhw (orange) are identical to

Human by design. The SWhw ensemble (green) has the same mean ki of Human, with a

comparatively narrow dispersion (mean ki = 17.39 ± 2.07). Notice that the SWhw ensemble

presents a lower degree in the highly connected nodes, and as it argued before, this could explain

their largest threshold for the flaring point among the uSCs (Figure 21B, green).

Figure 21C shows the k-core decomposition of the Human (red line) and uSCs. The k-core

decomposition is an unweighted network analysis (using degree instead of strength) to unveil the

core-shell organization of the network. Again, Humanhw (blue line) is identical to Human

because they share the connectivity pattern. The value of kmax is smaller in the Human (kmax=11),

in comparison with DPRhw (mean kmax = 12.08 ± 0.28) or SWhw (mean kmax = 13.95 ± 0.22)

ensembles. The inset of Figure 21C portrays kmax values for individual instances of the different

surrogate ensembles showing that the kmax of Human is smaller than the kmax of any instances of

DPRhw or SWhw. The Human has the lowest number of connections in the core, forming weaker



cores. Also, it is shown that it is easy to form an unweighted core using the local or global

features of the human connectome. Furthermore, the kmax-core of the Human includes a larger

number of nodes (n = 53) with respect to the kmax-core of the DPRhw ensemble (mean n = 49.73 ±

3.38), but still smaller than the SWhw networks (mean n = 59.0 ± 0.77).

Ignition core in uSCs. Figure 22A shows, at the ignition point G-, the fraction of nodes

with ignited or baseline activity and whether the nodes belong or not to the kmax-core. The

kmax-core of Human catches the ignited subset (red bar) at ignition point G-, but also many of its

nodes had baseline low activity (green bar). Also, the ignited nodes are a small proportion of the

total kmax-core nodes (11/53 nodes). In the bifurcation G-, the uSCs present a higher number of

nodes ignited and in the kmax-core than Human. Even further, the SWhw ensemble recruits almost

Figure 22. The ignited cortical
regions are loosely related to the
unweighted core or degree of the
human connectome at the ignition
point G-. (A) The bar plot shows the
fraction of nodes that are ignited
(red, orange) or not-ignited (green,
blue) at G-, and that belong to
kmax-core (red, green) or not (orange,
blue). Note that the kmax-core match
with all the ignited cortical regions
in the Human, but also with a large
number of them with not-ignited
baseline activity. (B) The degree
distribution of ignited (orange) and
not-ignited (blue) nodes at the
ignition point G-, for Human and the
uSCs.



all the kmax-core nodes. Also, the DPRhw and SWhw ensembles show ignition in the nodes that do

not belong to the kmax-core (orange bars). Thus, the unweighted core is not a good predictor of

the ignited nodes of Human because a large fraction of the nodes is not ignited in the kmax-core.

Figure 22B shows the degree distribution of the ignited (orange) and not-ignited (pale blue)

nodes of the Human and uSCs ensembles. In the case of the unweighted local features of the

network, the high degree nodes of uSCs capture the ignited nodes at ignition point G-. The

Humanhw shows several nodes with medium degree values, that can be at high or low activity

state (Figure 22B, middle-left). DPRhw ensemble shows ignition in the high degree nodes (Figure

22B, middle-right). SWhw ensemble shows ignition in almost all the nodes (Figure 22B, right).

However, even if the ignited nodes at G- in the Human have a degree slightly higher than the

mean, there are several nodes with an even higher degree than stay not-ignited at G- (Figure 22B,

left). Thus, the degree poorly explains the ignited cortical regions of the human connectome at

G-.

Ignition sequence and core hierarchy in the uSCs. The relationship between the ignition

sequence and the unweighted network organization was evaluated as with the human

connectome. Figure 23 shows the relationship between ignition and the sorted coupling gain, for

Human, Humanhw, and representative cases of DPRhw and SWhw ensembles (Table 6 shows the

ρ2). Nodes are ordered from bottom to top according to the ignition recruitment, and the color

code is either the kmax (Figure 23A-D) or degree (Figure 23F-I) value of each ignited node.

Figure 23E shows the explained variance of the Spearman rank correlation, ρ2, between coupling

gain after the ignition turns up and the kmax for Human (0.210, percentile (2.5, 97.5) = (0.194,

0.226)), Humanhw (0.550, percentile (2.5, 97.5) = (0.535, 0.565)), DPRhw (0.887, (2.5, 97.5) =

(0.874, 0.900)), and SWhw (0.700, (2.5, 97.5) = (0.671, 0.727)). The explained variance between

node ignition and kmax is lower for Human than for the Humanhw, DPRhw, or even the SWhw



ensemble. The lowest ρ2 values of the Human can be explained based on the fact of a large

number of nodes that belong to the kmax-core and not-ignite (Figure 22A). The ignition

recruitment of the 13 regions that do not belong to the kmax-core is conflated with the other 42

Figure 23. The ignition in the human connectome was not related to the unweighted core
organization or degree. (A-D) Cortical regions in the y-axis are sorted according to the
coupling gain G (x-axis) value at which they first ignite. Colour code shows the kmax for each of
the ignited regions of (A) Human, (B) Humanhw, and one representative example of (C) DPRhw,
and (D) SWhw ensembles. (E) Spearman rank correlation squared (ρ2, explained variance)
between ignition recruitment and the kmax for Human (0.210, percentile (2.5, 97.5) = (0.194,
0.226)), Humanhw (0.550, percentile (2.5, 97.5) = (0.535, 0.565)), DPRhw (0.887, percentile (2.5,
97.5) = (0.874, 0.900)), and SWhw (0.700, percentile (2.5, 97.5) = (0.671, 0.727)). (F-I) Similarly,
color code shows the degree for each of the ignited cortical regions of (F) Human, (G) Humanhw,
and one representative example of (H) DPRhw, and (I) SWhw ensembles. (J) Spearman rank
correlation squared (ρ2, explained variance) between ignition recruitment and the degree for
Human (0.255, percentile (2.5, 97.5) = (0.238, 0.271)), Humanhw (0.730, percentile (2.5, 97.5) =
(0.718, 0.742)), DPRhw (0.511, percentile (2.5, 97.5) = (0.496, 0.525)), and SWhw (0.216,
percentile (2.5, 97.5) = (0.202, 0.229)). The * indicates a significant difference between the ρ2 of
Human and uSCs. The significance of ρ2 was evaluated using 10.000 replicas from bootstrap
resampling (violin plots).



regions that belong to it, but are not ignited at the G-. The green stripes of Figure 23A (low kmax

nodes) are a good example of this.

The explained variance of ignition recruitment by the kmax is the highest in the DPRhw

ensemble, and also is high in the Humanhw and SWhw, suggesting as a first glance that

connectivity pattern, local, or global organization is enough to capture this relationship in

unweighted network analysis. However, the large number of nodes that ignite at G- are part of

the kmax-core (Figure 22A), and that is a significant bias in the value of ρ2. Thus, that bias in the

value of ρ2 is inherent to the uSCs ensembles. Nodes that are ignited through the coupling gain

have less relevance in the final value of ρ2, as in the case of Humanhw and DPRhw ensembles.

Compared to the DPRhw ensemble, the Humanhw has a smaller number of nodes that ignite at G-,

and also lower ρ2. Thus, the explained variance by the connectivity pattern of Humanhw is not

accountable, taking only the local organization of the DPRhw ensemble. The SWhw ensemble is

the most prominent exponent of the effect of the large ignited subset at G+ because those

networks also show high relation between kmax and ignition recruitment. These high values of ρ2

in the SWhw ensemble is explained because almost all nodes of the network ignite, without

graded control. I call this type of ignition recruitment in the network biphasic because all nodes

are turned on or off. Figure 23J shows the variance of the Spearman rank correlation, ρ2,

between ignition recruitment and the degree for Human (0.255, percentile (2.5, 97.5) = (0.238,

0.271)), Humanhw (0.730, percentile (2.5, 97.5) = (0.718, 0.742)), DPRhw (0.511, (2.5, 97.5) =

(0.496, 0.525)), and SWhw (0.216, (2.5, 97.5) = (0.202, 0.229)). The explained variance of

ignition recruitment by the degree of Human is slightly higher to the observed with kmax. Also,

the Humanhw increase the explained variance of ignition recruitment using the degree instead of

kmax. Contrary, DPRhw and SWhw ensembles decrease the explained variance of the ignition when

the degree, instead of kmax, is considered. The considerable decrease in the explained variance



Table 6. The explained variance of the Spearman rank correlation between ignition and
structural measures for Human and uSCs. The explained variance of the Spearman rank
correlation (ρ2) between ignition and either kmax, or degree in Human, Humanhw, DPRhw, and
SWhw. The percentiles to evaluate the significance of ρ2 was performed using 10.000 replicas
from bootstrap resampling.

Ignition Human
ρ2,

percentile (2.5,
97.5)

Humanhw
ρ2,

percentile (2.5,
97.5)

DPRhw
ρ2,

percentile (2.5,
97.5)

SWhw
ρ2,

percentile (2.5,
97.5)

kmax 0.210,
(0.194, 0.226)

0.550,
(0.535, 0.565)

0.887,
(0.874, 0.900)

0.700,
(0.671, 0.727)

degree 0.255,
(0.238, 0.271)

0.730,
(0.718, 0.742)

0.511,
(0.496, 0.525)

0.216,
(0.202, 0.229)

of ignition recruitment given by the degree in the SWhw ensemble could be explained by its

biphasic network ignition, in which almost all the kmax-core nodes ignite in the ignition point G-.

Thus, there are fewer nodes to correlate with kmax through ignition recruitment.

The correlation between unweighted network features and ignition is lower in the

human connectome than when the weighted characteristics are considered. The weights of

the human connectome confer lower thresholds for the trigger and collapse of the

bistability range. Indeed, ignition core and recruitment is related to the weighted features

of the human connectome. In the next section is explored the relevance of the weights of the

human connectome in the ignition.

2.2. The ignition recruitment is organized by theweighted core of the human connectome

To disentangle if the heterogeneity can explain the ignition features of the human

connectome in its connection weights, I considered the weighted surrogate connectomes (wSCs).



The wSCs preserve the weight distribution of the human connectome but break its specific order

(i.e., change the strength distribution, see materials and methods for details). There are 60

Humanrw (Figure 24A, left), 60 DPRrw (Figure 24A, middle), and 60 SWrw (Figure 24A, right)

ensembles.

The deterministic simulations of the Human, 60 Humanrw, 60 DPRrw, and 60 SWrw are

summarized in Figure 24B and Table 5. As a first observation, all the wSCs present two

bifurcation points in a range of coupling parameter G, reaffirming that the bistability range is not

exclusive to the human connectome. For wSCs, the dispersion of G- and G+ values through

different random instances from the same ensemble was more extensive than for uSCs. Given

that all the instances had precisely the same set of connection weights, but randomly assigned to

different links, this large dispersion already suggests that specific weight-to-connectivity

arrangements can influence how low or high critical points are.

Also, introducing heterogeneous weights generally decreased the threshold for the flaring

point G+ of wSCs, compared to their uSCs counterparts. Indeed, the flaring point for the Human

reference connectome falls now well within the fluctuation range of flaring points for Humanrw

and DPRrw ensembles. This overlap emphasizes the role of weight diversity, suggesting it as an

explanation for the reduction in the threshold in the flaring point G+ of the wSCs. The

simulations of SWrw ensembles show a decrease in the bifurcation G+ compared to SWhw

ensembles. Thus, the abnormally large threshold for the flaring point in the SWhw ensembles is

compensated by the heterogeneity in the connection’s weight (Figures 20B and 24B, green).

This suggests that the flaring point G+ value observed for the Human connectome can be

accounted for by its degree and weight distributions (shared with the Humanrw and DPRrw

ensembles, but not with the SWrw ensemble), rather than by its small-worldness (shared with the

SWrw ensemble, but not with the Humanrw and DPRrw ensembles). However, the human

connectome has the lowest threshold for the ignition point G- compared to wSCs, similarly to the



obtained with respect of the uSCs. This indicates that both the heterogeneity in the weights (not

found in Humanhw) and the specific pattern in which these weights are distributed (disrupted in

Humanrw) are essential for maintaining a low ignition point G- (Figure 24B). This characteristic

of the Human connectome is thus exceptional, in the sense that it is unlikely to arise by chance

Figure 24. The human cortical connectome requires a lower coupling gain to display
ignition than weighted surrogate models. (A) One example of the weighted surrogate
connectomes (wSCs) matrices. The color bar shows the connection weights in a log-scale. Left,
the Humanrw matrix, which conserves the connectivity pattern and the weight distribution of
Human but disrupts its specific organization. Middle, the DPRrw matrix, which conserves
specific degree distribution and weight distribution of the Human connectome but disrupts their
local organization. Right, the SWrw matrix, which generates a similar global organization of the
Human and preserves its weight distribution. (B) Top, the network activity state through the
coupling range (x-axis) for the human connectome and a representative case of each wSCs, using
Low and High ICs. The wSCs ensembles present network ignition in the bistability range.
Bottom, a summary of the ignition G- (left circles) and flaring G+ (right circles) points in the
bistability range of the Human (red), Humanrw (blue), 60 DPRrw (orange), and 60 SWrw (green)
ensembles. The orange dashes show the range of values for G-, whereas the pale blue dashes
show for G+. Notice the wider dispersion of the bifurcation points in wSCs than uSCs (Figure
20B).



Figure 25. The ignited nodes and the weighted network analysis. (A) The number of ignited
nodes, Nignited (threshold Ri > 5), as a function of coupling gain G in Human (red), and one
representative example of Humanrw (blue), DPRrw (orange), and SWrw (green). (B) The strength
distribution of the Human and the wSCs. The SWhw has similar strength distribution with the
other wSCs, opposite to the case of the uSCs (degree distribution, see Figure 21B). (C) The
s-core decomposition of Human (red), Humanrw (blue), DPRrw (orange), and SWrw (green), using
steps of �smax=0.01. The y-axis shows the number of nodes in the shell, whereas the x-axis shows
the smax of that shell. Only one example for each type of wSCs is shown in the main plot. The
inset shows the smax for all the networks used. The Human has the largest smax (0.431) in a small
smax-core (11 regions, ~16.7% of network nodes).

in the organization of the studied surrogate ensembles.

The number of ignited nodes in the wSCs. Figure 25A shows the number of ignited nodes

versus G for Human and one representative case of Humanrw, DPRrw, and SWrw. The Nignited at G-

for Human (n = 11), Humanrw (mean n = 23.88 ± 10.02), DPRrw (mean n = 30.67 ± 8.77), and

SWrw (mean n = 26.78 ± 14.29) ensembles. The Nignited at the ignition point is reduced in the

wSCs ensembles compared to the uSCs ones but still is larger than the human connectome

subset. Also, ignited nodes increase more smoothly as a function of the coupling gain in wSCs

than in the case of uSCs.

Network properties of the wSCs. Figure 25B shows the strength distribution of the

Human connectome (mean si = 0.464 ± 0.237), Humanrw (mean si = 0.464 ± 0.254), DPRrw

(mean si = 0.464 ± 0.256) and SWrw (mean si = 0.464 ± 0.175) ensembles. The random

assignation of the weights does not change the strength distribution of the wSCs dramatically

with respect to the Human, as shown in Figure 25B. All the strength distributions are highly



overlapped. Indeed, the strength distribution as a weighted network feature makes the SWrw

ensemble more similar to the human connectome than the weighted features (degree distribution).

This could be related to their decrease in the threshold values for the flaring point G+ (Figure

24B, green).

Figure 25C shows the s-core decomposition of the Human and wSCs, which reveals the

weighted core-shell organization in the networks. Figure 25C shows the s-core decomposition of

the Human and wSCs. The smax within the nodes of the smax-core is the largest in the Human

(smax= 0.431), in comparison with Humanrw (mean smax = 0.339 ± 0.020), DPRrw (mean smax =

0.329 ± 0.016) or SWrw (mean smax = 0.308 ± 0.013). The inset of Figure 25C portrays smax values

of the core for individual instances of the different surrogate ensembles showing that the smax is

larger in Human than in any of the wSCs. Furthermore, the smax-core of the Human includes the

compact smax-core (n = 11) compared to the Humanrw (mean n = 22.53 ± 9.21), DPRrw (mean n =

27.95 ± 9.29), and SWhw (mean n = 30.97 ± 15.65) ensembles. Notice that the Nignited and the

number of nodes in the smax-core decrease in the wSCs compared to the uSCs ensembles (see

Table 5).

Ignition core in the wSCs. Figure 26A shows the fraction of nodes with ignited or baseline

activity and whether the nodes belong or not to the smax-core at the ignition point G-. Previously,

I have shown a one-to-one correspondence of the ignited regions and the smax-core after the

ignition point G-. This one-to-one correspondence is lost whenever the strengths are randomized,

even if the connectivity pattern is maintained, as in Humanrw. Thus, the human connectome has a

unique weighted pattern that is related to the low threshold value for the ignition at G-, and the

specific connectivity pattern does not explain that. Additionally, at G-, all the wSCs show ignited

nodes that do not belong to smax-core as well as nodes that are belonging to this core and are

not-ignited (orange and green bars, respectively, in Figure 26A).



Figure 26. Ignited cortical
regions match perfectly the
weighted core of the human
connectome at the ignition
point G-. (A) The bar plot
shows the fraction of nodes
that are ignited (red, orange) or
not-ignited (green, blue) at the
G- bifurcation, and that belong
to smax-core (red, green) or not
(orange, blue). (B) The
strength distribution of ignited
(orange) and not-ignited (blue)
nodes at the ignition point G-,
for Human and the wSCs.

Figure 26B shows the strength distribution of the ignited (orange) and not-ignited (pale blue)

nodes of the Human and wSCs ensembles. The nodes with high strength of the Human show a

higher overlap with the ignited subset, compared to the degree (compare Figures 22B and 26B).

The strength is a better predictor of ignition in cortical regions of Human than the degree.

However, the strength shows nodes with high values and not-ignited in the Human and also in

the wSCs. Thus, strength does not capture all the features that define the lowest threshold for the

ignition point in the human connectome.

Ignition sequence and core hierarchy in the wSCs. Figure 27A-C shows the relationship

between the ignition recruitment and the weighted local organization (i.e., strength, in-strength,

and out-strength), for Human (left), and a representative case of Humanrw (middle-left), DPRrw

(middle-right) and SWhw (right) ensembles. Nodes are sorted from bottom to top according to the



onset of ignition, and the color code is either the strength (Figure 27A), in-strength (Figure 27B),

and out-strength (Figure 27C) value of each ignited node.

Figure 27D-F shows the explained variance of Spearman rank correlation (ρ2) between ignition

recruitment and the strength (Figure 27D), in-strength (Figure 27E), and out-strength (Figure

Figure 27. The ignition in the human connectome is related to the weight of inputs more
than outputs of the local organization. (A-C) Cortical regions in the y-axis are sorted
according to the coupling gain G (x-axis) value at which they first ignite. Colour code shows the
(A) strength, (B) in-strength, and (C) out-strength for each of the ignited nodes of Human (left
column), and one representative example of Humanhw (middle-left column), DPRrw (middle-right
column), and SWrw (right column) ensembles. (D) Spearman rank correlation squared (ρ2,
explained variance) between ignition recruitment and the strength of Human (0.687, percentile
(2.5, 97.5) = (0.672, 0.702)), Humanrw (0.453, percentile (2.5, 97.5) = (0.435, 0.469)), DPRrw

(0.620, percentile (2.5, 97.5) = (0.606, 0.633)), and SWrw (0.235, percentile (2.5, 97.5) = (0.221,
0.250)). (E) Spearman rank correlation squared (ρ2, explained variance) between ignition
recruitment and the in-strength for Human (0.671 percentile (2.5, 97.5) = (0.655, 0.684)),
Humanrw (0.700, percentile (2.5, 97.5) = (0.687, 0.713)), DPRrw (0.709, percentile (2.5, 97.5) =
(0.695, 0.721)), and SWrw (0.650, percentile (2.5, 97.5) = (0.636, 0.662)). (F) Spearman rank
correlation squared (ρ2, explained variance) between ignition recruitment and the out-strength
for Human (0.386 percentile (2.5, 97.5) = (0.369, 0.402)), Humanrw (0.084, percentile (2.5,
97.5) = (0.073, 0.096)), DPRrw (0.348, percentile (2.5, 97.5) = (0.331, 0.365)), and SWrw (0.021,
percentile (2.5, 97.5) = (0.027, 0.015)). The * indicates a significant difference between the ρ2 of
Human and wSCs. The significance of ρ2 was evaluated using 10.000 replicas from bootstrap
resampling (violin plots).



27F) for Human, Humanrw, DPRrw, and SWrw ensembles. Also, in the human connectome, the

explained variance of ignition recruitment by the strength is larger than for the in-strength or

out-strength of each cortical region. However, that is not true in the wSCs because ignition

recruitment has a higher ρ2 for the in-strength than strength or even out-strength. This result of

the wSCs emphasizes the importance of the incoming connections of the nodes for ignition

recruitment in the local organization. By extension, all of the wSCs ensembles show the worst fit

with the ignition recruitment when the out-strength was considered. Indeed, human and wSCs

ensembles show closer values for the ρ2 value when in-strength was considered.

The strength shows an inferior performance in the fit of the ρ2 than in-strength in the wSCs

because the low performance of the out-strength draws it. Thus, the in-strength predicts better

the fit with the ignition recruitment among the weighted local organization of the wSCs.

However, their performance is lesser than the obtained with the smax in the case of the human

connectome.

Figure 28A-C shows the relationship between the trigger of node ignition and the weighted core

organization (i.e.,smax, in-smax, and out-smax), for Human (left), and a representative case of

Humanrw (middle-left), DPRrw (middle-right) and SWrw (right) ensembles. Nodes are sorted from

bottom to top according to the ignition sequence, and the color code is either the smax (Figure

28A), in-smax (Figure 28B), and out-smax (Figure 28C) value of each ignited node.

Figure 28E-F shows the explained variance of Spearman rank correlation (ρ2) between

ignition recruitment and the smax (Figure 28D), in-smax(Figure 28E), and out-smax (Figure 28F;

details in Table 7) for Human, Humanrw, DPRrw, and SWrw ensembles. Human shows the highest

explained variance of ignition recruitment by the smax, in-smax, and out-smax, and that is higher

than in any of the wSCs. The best fit of ignition recruitment is given by the in-smax of Human and



Figure 28. The ignition in the human connectome is tightly related to the core-shell
organization. (A-C) The cortical regions in the y-axis are sorted according to the coupling gain
G (x-axis) value at which they first ignite. Color code shows the (A) smax, (B) in-smax, and (C)
out-smax value of each of the ignited nodes of Human (left column), and one representative
example of Humanrw (middle-left column), DPRrw (middle-right column), and SWrw (right
column) ensembles. (D) Spearman rank correlation squared (ρ2, explained variance) between
ignition recruitment and the smax Human (0.867, percentile (2.5, 97.5) = (0.858, 0.874)),
Humanrw (0.474, percentile (2.5, 97.5) = (0.459, 0.490)), DPRrw (0.495, percentile (2.5, 97.5) =
(0.477, 0.512)), and SWrw (0.100, percentile (2.5, 97.5) = (0.088, 0.112)). (E) Spearman rank
correlation squared (ρ2, explained variance) between ignition recruitment and the in-smax Human
(0.915, percentile (2.5, 97.5) = (0.910, 0.920)), Humanrw (0.785, percentile (2.5, 97.5) = (0.773,
0.796)), DPRrw (0.889, percentile (2.5, 97.5) = (0.884, 0.895)), and SWrw (0.491, percentile (2.5,
97.5) = (0.477, 0.505)). (F) Spearman rank correlation squared (ρ2, explained variance) between
ignition recruitment and the in-smax Human (0.726, percentile (2.5, 97.5) = (0.711, 0.740)),
Humanrw (0.089, percentile (2.5, 97.5) = (0.076, 0.102)), DPRrw (0.339, percentile (2.5, 97.5) =
(0.322, 0.355)), and SWrw (0.0006, percentile (2.5, 97.5) = (2x10-6, 0.0021)). The * indicates a
significant difference between the ρ2 of Human and wSCs. The significance of ρ2 was evaluated
using 10.000 replicas from bootstrap resampling (violin plots).

also in the wSCs ensembles. This emphasizes the importance of the inputs in the core as in the

local organization with the in-strength. The human connectome fits best to the weighted



core-shell organized than any of the wSCs ensembles. Mesoscale organization fit best with

ignition recruitment than the local organization in the human connectome.

Moreover, when the in-smax is considered, the fit with the ignition sequence is higher than

for out-smax or smax. In particular, for the Humanrw and DPRrw ensembles, the ρ2 value is closer

between the smax and the in-smax. However, in the case of the out-smax, the explained variance of

the ignition sequence falls to very low values in the wSCs ensembles. The SWrw ensemble shows

the lowest ρ2 between the core and ignited sequences among the analyzed networks. The inputs

in the mesoscale organization as in the local organization show a higher relationship with the

ignition recruitment through the coupling gain. Thus, the ignition of the human connectome fits

best to the weighted core-shell organized than any of the wSCs ensembles.

Therefore, the weighted mesoscale organization rather than a local one explains better the

threshold for the ignition and the ignition recruitment in the human connectome. Also, this

exceptional feature of the human connectome cannot be replicated with its connectivity

pattern, weight distribution, or even with its local or global organization. The cortical

ignition in the connectome is a mesoscale phenomenon rather than a local one, and it is

organized in the form of core-shell arrangements.

3. Ignition in neural activity of other organisms is related to theweighted core

organization

Finally, I propose that the weighted core-shell organization of ignition is a structural neural

principle rooted in evolution, rather than a human connectome uniqueness. These evolutionary

roots are assessed using the available connectomes of related organisms, like the macaque

(Macaca mulatta), the rat (Rattus norvegicus), the mouse (Mus musculus) or the fruit fly

(Drosophila melanogaster).



Table 7. The explained variance of the Spearman rank correlation between ignition and
structural measures for Human and wSCs. The explained variance of the Spearman rank
correlation (⍴2) between ignition and either smax, or in-strength, or out-strength, or strength in
Human, Humanrw, DPRrw, and SWrw. The percentiles to evaluate the significance of ρ2 was
performed using 10.000 replicas from bootstrap resampling.

Ignition
Human
ρ2,

percentile (2.5, 97.5)

Humanrw
ρ2,

percentile (2.5, 97.5)

DPRrw
ρ2,

percentile (2.5, 97.5)

SWrw
ρ2,

percentile (2.5, 97.5)

out-smax
0.726,

(0.711, 0.740)
0.089,

(0.076, 0.102)
0.339,

(0.322, 0.355)
0.0006,

(0.000002, 0.0021)

in-smax
0.915,

(0.910, 0.920)
0.785,

(0.773, 0.796)
0.889,

(0.884, 0.895)
0.491,

(0.477, 0.505)

smax
0.867,

(0.858, 0.874)
0.474,

(0.459, 0.490)
0.495,

(0.477, 0.512)
0.100,

(0.088, 0.112)

out-streng
th

0.386,
(0.369, 0.402)

0.084,
(0.073, 0.096)

0.348,
(0.331, 0.365)

0.021,
(0.015, 0.027)

in-strengt
h

0.671,
(0.655, 0.684)

0.700,
(0.687, 0.713)

0.709,
(0.695, 0.721)

0.650,
(0.636, 0.662)

strength
0.687,

(0.672, 0.702)
0.453,

(0.435, 0.469)
0.620,

(0.606, 0.633)
0.235,

(0.221, 0.250)

3.1. Organism’s connectomes:modeling of ignition and network analysis

The evolutionary root of the core-shell organization and ignition core were assessed using

the available connectomes of other organisms. I utilized the connectome of the fruit fly (Figure

15A, top), which has N =50 neural processing units and 2.049 directed and weighted



connections (network density ~83%) (Chiang et al. 2011; Shih et al. 2015); the mouse

connectome (Figure 29B, top), parcellated into N = 112 regions (56 per hemisphere) and 6.542

weighted connections (network’s density ~52%) (Oh et al. 2014; Rubinov et al. 2015); the

connectome of the rat (Figure 29C, top), which has N = 156 cortical regions and 6.805 directed

connections (network’s density ~28%) (Bota, Dong, and Swanson 2005; Bota, Sporns, and

Swanson 2015); and the CoCoMac dataset of the right hemisphere of the macaque (Figure 29D,

top), which has 212 cortical regions and 4.090 directed and unweighted connections (network’s

density ~9.1%) (Bakker, Wachtler, and Diesmann 2012).

To make reliable comparations with the human connectome, the weight value of the

connections in the other organisms was normalized to conserve the overall strength of the

Human (15.3). Deterministic simulations show that at steady-state, all the connectomes of other

organisms present the bistability range in a range of coupling gain (Figure 29). Thus, the

bistability range is conserved in other organisms as a qualitative result (bifurcation points in

Figure 29. The bistability range of ignition is preserved in related organisms. (A) Fruit fly
matrix (left) comprises 50 local processing units (columns and rows) and 2.049 weighted
connections. (B) Mouse matrix (middle-left) comprises 112 cortical regions (56 per hemisphere)
and 6.542 weighted connections. (C) Rat matrix (middle-right) comprises 156 cortical regions
and 6.805 weighted connections. (D) Macaque matrix (right) contains 212 cortical regions (right
hemisphere) and 4.090 unweighted connections. Bottom, the bistability range of ignition was
evaluated in a band of the coupling range for (A) fruit fly (0.1≤G<3), (B) mouse (0.5≤G<4.5),
(C) rat (2.5≤G<10), and (D) macaque (3≤G<8), all of them with steps of �G=0.01.

https://paperpile.com/c/E3bCBc/9Cpe+BgMP
https://paperpile.com/c/E3bCBc/3e8g+Lf8P
https://paperpile.com/c/E3bCBc/ACYs+uc8s
https://paperpile.com/c/E3bCBc/ACYs+uc8s
https://paperpile.com/c/E3bCBc/dZ5b


Table 8. The dynamic and structural data of the other organisms connectomes.

Ignition Fruit fly Mouse Rat Macaque

G- 0.71 1.31 3.20 3.86

G+ 1.53 3.02 7.28 6.94

N- 15 (~30%) 12 (~10.7%) 86 (~55.1%) 59 (~27.8%)

kmax-core
nodes

37 (~74%) 102 (~91.1%) 98 (~62.8%) 104 (49.1%)

smax-core nodes 9 (~18%) 16 (~14.3%) 107 (~68.6%) 106 (50%)

Table 8). Nevertheless, the threshold for ignition and flaring points differ between the different

organisms connectomes, which could be the result of the differences in the number of nodes,

connections, and network density, as well as the weighted pattern, as I demonstrate in the

previous section.

3.2. The ignition is triggered in theweighted core in other organisms

Table 9 shows the overlaps between the activity state of a region, ignited or not, and if it

belongs to smax-core -also in or out- or not. I found a larger correspondence in the ignited and

smax-core of regions at the ignition point G- of the organism’s connectomes. However, ignition

occurs in regions that belong to neither out-smax-core or smax-core in all of the organisms. Only in

the fruit fly, all the smax-core (and out-smax-core) ignite at G-. Also, regions that are not-ignited at



Table 9. The core and the ignited nodes at the G- in the other organisms. The ignited and
not-ignited proportions paired with the belong to the core. The left is the in-smax-core, middle the
out-smax-core and right smax-core, in each entry.

Fruit fly
nodes

in/out/total

Mouse
nodes

in/out/total

Rat
nodes in/out/total

Macaque
nodes in/out/total

ignited and
smax-core

15 /12/ 9 12 /6/ 6 86 /64/ 77 59 /46/ 55

ignited and not
smax-core

0 /3/ 6 0 /6/ 6 0 /22/ 9 0 /13/ 4

not-ignited and
smax-core

4 /0/ 0 12 /10/ 10 44 /30/ 30 58 /58/ 51

not-ignited and
not-smax-core

31 /35/ 35 88 /90/ 90 26 /40/ 40 125 /125/ 132

G- belong massively to the periphery nodes, except in the case of the rat connectome. In fact, in

the rat connectome, nearly half of the regions ignite in the bifurcation G-, which is similar to the

observed in the uSCs ensembles.

In summary, the ignition is triggered at G- by the nodes that belong to the in-smax-core

(Figures 30-33A, left).

3.3. The ignition recruitment is related to the structural organization in other organisms

Next, I assessed if the nodes susceptible to be ignited are incorporated following a weighted

core-shell rule. Figures 30-33 show the relationship between the ignition recruitment and either

the smax or strength of each node of the connectome of the other organisms (Table 10).



Figure 30A shows the relationship between ignition and the mesoscale organization of the

fruit fly connectome. Figure 30B shows the ρ2 between ignition recruitment and in-smax (0.965,

percentile (2.5, 97.5) = (0.963, 0.968)), out-smax (0.772, percentile (2.5, 97.5) = (0.763, 0.782)),

and smax (0.925, percentile (2.5, 97.5) = (0.922, 0.929)) of the fruit fly connectome. Fruit fly

connectome shows the best fit of the ignition recruitment with the in-smax-core. Figure 30C

shows the relationship between ignition and the local organization of the fruit fly connectome.

Figure 30D shows the ρ2 between ignition recruitment and in-strength (0.960,

percentile (2.5, 97.5) = (0.958, 0.962)), out-strength (0.751, percentile (2.5, 97.5) = (0.741,

0.761)), and strength (0.920, percentile (2.5, 97.5) = (0.917, 0.923)) of the fruit fly connectome.

The explained variance of the ignition recruitment is higher for the in-smax than the in-strength in

the fruit fly connectome, and it is qualitatively similar to the relationship found in the human

connectome. It must be said, although, the difference of ρ2 is statistically significant, is small

between the local and mesoscale organization. Also, fruit fly shows the best fit, compared to the

other organisms, of the ignition recruitment with the in-strength of the local organization (Table

10).

Figure 30A shows the relationship between ignition and the mesoscale organization of the

fruit fly connectome. Figure 30B shows the ρ2 between ignition recruitment and in-smax (0.965,

percentile (2.5, 97.5) = (0.963, 0.968)), out-smax (0.772, percentile (2.5, 97.5) = (0.763, 0.782)),

and smax (0.925, percentile (2.5, 97.5) = (0.922, 0.929)) of the fruit fly connectome. Fruit fly

connectome shows the best fit of the ignition recruitment with the in-smax-core. Figure 30C

shows the relationship between ignition and the local organization of the fruit fly connectome.

Figure 30D shows the ρ2 between ignition recruitment and in-strength (0.960, percentile (2.5,

97.5) = (0.958, 0.962)), out-strength (0.751, percentile (2.5, 97.5) = (0.741, 0.761)), and strength

(0.920, percentile (2.5, 97.5) = (0.917, 0.923)) of the fruit fly connectome. The explained



variance of the ignition recruitment is higher for the in-smax than the in-strength in the fruit

fly connectome, and it is qualitatively similar to the relationship found in the human connectome.

It must be said, although, the difference of ρ2 is statistically significant, is small between the

local and mesoscale organization. Also, fruit fly shows the best fit, compared to the other

organisms, of the ignition recruitment with the in-strength of the local organization (Table 10).

Table 10. The explained variance of the Spearman rank correlation between ignition and
structural measures for other organisms connectomes. The explained variance of the
Spearman tfrank correlation (ρ2) between ignition and either smax, or in-strength, or out-strength,
or strength in fruit fly, mouse, rat, andmacaque. The percentiles to evaluate the significance of ρ2
was performed using 10.000 replicas from bootstrap resampling.

Ignition Fruit fly
ρ2,

percentile (2.5,
97.5)

Mouse
ρ2,

percentile (2.5,
97.5)

Rat
ρ2,

percentile (2.5,
97.5)

Macaque
ρ2,

percentile (2.5,
97.5)

out-smax 0.772,
(0.763, 0.782)

0.345,
(0.327, 0.363)

0.135,
(0.122, 0.148)

0.350,
(0.334, 0.367)

in-smax 0.965,
(0.963, 0.968)

0.936,
(0.933, 0.939)

0.508,
(0.492, 0.524)

0.880,
(0.875, 0.886)

smax 0.925,
(0.922, 0.929)

0.761,
(0.751, 0.771)

0.401,
(0.382, 0.420)

0.645,
(0.630, 0.658)

out-strength 0.751,
(0.741, 0.761)

0.246,
(0.223, 0.261)

0.120,
(0.108, 0.132)

0.365,
(0.348, 0.383)

in-strength 0.960,
(0.958, 0.962)

0.913,
(0.908, 0.917)

0.697,
(0.684, 0.709)

0.912,
(0.908, 0.916)

strength 0.920,
(0.917, 0.923)

0.673,
(0.660, 0.686)

0.443,
(0.427, 0.458)

0.685,
(0.673, 0.697)



Figure 31A shows the relationship between ignition and the mesoscale organization of the

mouse connectome. Figure 31B shows the ρ2 between ignition recruitment and in-smax (0.936,

percentile (2.5, 97.5) = (0.933, 0.939)), out-smax (0.345, percentile (2.5, 97.5) = (0.327, 0.363)),

and smax (0.761, percentile (2.5, 97.5) = (0.751, 0.771)) of the mouse connectome. Figure 31C

shows the relationship between ignition and the local organization of the mouse connectome.

Figure 31D shows the ρ2 between ignition recruitment and the in-strength (0.913, percentile

Figure 30. The ignition, smax and strength levels for each node in the fruit fly (Drosophila
melanogastet) dataset. (A) The ignition recruitment of neural proccesing units (y-axis) was
sorted by the coupling gain (x-axis). The colour bar shows the in-smax (left), out-smax (middle),
and smax (right) value of each neural proccesing unit when were ignited. (B) Spearman rank
correlation squared (⍴2, explained variance) between the ignition recruitment and the in-smax
(0.965, percentile (2,5, 97,5) = (0.963, 0.968), blue circle), out-smax (0.772, percentile (2,5, 97,5)
= (0.763, 0.782), orange circle), and smax (0.925, percentile (2,5, 97,5) = (0.922, 0.929), green
circle). (C) Similarly, the sorted ignition recruitment of neural proccesing units, in which the
colour bar represents the in-strength (left), out-strength (middle), and strength (right) value of
each neural proccesing unit when were ignited. (D) Spearman rank correlation squared (⍴2,
explained variance) between the ignition recruitment and the in-strength (0.960, percentile (2,5,
97,5) = (0.958, 0.962), red circle), out-strength (0.751, percentile (2,5, 97,5) = (0.741, 0.761),
purple circle), and strength (0.920, percentile (2,5, 97,5) = (0.917, 0.923), brown circle). The
significance of ⍴2 was evaluated using 10.000 replicas from bootstrap resampling (the blue
violin plots).



(2.5, 97.5) = (0.908, 0.917)), out-strength (0.246, percentile (2.5, 97.5) = (0.223, 0.261)), and

strength (0.673, percentile (2.5, 97.5) = (0.660, 0.686)) of the mouse connectome. As in the fruit

fly, the in-smax of mouse connectome shows a small but statistically significant better fit with the

ignition recruitment than the in-strength. Also, the out-smax and out-strength show a lousy

relationship with the ignition recruitment in the mouse connectome. That results are qualitatively

similar to the relationship between core and ignition found in the human connectome.

Figure 32A shows the relationship between ignition and the mesoscale organization of the

Figure 31. The ignition, smax and strength levels for each node in the mouse (Mus musculus)
dataset. (A) The ignition recruitment of cortical regions (y-axis) was sorted by the coupling gain
(x-axis). The colour bar shows the in-smax (left), out-smax (middle), and smax (right) value of each
region when were ignited. (B) Spearman rank correlation squared (⍴2, explained variance)
between the ignition recruitment and the in-smax (0.936, percentile (2,5, 97,5) = (0.933, 0.939),
blue circle), out-smax (0.345, percentile (2,5, 97,5) = (0.327, 0.363), orange circle), and smax
(0.761, percentile (2,5, 97,5) = (0.751, 0.771), green circle). (C) Similarly, the sorted ignition
recruitment of regions, in which the colour bar represents the in-strength (left), out-strength
(middle), and strength (right) value of each cortical region when were ignited. (D) Spearman
rank correlation squared (⍴2, explained variance) between the ignition recruitment and the
in-strength (0.913, percentile (2,5, 97,5) = (0.908, 0.917), red circle), out-strength (0.246,
percentile (2,5, 97,5) = (0.223, 0.261), purple circle), and strength (0.673, percentile (2,5, 97,5)
= (0.660, 0.686), brown circle). The significance of ⍴2 was evaluated using 10.000 replicas from
bootstrap resampling (the blue violin plots).



rat connectome. Figure 32B shows the ρ2 between ignition recruitment and the in-smax (0.508,

percentile (2.5, 97.5) = (0.492, 0.524)), out-smax (0.135, percentile (2.5, 97.5) = (0.122, 0.148)),

and smax (0.401, percentile (2.5, 97.5) = (0.382, 0.420)) of the rat connectome. Figure 32C shows

the relationship between ignition and the local organization of the rat connectome. Figure

32D shows the ρ2 between ignition recruitment and in-strength (0.697, percentile (2.5, 97.5) =

(0.684, 0.709)), out-strength (0.120, percentile (2.5, 97.5) = (0.108, 0.132)), and strength (0.443,

percentile (2.5, 97.5) = (0.427, 0.458)) of the rat connectome. Again, the best fit for ignition

Figure 32. The ignition, smax and strength levels for each node in the rat (Rattus norvegicus)
dataset. (A) The ignition recruitment of cortical regions (y-axis) was sorted by the coupling gain
(x-axis). The colour bar shows the in-smax (left), out-smax (middle), and smax (right) value of each
region when were ignited. (B) Spearman rank correlation squared (⍴2, explained variance)
between the ignition recruitment and the in-smax (0.508, percentile (2,5, 97,5) = (0.492, 0.524),
blue circle), out-smax (0.135, percentile (2,5, 97,5) = (0.122, 0.148), orange circle), and smax
(0.401, percentile (2,5, 97,5) = (0.382, 0.420), green circle). (C) Similarly, the sorted ignition
recruitment of regions, in which the colour bar represents the in-strength (left), out-strength
(middle), and strength (right) value of each cortical region when were ignited. (D) Spearman
rank correlation squared (⍴2, explained variance) between the ignition recruitment and the
in-strength (0.697, percentile (2,5, 97,5) = (0.684, 0.709), red circle), out-strength (0.120,
percentile (2,5, 97,5) = (0.108, 0.132), purple circle), and strength (0.443, percentile (2,5, 97,5)
= (0.427, 0.458), brown circle). The significance of ⍴2 was evaluated using 10.000 replicas from
bootstrap resampling (the blue violin plots).



recruitment is with the inputs. The in-strength shows a better fit of ρ2 with ignition recruitment

than the observed for the in-smax. Thus, the local organization of the rat connectome is best

related to ignition recruitment, contrary to the observed in the human connectome. One possible

explanation is that the ignition in the rat looks as semi-biphasic, in which a lot of the regions

ignite nearly the G-. That recalls the performance of the SWrw ensemble, in which the in-strength

is higher than the in-smax. Thus, the larger network ignition fits better with the in-strength.

Figure 33. The ignition, smax and strength levels for each node in the macaque (Macaca
mulatta) dataset. (A) The ignition recruitment of cortical regions (y-axis) was sorted by the
coupling gain (x-axis). The colour bar shows the in-smax (left), out-smax (middle), and smax (right)
value of each region when were ignited. (B) Spearman rank correlation squared (⍴2, explained
variance) between the ignition recruitment and the in-smax (0.880, percentile (2,5, 97,5) = (0.875,
0.886), blue circle), out-smax (0.350, percentile (2,5, 97,5) = (0.334, 0.367), orange circle), and
smax (0.645, percentile (2,5, 97,5) = (0.630, 0.658), green circle). (C) Similarly, the sorted
ignition recruitment of regions, in which the colour bar represents the in-strength (left),
out-strength (middle), and strength (right) value of each cortical region when were ignited. (D)
Spearman rank correlation squared (⍴2, explained variance) between the ignition recruitment and
the in-strength (0.912, percentile (2,5, 97,5) = (0.908, 0.916), red circle), out-strength (0.365,
percentile (2,5, 97,5) = (0.348, 0.383), purple circle), and strength (0.685, percentile (2,5, 97,5)
= (0.673, 0.697), brown circle). The significance of ⍴2 was evaluated using 10.000 replicas from
bootstrap resampling (the blue violin plots).



Figure 33A shows the relationship between ignition and the mesoscale organization of the

macaque connectome. Figure 33B shows the ρ2 between ignition recruitment and the in-smax

(0.880, percentile (2.5, 97.5) = (0.875, 0.886)), out-smax (0.350, percentile (2.5, 97.5) = (0.334,

0.367)), and smax (0.645, percentile (2.5, 97.5) = (0.630, 0.658)) of the macaque connectome.

Figure 33C shows the relationship between ignition and the local organization of the macaque

connectome. Figure 33D shows the ρ2 between ignition recruitment and in-strength (0.912,

percentile (2.5, 97.5) = (0.908, 0.916)), out-strength (0.365, percentile (2.5, 97.5) = (0.348,

0.383)), and strength (0.685, percentile (2.5, 97.5) = (0.673, 0.697)) of the macaque connectome.

Once again, the best fit for ignition recruitment is with the inputs, and the in-strength shows a

better fit of ρ2 with ignition recruitment than the observed for the in-smax. Thus, the local

organization of the macaque connectome is best related to ignition recruitment, like the rat and

contrary to the observed in the human connectome. This could be related to the fact that the

macaque connectome comes from a homogeneous (binary) connectome.

In conclusion, the s-core decomposition of the human connectome reveals the specific

relationship between ignited nodes and its weighted core-shell organization. In

phylogenetically related organisms, it is found that the ignition recruitment is primarily

related to the inputs to each node. However, best fits with the ignition recruitment could be

the local, as in macaque and rat, or mesoscale, as in the fruit fly and mouse. In summary,

ignition in other organisms is organized in a core-shell arrangement, but also rely on the

nodes with the strongest inputs.







Results chapter 3

Brain network under attack: pruning of the core connections of the
human connectome disrupts the bistability range of ignition in

cortical activity

So far, I have shown that the ignition in the cortex depends on the structural organization of

the human connectome, in particular in the core-shell organization (see chapter 2). I found that

regions belonging to a maximally strong s-core are among the first to sustain spontaneous

ignition during simulated resting-state and show the best fit with the ignition recruitment as

coupling gain is increased. Also, the high strength nodes explain ignition recruitment through the

coupling gain. This chapter further assesses the extent to which the bistability range of ignition is

supported by the connections of the cortex, based on their topological organization. I realized a

selective pruning of the connectome’s connections, distinguishing the local and mesoscale level

as highly connected nodes as well as the membership of a densely interconnected core. I

hypothesize that connections of the local and/or mesoscale organization are critical to poise the

bistability range of the ignition in the human connectome. In this way, I expect that when

pruning connections, the remarkably low threshold for the ignition G- and flaring G+ points will

be lost. This global effect of pruning on the ignition threshold will be more pronounced when

pruning high degree (or high strength) nodes and kmax-core (or smax-core) than when pruning low

degree (or low strength) nodes and those who do not belong to kmax-core (or smax-core).



Figure 34. The pruning procedure. From the structural connectome (A), I selected a node
based on their network organization level to be pruned. From the selected node (B), I randomly
removed a connection (C) and then repeated it from (A). (D) Network analysis was applied to
select nodes at either local (i.e., degree or strength) or mesoscale (i.e., k-core or s-core
decomposition) level. At the local level, I selected either the highly or sparsely connected nodes.
At the mesoscale level, I selected nodes that were part of either the core or the periphery.

Figure 34 shows a cartoon of the pruning, in which the structural connections were

systematically removed based on the local and mesoscale organization. The pruning procedure

has three steps: first (i) apply the network analysis (i.e., degree, strength, k-core, or s-core

decomposition).

Second (ii) select a node using the chosen network level. Third (iii), randomly prune of one

of its connections. I iterate this three steps (i to iii) 27 times and then measure the bifurcation

points (G- and G+). The procedure is repeated 12 times, thus obtaining 13 bifurcation points,

corresponding to pruning 0, 27, 54, 81, 108, 135, 162, 189, 216, 243, 270, 297, and 324

connections. The whole procedure was replicated 20 times on the human connectome. Note that

the first bifurcation points correspond to the unpruned network (1.148 connections).



1. Pruning of the densely connected nodes

Figure 35A shows the increase of the G- and G+ bifurcation points (left and right lines of

the same color, respectively) as the number of connections is decreased (downwards) by pruning

connections from nodes with either a high degree (green), high strength (red), kmax-core (blue), or

smax-core (orange). First, the G- and G+ are displaced to the right towards larger G values. This

reinforces the idea that the connections of either highly connected nodes (often called hub nodes)

or the core nodes play a fundamental role in the balance for the threshold of the bifurcation G-

and G+. (see the Figures 20B and 24B, chapter 2). Second, pruning connections based on

weighted features (strength or smax-core) of the network have a more substantial effect than the

unweighted features

Figure 35. Effect of
selective pruning of the
human connectome in
the ignition threshold
for the bistability range.
Connections were
removed from nodes
having (A) high-degree
(green), high-strength
(red), or belonging to
kmax-core (blue) or
smax-core (orange); (B)
randomly pruning
(green); or having (C)
low-degree (green),
low-strength (red), not
belonging to kmax-core
(blue) or smax-core
(orange). For each color,
lines at the left of each
plot are the ignition
point G- and the lines at
right the flaring point
G+.



(degree or kmax-core). This result is in agreement with the fact that the ignition relationship with

structural features has a higher explained variance by the weighted network measures (ignition

and smax=0.867, ignition and strength=0.687; Table 7) than the unweighted ones (ignition and

kmax=0.210, ignition and degree=0.255; Table 6).

Third, the pruning of high strength nodes causes a bigger increase in the bifurcation points

than the pruning of smax-core nodes. That could be explained based on the fact that the high

strength nodes overlap with the smax-core nodes, as I show in the previous chapter. Indeed, the

core and strongest connected nodes could be responsible for the propagation in the trigger and

collapse of the bistable range of ignition. The flaring point G+ shows the largest increase, and

that could explain the decrease of G+ when the weight distribution is added to the uSCs

ensembles (i.e., wSCs ensembles). In particular, the difference in the G+ bifurcation between the

SWhw and SWrw networks can be explained with this heterogeneity in the weight of the

connections. Thus, the intrinsic ignition is disrupted with the pruning of the highly connected

nodes of the human connectome.

2. Randompruning

Surprisingly, the random pruning (Figure 35B) has a similar effect as cutting from high

degree nodes. This counterintuitive result can be explained because the highest degree nodes

(n=13, 19.7%) concentrate almost one-third of the connections of the connectome (369

connections, 32.14%). Indeed, one-half of nodes (n=32, 50%) with the lower degree have less

than the third of the connections (343 connections, ~29.88%) of the network. In this sense, the



human connectome is far from being homogeneous, and that unique structural manifold allows

stable and less expensive cortical ignition. And the same reasoning would apply to the kmax-core

nodes (n=53, 80.3%) of the human connectome, which concentrate almost all the connections of

the network (1.058 connections, 91.72%). Thus, the random pruning is highly biased when

unweighted network measures are used, and that could explain the similarity with the random

pruning, and also with the high degree nodes.

In the case of weighted measures, the high strength nodes (n = 11, 16.67%) concentrate at

least one-third of the overall strength of the network (summed strength = 5.510, 36.01%). Again,

the random pruning is highly biased by the specific distribution of the connections’ weights of

the human connectome. The smax-core nodes bring together at least a quarter of the overall

strength of the network (summed strength = 4.054, 26.5%). The summed strength is higher in the

high strength nodes than in the smax-core. Thus, pruning of either strength or smax-core nodes

causes a bigger increase in the bifurcation points than random pruning.

3. Pruning of the sparsely connected nodes

Figure 35C shows the overall results of applying the pruning procedure of sparsely

connected nodes or periphery nodes (i.e., the ones that do not belong to the core). Pruning

connections either from nodes with low-degree, low-strength, or not belonging to kmax-core or

smax-core has a small or null change in the bifurcations G- and G+. This result supports that the

low-degree, low-strength, and peripheral nodes (from kmax-core or smax-core) are not relevant to

the stability of the bifurcations. Note the curious behavior of the pruning of low-strength nodes.

The result of the pruning of the sparsely connected nodes and the peripherical ones confirm

that stability in bifurcations G- and G+ depends on the local highly connected nodes as well as on



the core organization of the human connectome. Thus, the effects of pruning connections in the

ignition are relevant only when the high degree and strength nodes are considered, as well as

when they belong to the kmax-core or smax-core.

Thus, selectively pruning connections based on connectivity properties, confirms once

again the main conclusions of this thesis, obtained in Chapter 2: the strongest nodes (locally or

assembling cores) are the most important for ignition and collapse of the network ignition

through the coupling gain. This results are in line de Pasquale and colleagues, with say that hubs

and cores are fundamental for the network dynamics (de Pasquale et al., 2018). Highly

connected nodes and the core of the human connectome sustain bistability at low excitability

values.







Discussion

This thesis has shown that the bistability of cortical ignition can robustly and naturally

occur in the resting-state as an effect of the interplay between regional dynamics and long-range

interactions mediated by the cortical connectome. Not all the regions display the same

propensity to get ignited. This work contributes to understanding the connectivity influence on

the ignition of cortical activity, who is called by Lynn and Basset, the heterogeneous patterns of

structural connections (Lynn and Bassett 2019). Using analyses of the graph topology of the

connectome -and, notably, of its weighed shell-core structure-, I was able to predict with

considerable accuracy the order with which different regions can get spontaneously ignited with

increasing inter-regional coupling. I found that regions belonging to a maximally strong s-core

are among the first to sustain spontaneous ignition during simulated resting-state. Comparing the

Human with a variety of random surrogate connectome ensembles, I found that empirically

observed connectomes are “non-random,” in the sense that they display an exceptionally strong

and compact smax-core and give rise to a particularly smooth and gradual increase in the number

of ignitable regions as a function of the strength of inter-regional coupling. The main result of

my thesis is that the structural organization of the connectome influences the propagation of

ignition in cortical activity. In particular, the organization of cores correlates better with ignition

recruitment.

https://paperpile.com/c/ZECFcP/At8e


Here, I used deterministic simulations to stress the structural influence on the ignition.

Deterministic simulations fall in a steady-state, governed by the initial conditions of the system.

The whole-brain model was tuned to show the network ignition in the broader range of the

coupling gain. I optimized in chapter 1 two ranges of the initial conditions in which the network

state is fully determined by their structural relationships and not by the dynamics of the system.

Thus, when the model is initialized from the selected range of either Low or High ICs, the

broadest possible extent of the bistable network dynamics is obtained. The results are very

similar to those obtained by Hansen et al., 2015, despite the optimization of the range of ICs.

Thus, it is important to note that in my framework, the ignition depends substantially on the

structural organization of the human cortex (Messé et al. 2014; Hansen et al. 2015).

The structural organization is thus a strong determinant of the observed collective dynamics,

in line with previous evidence (Honey et al. 2007; Mišić et al. 2015). More than local topology

metrics, such as degrees or strengths, or global topology metrics, such as overall

small-worldness, I found a mesoscale topological organization, smax of the core, to be the best

predictor of the bistable activity patterns expressed by the model. Most of the regions with

largest smax-core, such as Cuneus, Cingulate, or Precuneus cortices are also members of what

Hagmann et al. (Hagmann et al. 2008) dub the “structural core” of Human cerebral cortex, as

well as strongly functionally implied in default mode network (DMN) fluctuations (Utevsky,

Smith, and Huettel 2014). Such a set of densely interconnected regions had already been

hypothesized to play an important role in shaping large-scale resting-state dynamics (Mišić et al.

2015; Hagmann et al. 2008; Betzel, Medaglia, and Bassett 2018), a hypothesis which I here

further confirm. Probably, the differences between the core reported here and that reported by

Hagmann et al. 2008 arise from the fact that they applied the s-core decomposition to each one

of the five individuals and then took an average of the measures. In contrast, I analyze the s-core

https://paperpile.com/c/ZECFcP/H63i+VKjG
https://paperpile.com/c/ZECFcP/clrT+nyww
https://paperpile.com/c/ZECFcP/xK0I
https://paperpile.com/c/ZECFcP/vuSe
https://paperpile.com/c/ZECFcP/vuSe
https://paperpile.com/c/ZECFcP/nyww+xK0I+qMOe
https://paperpile.com/c/ZECFcP/nyww+xK0I+qMOe


on the averaged Human SC. However, I think that I capture qualitatively the same core with the

s-core approximation.

At the trigger of the ignition (i.e., at bifurcation G-), there is a correspondence one-to-one

with the strongest core of the network. The cortical regions that ignite at G- are present in both

hemispheres, except in the case of PARC, which only is part of the left hemisphere (Table 4).

The neurobiological relevance of the ignited cortical regions could be useful to the clinical

approach, and that is summarized in the next list:

Pericalcarine cortex (PCAL), also named the primary visual cortex V1 (Bergmann et al.

2016), was associated with language processing (Bedny et al. 2011), and its neurochemical

changes were related to congenital blindness (Coullon et al. 2015). Cuneus (CUN) has been

identified as a hub of the visual network (Tomasi and Volkow 2011; Widjaja et al. 2013), which

was associated with visual working memory (Coppen et al. 2018). In particular, it has been

related as an integrator of the early responses of primary visual cortices (Vanni et al. 2001),

switching attention and orientation selectivity (Sabbah et al. 2017). Paracentral lobule (PARC)

was identified as a secondary (or provincial) hub in the visual network (Tomasi and Volkow

2011), as well as in the sensorimotor cortex (Widjaja et al. 2013). It was related to motor action

(Zhang et al. 2015), auditory attention shifting, and orienting effect (Xiao et al. 2016). From a

clinical perspective, it showed a greater probability of activation in ADHD patients (Xiao et al.

2016; Dickstein et al. 2006), as well as greater functional connectivity in late-life depression

(Xiao et al. 2016; Kenny et al. 2010). Isthmus of the cingulate cortex (ISTC) was associated with

face recognition in the EEG study (Kozlovskiy et al. 2017). Also, it has been reported an early

accumulation of β-amyloid, a marker of Alzheimer’s disease (Palmqvist et al. 2017). Precuneus

(PCUN) has been associated with the DMN (Parker, Zalusky, and Kirbas 2014; Deco et al.

2017), the visual and dorsal attention network (Tomasi and Volkow 2011; Widjaja et al. 2013).

https://paperpile.com/c/ZECFcP/zVjx
https://paperpile.com/c/ZECFcP/zVjx
https://paperpile.com/c/ZECFcP/pTB5
https://paperpile.com/c/ZECFcP/2VRL
https://paperpile.com/c/ZECFcP/f6Uo+itGa
https://paperpile.com/c/ZECFcP/dEHG
https://paperpile.com/c/ZECFcP/Ik4N
https://paperpile.com/c/ZECFcP/xmrf
https://paperpile.com/c/ZECFcP/f6Uo
https://paperpile.com/c/ZECFcP/f6Uo
https://paperpile.com/c/ZECFcP/itGa
https://paperpile.com/c/ZECFcP/TLX2
https://paperpile.com/c/ZECFcP/nNta
https://paperpile.com/c/ZECFcP/nNta+1E0L
https://paperpile.com/c/ZECFcP/nNta+1E0L
https://paperpile.com/c/ZECFcP/nNta+Wb6v
https://paperpile.com/c/ZECFcP/njz2
https://paperpile.com/c/ZECFcP/fzKR
https://paperpile.com/c/ZECFcP/PCKh+PDpv
https://paperpile.com/c/ZECFcP/PCKh+PDpv
https://paperpile.com/c/ZECFcP/f6Uo+itGa


From a cognitive perspective, it is related to consciousness (Cavanna 2007), to working memory

(Parker, Zalusky, and Kirbas 2014), switching attention and orientation selectivity (Sabbah et al.

2017). Also, it has been reported an early accumulation of β-amyloid, a marker of Alzheimer’s

disease (Palmqvist et al. 2017). The posterior cingulate cortex (PC) has been associated with the

DMN (Deco et al. 2017; Widjaja et al. 2013) and the cerebellum hub network (Tomasi and

Volkow 2011). Task-related experiments show its relevance in working memory (Parker,

Zalusky, and Kirbas 2014). Also, it has been reported an early accumulation of β-amyloid, a

marker of Alzheimer’s disease (Palmqvist et al. 2017).

From a more abstract statistical mechanics perspective, coreness and core-shell

decompositions have been used to describe the propagation of infection on complex networks

with inhomogeneous density (Kitsak et al. 2010). Here, an analogy could be drawn between

“ignition” and “infection,” with ignition being onset in the densest s-cores, where nodes in a

strongly connected neighborhood can trigger each other into an ignited state by mutual

excitation (analogously to infection) and mutually stabilize their ignited state by preventing the

return to baseline state (analogously to suppressed recovery). Interestingly, the rank correlation

between the ignition sequence and the in- or out-strengths in the connectome for different

regions were stronger for in-strengths than for out-strengths. This fact indicates that a core

region sustains its “infected” state by its neighbors (i.e., trigger from core nodes into an excited

state), and the node recruitment will be more likely to get “infected” preferentially via strong

input connections from the core regions, enough to maintain them ignited on their turn. Thus, an

ignited region by itself cannot excite the peripheral nodes (a leaf) only based on their outputs but

requires that the target region receives inputs from other core nodes (a shell). The existence of

strong loops of mutual excitation within the largest s-core is thus key to stabilize the ignited state

for all the regions belonging to the s-core.

https://paperpile.com/c/ZECFcP/CWmg
https://paperpile.com/c/ZECFcP/PCKh
https://paperpile.com/c/ZECFcP/xmrf
https://paperpile.com/c/ZECFcP/xmrf
https://paperpile.com/c/ZECFcP/fzKR
https://paperpile.com/c/ZECFcP/PDpv+itGa
https://paperpile.com/c/ZECFcP/f6Uo
https://paperpile.com/c/ZECFcP/f6Uo
https://paperpile.com/c/ZECFcP/PCKh
https://paperpile.com/c/ZECFcP/PCKh
https://paperpile.com/c/ZECFcP/fzKR
https://paperpile.com/c/ZECFcP/3Qnu


The precise regions that belong to the largest s-core of the connectome do vary depending

on the specific chosen empirical reconstruction, and their enumeration is also necessarily

affected by the used parcellation. Figures 36-40 of the appendix show indeed that, comparing

five alternative empirical reconstructions of the human connectome, the overlap between the

included regions is only partial. Remarkably, however, for all these alternative human

connectomes, the set of regions that are early ignited largely match the largest s-core. On the

contrary, this is not true for the considered surrogate connectomes: all of them display a higher

degree of “ignition spill-over” (early ignited regions outside the largest s-core) or “incomplete

ignition” (some of the regions in the largest s-core not igniting). It may be that the use of ad hoc

search procedures (e.g., genetic algorithms (Alexander Bailey Brock University, St. Catharines,

Canada, Mario Ventresca University of Toronto, Toronto, Canada, and Beatrice

Ombuki-Berman Brock University, St. Catharines, Canada n.d.)) will allow engineering

non-standard surrogate connectomes that would display Human-like or even better than Human

ignition capabilities. However, I failed to identify any obvious graph-theoretical feature that

confers to Human s-cores their exceptional ignition boosting properties, beyond the ones of

generic s-cores. This result opens a way to understand the network influence in cortical activity,

and it needs to be tested in experimental predictions. Those predictions need to consider the level

of network organization in the intrinsic ignition.

Finally, ignition dynamics are affected not uniquely by an individual graph-theoretical

organization of the connectome but by correlations between multiple properties as well. This fact

is epitomized by the differences in ignition dynamics between the Human and Humanrw

connectomes. Indeed, the Humanrw connectome shares with the Human identical unweighted

topology and distribution of weights, but the correlations between the two have been disrupted.

Analogously, surrogate connectomes with randomized weights display a larger variability over

https://paperpile.com/c/ZECFcP/4IXw
https://paperpile.com/c/ZECFcP/4IXw
https://paperpile.com/c/ZECFcP/4IXw


the ensemble of the actual values of the ignition and flaring points, G- and G+, than unweighted

ensembles. The fact that all instances within these surrogate ensembles with randomized weights

share the same weight distribution and a common statistical distribution of degrees or other

topological properties confirms that the critical ignition behavior of the model is influenced

much more by weight-to-topology correlations than by weights or topology distributions (Alstott

et al. 2014).

Indeed, the ignition features are not well captured by the connectivity pattern of the human

connectome. The Humanhw gives similar results for ignition as the randomized connectomes of

the DPRhw, in which only the number of connections of each cortical region is maintained, but

the mesoscale structures are destroyed. Moreover, the result for the fit between ignition and

structural measures is very similar in the Humanrw and DPRrw. Thus, the specific

weight-to-degree pattern of the human connectome is far from being random.

Here I am describing in the connectome an organization that cannot be explained in terms

of only pairwise node-to-node relationships, as degree or strength do. The interactions between

more than a pair of nodes (i.e., high order interdependencies) have been studied using

information theory tools (Rosas et al. 2019; Camino-Pontes et al. 2018). High order interactions

give rise to phenomena like redundancy and synergy that appear in the brain activity, that require

more than pairwise relationships. A similar situation can be occurring at the connectome level

and the strongest s-core, in which the collective organization described by the s-core is a first

step toward the description of structural high-order interactions. A question for future research is

whether the functional high-order interactions -like the one revealed by non-trivial

“meta-connectivity,” constraining fluctuations of pairwise resting-state functional links -are

related to the core-shell organization of the connectome (Lombardo et al. 2020).
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Even if I cannot yet fully explain the observed ignition behavior of the model in terms of

the network organization of the connectome it embeds, this organization remains a strong

determinant of the observed dynamics nevertheless. This finding is in apparent contrast with

theoretical works based on more abstract network topologies (Battaglia et al. 2012; Kirst, Timme,

and Battaglia 2016; Orio et al. 2018) in which the variety of possible dynamical behaviors

transcends structural complexity. The first possible reason is that dynamical diversity is strongly

amplified by connectome symmetries and the resulting possibility of a multiplicity of ways of

breaking these symmetries (Battaglia et al. 2012). Now, the Human connectome, with all its

heterogeneities and idiosyncrasies, is far from being symmetric, and the asymmetries need to be

tested in the future (Seguin, Razi, and Zalesky 2019). Second, I probe the network influence on

ignition of cortical activity, and what is more, which is the level of the network in which this

relationship operates. Ignition in cortical activity is supported by core-shell organization in

connectomes of human and also related organisms. All the organisms’ models have ignition in a

bistable range (Figure 29, chapter 2). Third, I focus this work on the network multi-stability

between the two main ignited and baseline activity branches of the mean-field whole brain

model. However, other sub-dominant states exist between the early ignition G- and the late

flaring G+ points, in which the spatial patterns of regional low or high activation levels are less

influenced by the structural backbone (Hansen et al. 2015).

Finally, I adopted here straightforward regional dynamics, with bistability between just two

fixed points. However, I expect that using neural masses able to express richer regimes

-oscillatory, bursting, chaotic, etc. (Orio et al. 2018; Stefanescu and Jirsa 2008; Spiegler et al.

2011)- could eventually reduce the influence of connectivity on collective emergent dynamics.

For example, Deco and colleagues use a different approach based on a model with oscillatory

activity in each cortical region to define the dynamic core. The main difference between both
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approximations is that they used the synchrony features of the system, and I explored the energy

of the system exposed in the ignition (i.e., transitions of the mean firing rate activity). In other

words, this framework relies on the changes in the energy of the cortical phenomena, and not in

the oscillatory phase of the cortical regions. Thus, the selection of the model was a limitation of

this work.

Future extensions of this model will have not only to embed richer dynamics but also to

investigate more dynamic notions of ignition. The specific way in which I treat ignition within

the present study is rather static. I focus on the possibility that specific regions develop

bistability between a baseline and an ignited state, and I track at which value of the

inert-regional coupling G this bistability becomes first sustainable. However, I do not study the

effects on the ongoing dynamics of an actual switching from baseline to ignited state occurring.

Experimentally, local ignition is associated with a “glow,” e.g., to a reverberation of enhanced

activation followed by propagation toward neighboring regions (Moutard, Dehaene, and Malach

2015; Noy et al. 2015). Due to this, my approach does not consider the stochasticity in cortical

dynamics -another key feature in the ignition-, and that could affect the obtained outcomes (Orio

et al. 2018).

Previous studies show that a critical step is the thresholding of activity, which is the basis

for the ignition analysis (Messé et al. 2015; Deco and Kringelbach 2017), and it has been studied

in the context of epidemic disease (Kitsak et al. 2010; Rock et al. 2014) as well as in neural

dynamics (Hütt, Kaiser, and Hilgetag 2014; Mišić et al. 2015). In this context, the mesoscale

feature of modularity supports a higher correlation between the structural and functional

connectivity in propagation (i.e., the susceptible-excited-refractory (SER) model) and oscillatory

models (i.e., Fitzhugh-Nagumo model) (Messé et al. 2015). However, the ignition definition

used in those studies (Kitsak et al. 2010; Mišić et al. 2015), and also here, is less sensitive to
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dynamic interdependencies of the cortical activity. That is because the models used to capture

the steady-state, or the propagation of ignition events, beds on the selected threshold procedure.

Thus, the definition of the ignition by the thresholding of cortical activity could be a limitation

of the present approach.

Recently, mean-field whole-brain models able to reproduce certain conditions such as

propagation of ignition, thanks to a balanced amplification mechanism, have been introduced

(Joglekar et al. 2018). Analogously, other modeling studies have measured the “intrinsic

ignition” capabilities of different regions by quantifying their capacity to propagate to

neighboring regions the effects on activation of a locally received perturbation (Deco and

Kringelbach 2017). In my model, I expect that, near the ignition point, perturbing a node within

the largest s-core to switch from baseline to a locally ignited state would quickly result in all the

other nodes within the largest s-core to get ignited as well, given the strong mutual excitation

loops presented within this core. However, I chose here for simplicity to characterize the

collective equilibrium state after network ignition has taken place, postponing to future studies

the investigation of the out-of-equilibria transient dynamics leading to these ignited equilibria. In

this sense, my definition of an ignition core is static. The subset of regions whose local dynamics

is pushed by network dynamics to be close to its critical instability point -making them able to

switch between low and high firing rate states easily- is quite related to the notion of “dynamic

core” introduced by Deco and colleagues (Deco et al. 2017).

In the work of Deco et al., 2017b, they proposed the dynamic core regions, identified after

the convergence of a fitting procedure (and not by the study of their participation into ignition

dynamic transients), are defined as sitting closely at the bifurcation between asynchronous and

oscillating local states. The core regions are the ones closer to the bifurcation after the

optimization method. The dynamical cortical core is highly lateralized, in which MOF, PC, and
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TT compose the right hemisphere. The left hemisphere is composed of CMF, PREC, PCUN,

RAC, and TT. The ignition core (which I proposed) and the dynamic core of Deco have in

common only the PCUN and PC. Also, both cortical regions are part of the DMN of resting-state

(Deco et al. 2017).

Even without studying the actual propagation dynamics of ignition, my modeling approach

discovered that the effects of ignition (i.e., the resulting ignited network states) supported by the

Human connectome are the most graded and fine-tunable among all the tested surrogate

connectomes. In the “intrinsic ignition framework,” Deco and Kringelbach define the highest

level of ignited nodes as the “binding nodes” for the broadcasting of information (Deco and

Kringelbach 2017). They proposed that this obeys a hierarchical information processing pattern,

which they split into four classes of ignition is defined, that range from weak non-hierarchy to

graded uniform hierarchy (Figure 36A-D). In the first case, all the nodes have the same

susceptibility to be ignited, while in the latter case, there exists a linear uniform gradation in the

ignition of the nodes. Between these poles, two other classes are staircase hierarchy and graded

non-uniform hierarchy.

My results fit better with the staircase hierarchy class; there is a subset of nodes susceptible

to be ignited, and this number is smoothly controlled by the coupling gain (Figure 36E, orange

arrow). In the surrogate models, there is a narrower range for the recruitment of cortical regions

as G is increased (Figure 36F). Moreover, my investigation of randomized surrogate

connectomes reveals that the likelihood that connectome structures supporting such a graded

non-uniform hierarchy of possible ignited network states arise by chance is rather small. Thus,

there must be some reason for which the Human happens to be as it is, a needle in the haystack

of possible connectomes.
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In this sense, the ignition core defines a set of densely interconnected cortical regions that

allows the first ignition. Because the cortical regions of the human cortex are also observed in

static and well defined resting-state networks, I propose that the ignition core is related to this

ongoing cortical activity of the brain. Although they can be thought of as the core regions that

support static activity fluctuations, they are a weak candidate to explain the dynamic fluctuations

of the cortical activity (de Pasquale et al. 2018). In other words, their rough control of ignition

across different excitatory levels makes them a bad option to modulate the fast fluctuations in

cortical activity. Instead, the subsequent shells of the core organization could be modulated by

the excitatory level of the network. They are stronger candidates to be related to dynamical

fluctuations in cortical activity observed in human resting-state data (Hansen et al. 2015). The

human connectome shows that the controllability of the ignition by the core-shell organization is

greater than described for the structural models, which have a weaker core-shell structure. Thus,

shells allow a richer dynamic range of ignition and are more complex in the human connectome.

Regarding that evidence, I suggest that the ignition needed to conscious perception but also

for the intrinsic cortical activity (Moutard, Dehaene, and Malach 2015), could have evolutionary

roots in the structural organization. This is because the ignition is supported and constrained by

the core-shell organization. The evolutionary roots of ignition in a mesoscale level have support

in the work of Betzel, Medaglia, and Bassett (Betzel, Medaglia, and Bassett 2018). They found

that mesoscale organization is conserved in human and non-human connectomes, in the form of

assortative communities (modules more within- than between-connected), disassortative

communities (modules defined by similarities in the organization pattern), and cores. In my

work, I go one step further. I show that core-shell organization is crucial to support ignition in a

large-scale model of cortical activity of mouse (Mus musculus) and fruit fly (Drosophila
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melanogaster). In this sense, the conservation of mesoscale organization can be considered as

the neural principle to support the ignition in cortical activity.

The relationship between ignition and core-shell organization could be related to

developmental or evolutionary constrains. The first scenario is that the selection of a connectome

with such non-random features is driven by developmental constraints, imposing specific

construction principles to be respected but keeping network connectivity otherwise maximally

random. The development also has a critical role in the fine-tuning of the determination and

variability of the structural connectivity in humans (Teeuw et al. 2019) and non-human brains

(Khundrakpam et al. 2013). Thus, evolution is more a component to be added in the assembly of

the structural connectivity of the organisms than a determinant. Rubinov (Rubinov and Sporns

2010) evokes the notion of “spandrel,” the triangular spaces that are unavoidably created

between arches, pillars, and beams when constructing a cathedral. These spandrels are

statistically as frequent than the other structural architectural elements -the arches, pillars, and

beams that bear the weight of the building- but are not in the plan, i.e., they are byproducts of

other constraints and construction targets. Such a scenario of the emergence of a Human-like

ignition-core as a byproduct of some other graph-theoretical construction rule, e.g., imposed

degree or small-worldness, was implicitly probed by the procedure of testing the Human

connectome against null-hypotheses, represented by increasingly more constrained
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Figure 36. The intrinsic ignition framework. Following Deco and Kringelbach (2017a), I used
the ignition framework to classify the cortical regions of the Human. They define four classes
ignition, that range from (A) weak non-hierarchy to (D) graded uniform hierarchy. In the first
case, all the nodes have the same susceptibility to be ignited, while in the latter case exists a
linear uniform gradation in the hierarchy between the nodes. Between these poles, two other
classes are (B) staircase hierarchy and (C) graded non-uniform hierarchy. In both cases, only a
subset of nodes in the network is susceptible to be ignited; in the staircase, the ignited nodes are
a subset without specific hierarchy, while in (C) ignited nodes have a non-uniform hierarchy. (E)
The results fit better with the staircase hierarchy class. The number of nodes susceptible to be
ignited in the Human is smoothly controlled by the coupling gain, as shown in the orange arrow.
Moreover, ignited nodes of Human are modulated on a broader range than in the (F) DPRrw

(blue arrow), as in the example.



families of surrogate connectomes. The failure to reproduce Human-like ignition-cores in any of

the attempted surrogates leaves, however, opens the question of which could be the hidden

developmental constraints inducing the emergence of the exceptional Human s-core.

A second scenario is that such an exceptional core organization as the Human does not

emerge as a “spandrel” but is actually favored over others along with evolution for the fitness, if

not optimality in some sense, that it confers. Interestingly, empirical connectomes extracted from

another non-human organism (Betzel, Medaglia, and Bassett 2018; Markov et al. 2013; Gămănuţ

et al. 2018), also include prominent structural cores in their organization that matches the set of

firstly ignited nodes (Figures 29-33, chapter 2). There are many examples of ignition. In the

work of Aulet and collaborators, suggest that the neural mechanism needed for the canine sense

of quantity perception has been conserved across mammalian evolution (Aulet et al. 2019). Also,

the resting-state networks substantially overlap between macaque (Macaca mulatta), common

marmoset monkey (Callithrix jacchus) and humans (Ghahremani et al. 2017).

Future investigations may check whether an ignition behavior as the one I observed for

Human connectomes is progressively set in place while adopting connectomes that follow a

phylogenetic sequence, even if comparative connectomic analyses are still incomplete (Betzel,

Medaglia, and Bassett 2018; van den Heuvel, Bullmore, and Sporns 2016). Furthermore, yet, the

specific optimization goals for which the empirical connectomes should be constructed are

unknown. Several independent studies suggest that wiring cost minimization may be relevant but

not sufficient to explain the observed connectome wiring, which at the same time seems to

optimize information-processing related quantities (Kaiser and Hilgetag 2006; Vertes, Hoover,

and Rodriguez 2012).

https://paperpile.com/c/ZECFcP/qMOe+PMCS+nTQA
https://paperpile.com/c/ZECFcP/qMOe+PMCS+nTQA
https://paperpile.com/c/ZECFcP/Ey9z
https://paperpile.com/c/ZECFcP/dA15
https://paperpile.com/c/ZECFcP/qMOe+OCnq
https://paperpile.com/c/ZECFcP/qMOe+OCnq
https://paperpile.com/c/ZECFcP/fuvU+3eQ8
https://paperpile.com/c/ZECFcP/fuvU+3eQ8


Here I advance the hypothesis that eventual reasons making the human connectome fit, and

thus selected under evolutionary pressure, could (speculatively) be: first, the exceptionally low

ignition point G-, allowing to initiate and sustain an ignited state with relatively low inter-areal

couplings (and thus more efficient use of synaptic transmission resources and connecting fibers

amount); second, the exceptionally graded increase of the number of regions admitting bistable

ignition when further increasing the coupling G. Indeed, thanks to this graded rise -here modeled

by changes of the effective G-, shifts in the cortical networks’ “working point” induced, e.g., by

neuromodulation (Shine et al. 2018; Medel et al. 2019), arousal (Ham et al. 2008; Churchland et

al. 2010; Pinto et al. 2013; Noy et al. 2015), or other intrinsic or extrinsic mechanisms (Moutard,

Dehaene, and Malach 2015), would give rise to the largest extent of possible ignition patterns

and then, possibly, to subtle controllability of the extent of inter-regional integration.

My hypothesis implicitly postulates a decisive functional role for the existence of subsets of

ignited regions and the possibility of their fine-tuned control (Figure 36). As previously

mentioned, the emergence of ignited activity into extended regional subsets, beyond early

sensory regions has been repeatedly associated with conscious perception (Moutard, Dehaene,

and Malach 2015), requiring the recruitment of a global workspace (Dehaene and Changeux

2011). In this sense, connectomes facilitating early ignition would favor at the same time, the

emergence of a substrate dynamical repertoire required for integrated perception and, more in

general, integrated information processing. Analogously, the potential ignited network states

characterized by graded non-uniform hierarchy (e.g., recruiting narrower or wider nested circles

of regions), could provide the mechanistic basis for “graded consciousness” states (Windey

and Cleeremans 2015). In this sense, the ignition workspace for consciousness can take place in

a variety of possible ways, encompassing an increasing number of possible dimensions (Bayne,

Hohwy, and Owen 2016), rather than just being “all-or-none.”
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The Global Workspace Theory, proposed by Baars in 1988 (Baars 30 de julio de 1993),

defines a network in which the activity pattern of the central nodes define the conscious

perception, and it is called the global workspace. From a biological perspective, the mammalian

brain instantiates such a global workspace architecture (Connor and Shanahan 2007). Periphery

nodes compete and collaborate in a structured fashion to broadcast their activity to the global

workspace nodes. The cortical activity fluctuations, supported by the core, were postulated as the

changes in the global workspace (Moutard, Dehaene, and Malach 2015). In my work, the

ignition in cortical activity was supported by a specific anatomical backbone, the core-shell

organization.

The ignition in the human connectome has an exceptional feature related to the core-shell

organization. First, ignition has an exceptionally low excitability coupling threshold for its first

trigger. Second, in Human, the ignition sequence is more core-shell organized than in surrogate

models. Both results strongly suggest a neural activity organization at this level. Moreover, I

find that this relationship is maintained in the neural circuits of related organisms. Combining

those results, I propose as a principle rooted in evolution, in which the relationship between a

core-shell organization and the ignition sequence of cortical regions emerges as a principle of the

neural architecture.

In summary, I optimized the model to show the broader bistability range, depending on the

time of simulation, time-step, and initial conditions. Then, I show that at the trigger of the

network ignition exists a perfect relationship with the strongest interconnected core nodes, the

ignition core. Also, the ignition recruitment of the cortical regions in the human connectome is

more related to a core-shell organization rather than a strength gradient of its cortical regions.

The core organization is a mesoscale feature of the networks, and its underpinnings in cortical

structure have been previously reported. The ignition core and the core-shell organization of
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ignition are not well captured even with models that preserve connectivity patterns, local

sequence, complex features, or even the weight distribution of the human connectome. Thus, this

core-shell organization is a specific feature of the human connectome that supports its ignited

cortical activity. Finally, I examine the evolutionary roots of this relationship using the available

connectomes of related organisms, like the macaque, the rat (Rattus norvegicus), the mouse, or

even the fruit fly. Ignition core is preserved for the in-smax-core in the related organism’s

connectomes. However, the ignition recruitment can have the best fit for in-strength than for the

smax, as in rat and macaque connectomes. In conclusion, this specific ignition core is a structural

principle of neural ignition.





Appendix

1. Controls for the human dataset ofHagmann

The relationship between ignition in cortical activity and core organization of the

Hagmann’s human connectome dataset (Hagmann et al. 2008) is the principal result of chapter 2.

However, the process to generates the human connectome has high variability between and

within-population datasets (Lynn and Bassett 2019). Here, using other human datasets, it is

evaluated if the results obtained for that Hagmann data are reliable (Table 11).

Schirner dataset. First, I test the reliability of the DKA. I use the Schirner dataset, which

comprises an average of 50 subjects (Schirner et al. 2015) (Figure 37A). This dataset has a

higher network density (~98%) than the Hagmann one (~27%). The Schirner dataset has the

bistability range, in which the ignition point is G-=0.825, and the flaring point is G+ = 1.725.

Figure 37B shows the sorted coupling gain of the first ignition (x-axis) of each cortical area

(y-axis). In color is shown the smax of each cortical area. Similarly, Figure 37C shows in color the

strength of each cortical area. The ignition starts in the smax-core nodes (4, ~6%). The strength

does not capture the ignited nodes at G- as well as the smax-core. In the Schirner dataset, the four

cortical regions that ignite at G- are Medial Orbitofrontal Cortex (MOF, R), Lingual Gyrus

(LING, R), Superior Parietal Cortex (SP, L), and the Lateral Occipital Cortex (LOCC, L).Figure

37D shows the Spearman rank correlation squared (ρ2, explained variance) between ignition

recruitment and either smax (0.967) or strength (0.906). Even if the ρ2 is statistically higher when
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Table 11. The explained variance of the Spearman rank correlation between ignition and
structural measures for Human connectomes. The explained variance of the Spearman rank
correlation (ρ2) between ignition and either smax or strength in the Human connectomes of
Schirner, Wirsich, Deco76, Deco90, and Deco116. The percentiles to evaluate the significance of
ρ2 was performed using 10.000 replicas from bootstrap resampling.

Ignition Schirner
ρ2,

percentile (2.5,
97.5)

Wirsich
ρ2,

percentile
(2.5, 97.5)

Deco76
ρ2,

percentile (2.5,
97.5)

Deco90
ρ2,

percentile (2.5,
97.5)

Deco116
ρ2,

percentile (2.5,
97.5)

smax 0.967,
(0.965, 0.969)

0.876,
(0.871, 0.881)

0.846,
(0.839, 0.854)

0.667,
(0.655, 0.679)

0.634,
(0.614, 0.654)

strength 0.906,
(0.902, 0.910)

0.576,
(0.563, 0.589)

0.551,
(0.535, 0.567)

0.515,
(0.498, 0.531)

0.625,
(0.611, 0.638)

the smax is considered, the strength values also very high in the Schirner dataset. Thus,

the Schirner dataset supports that the ignition recruitment is related to core organization, despite

the differences in the network density with the Hagmann connectome. Although, the network

density of the Schirner dataset seems to be relevant in the values of the rank correlation of the

strength with the ignition recruitment.

Wirsich dataset. Then, I test the reliability of the results of the Hagmann dataset using

another atlas, the AAL atlas (Tzourio-Mazoyer et al. 2002; Rolls, Joliot, and Tzourio-Mazoyer

2015). The Wirsich connectome is an average of 11 subjects, with 96 nodes and 8.866

connections (Wirsich et al. 2018) (Figure 38A). The Wirsich dataset also has a higher network

density (~97%) than the Hagmann one (~27%), and present the bistability range, in which the

ignition point is G-=1.795, and the flaring point is G+ = 4.415.
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Figure 37. The ignition, s-core, and strength levels for each cortical region in the Schirner
dataset. (A) The Schirner connectivity matrix was parcellated using the Desikan-Killiany atlas
(66 cortical regions and 4.290 connections). (B) The relationship between ignition and smax of
each cortical region of the Schirner connectome. Cortical regions in the y-axis are sorted
according to the coupling gain G (x-axis) value at which they first ignite. Colour code shows the
smax for each of the ignited cortical regions. (C) Similarly, the relationship between ignition
recruitment and the strength (color bar) of each cortical region. (D) The explained variance of
Spearman rank correlation (ρ2) between ignition recruitment and the smax (0.967, percentile (2.5,
97.5) = (0.965, 0.969), red dot), and strength (0.906, percentile (2.5, 97.5) = (0.902, 0.910),
green dot). The Schirner connectome shows that smax has a significantly higher explained
variance of ignition recruitment than the strength. However, both rank values are very high. The
significance of ρ2 was evaluated using 10.000 replicas from bootstrap resampling (violin plots).

Figure 38B shows the sorted coupling gain of the first ignition (x-axis) of each cortical area

(y-axis). In color is shown the smax of each cortical area. Similarly, Figure 38C shows in color the

strength of each cortical area. In the Wirsich dataset, the ignition starts in the smax-core nodes (28,

~29%). However, six nodes that do not belong to the smax-core are ignited at G-. The strength

does not capture the ignited nodes at G- as well as the smax-core.



Figure 38D shows the Spearman rank correlation squared (ρ2, explained variance) between

ignition recruitment and either smax (0.876) or strength (0.576). The ρ2 of ignition recruitment is

statistically higher when the smax is considered. However, ignition recruitment is enclosed in a

very narrow range of the coupling gain. Thus, the Wirsich dataset supports that the ignition

recruitment is related to core organization, despite the differences in the parcellation with the

Hagmann connectome.

Deco dataset. Finally, I test if the number of neural elements considered in the parcellation

influences the relationship between ignition recruitment and core organization. For that, I use the

connectome reported by the group of Deco (Deco et al. 2018), which was parcellated using the

AAL from an average of 16 subjects, and it is divided into cortical regions, cortical + subcortical

regions and cortical + subcortical + cerebellum regions.

The parcellation that considers only cortical regions was called the Deco76 dataset, which

had 76 nodes and 2.076 connections (Figure 39A). The Deco76 dataset also has a higher

network density (~36%) than the Hagmann one (~27%), and present the bistability range, in

which the ignition point is G-=1.115, and the flaring point is G+ = 3.125.

Figure 39B shows the sorted coupling gain of the first ignition (x-axis) of each cortical area

(y-axis). In color is shown the smax of each cortical area. Similarly, Figure 39C shows in color the

strength of each cortical area. In the Deco76 dataset, the ignition starts in the smax-core nodes (9,

~11%). However, one node that does not belong to the smax-core is ignited at G-. The strength

also captures the ignited nodes at G- as well as the smax-core. In the deco76 dataset the ten

cortical regions that ignite at G- are Precuneus (PCUN, R), Supramarginal Gyrus (SMG, R),

Posterior Cingulate Gyrus (PCC, L), ParaHippocampal Gyrus (PHG, L), Hippocampus (HIP, L),

https://paperpile.com/c/ou6jW0/KzPM


Figure 38. The ignition, s-core, and strength levels for each region in the Wirsich dataset.
(A) The Wirsich connectivity matrix was parcellated using the Automated Anatomical Labelling
atlas (96 cortical + subcortical regions, and 8.866 connections). (B) The relationship between
ignition and smax of each region of the Wirsich connectome. Cortical and subcortical regions
(y-axis) are sorted according to the coupling gain G (x-axis) value at which they first ignite.
Colour code shows the smax for each of the ignited regions. (C) Similarly, the relationship
between ignition recruitment and the strength (color bar) of each region. (D) The explained
variance of Spearman rank correlation (ρ2) between ignition recruitment and the smax (0.876,
percentile (2.5, 97.5) = (0.871, 0.881), red dot), and strength (0.576, percentile (2.5, 97.5) =
(0.563, 0.589), green dot). The Wirsich connectome shows that smax has a significantly higher
explained variance of ignition recruitment than the strength. The significance of ρ2 was
evaluated using 10.000 replicas from bootstrap resampling (violin plots).

Calcarine Fissure (CAL, L), Inferior Parietal Gyrus (IPG, L), Inferior Temporal Gyrus (ITG, R),

and Angular Gyrus (ANG, R).

Figure 39D shows the Spearman rank correlation squared (ρ2, explained variance) between

ignition recruitment and either smax (0.846) or strength (0.551). The ρ2 of ignition recruitment is

statistically higher when the smax is considered. Thus, the Deco76 dataset supports that the



Figure 39. The ignition, s-core, and strength levels for each cortical region in the Deco76
dataset. (A) The Deco76 connectivity matrix was parcellated using the Automated Anatomical
Labelling atlas (76 cortical regions and 2.076 connections). (B) The relationship between
ignition and smax of each cortical region of the Deco76 connectome. Cortical regions in the y-axis
are sorted according to the coupling gain G (x-axis) value at which they first ignite. Colour code
shows the smax for each of the ignited cortical regions. (C) Similarly, the relationship between
ignition recruitment and the strength (color bar) of each cortical region. (D) The explained
variance of Spearman rank correlation (ρ2) between ignition recruitment and the smax (0.846,
percentile (2.5, 97.5) = (0.839, 0.854), red dot), and strength (0.551, percentile (2.5, 97.5) =
(0.535, 0.567), green dot). The Deco76 connectome shows that smax has a significantly higher
explained variance of ignition recruitment than the strength. The significance of ρ2 was
evaluated using 10.000 replicas from bootstrap resampling (violin plots).

ignition recruitment is related to core organization, despite the differences in the parcellation

with the Hagmann connectome.

The parcellation that considers cortical + subcortical regions was called Deco90 dataset,

which had 90 nodes and 3.162 connections (Figure 40A). The Deco90 dataset also has a higher

network density (~39%) than the Hagmann one (~27%), and present the bistability range, in

which the ignition point is G-=1.465, and the flaring point is G+ = 3.985.



Figure 40. The ignition, s-core, and strength levels for each region in the Deco90 dataset.
(A) The Deco90 connectivity matrix was parcellated using the Automated Anatomical Labelling
atlas (90 cortical + subcortical regions, and 3.162 connections). (B) The relationship between
ignition and smax of each region of the Deco90 connectome. Regions in the y-axis are sorted
according to the coupling gain G (x-axis) value at which they first ignite. Colour code shows the
smax for each of the ignited regions. (C) Similarly, the relationship between ignition recruitment
and the strength (color bar) of each region. (D) The explained variance of Spearman rank
correlation (ρ2) between ignition recruitment and the smax (0.667, percentile (2.5, 97.5) = (0.655,
0.679), red dot), and strength (0.515, percentile (2.5, 97.5) = (0.498, 0.531), green dot). The
Deco90 connectome shows that strength has a significantly higher explained variance of ignition
recruitment than the smax. The significance of ρ2 was evaluated using 10.000 replicas from
bootstrap resampling (violin plots).

Figure 40B shows the sorted coupling gain of the first ignition (x-axis) of each cortical area

(y-axis). In color is shown the smax of each cortical area. Similarly, Figure 40C shows in color the

strength of each cortical area. In the Deco90 dataset, the ignition starts in the smax-core nodes (9,

~10%). However, one node that does not belong to the smax-core is ignited at G-. The strength

also captures the ignited nodes at G- as well as the smax-core. In the deco90 dataset, the nine

cortical regions that ignite at G-.



Figure 41. The ignition, s-core, and, strength levels for each region in the Deco116 dataset.
(A) The Deco116 connectivity matrix was parcellated using the Automated Anatomical
Labelling atlas (116 cortical + sub-cortical + cerebellum regions, and 4.056 connections). (B)
The relationship between ignition and smax of each region of the Deco116 connectome. Regions
in the y-axis are sorted according to the coupling gain G (x-axis) value at which they first ignite.
Colour code shows the smax for each of the ignited regions. (C) Similarly, the relationship
between ignition recruitment and the strength (color bar) of each region. (D) The explained
variance of Spearman rank correlation (ρ2) between ignition recruitment and the smax (0.634,
percentile (2.5, 97.5) = (0.614, 0.654), red dot), and strength (0.625, percentile (2.5, 97.5) =
(0.611, 0.638), green dot). The Deco116 connectome does not show a significant difference in
the explained variance of the ignition recruitment between the strength and the smax. The
significance of ρ2 was evaluated using 10.000 replicas from bootstrap resampling (violin plots).

Figure 40D shows the Spearman rank correlation squared (ρ2, explained variance) between

ignition recruitment and either smax (0.667) or strength (0.515). The ρ2 of ignition recruitment is

statistically higher when the smax is considered. Thus, the Deco90 dataset supports that the

ignition recruitment is related to core organization, despite the differences in the neural elements

and parcellation with the Hagmann connectome.



Next, the parcellation that considers cortical + subcortical + cerebellum regions was called

the Deco116 dataset, which had 116 nodes and 4.056 connections (Figure 41A). The Deco116

dataset also has a higher network density (~30%) than the Hagmann one (~27%), and present the

bistability range, in which the ignition point is G-=1.875, and the flaring point is G+ = 4.775.

Figure 41B shows the sorted coupling gain of the first ignition (x-axis) of each cortical area

(y-axis). In color is shown the smax of each cortical area. Similarly, Figure 41C shows in color the

strength of each cortical area. In the Deco116 dataset, the ignition starts in the smax-core nodes (8,

7%). However, one node that does not belong to the smax-core is ignited at G-. The strength

captures the ignited nodes at G- worst than the smax-core.

Figure 41D shows the Spearman rank correlation squared (ρ2, explained variance) between

ignition recruitment and either smax (0.634) or strength (0.625). The ρ2 of ignition recruitment has

not a significant difference between smax and strength. Thus, the Deco116 dataset supports that

the ignition recruitment is related to the core organization of cortical, and not to the cerebellum

regions.

Finally, Figure 42 resumes the Spearman rank correlation squared (ρ2, explained variance)

between ignition recruitment and either smax or strength of the human datasets. Figure 42A shows

that the Hagman dataset is similar to the obtained with the other dataset, except for the Schirner

dataset. Figure 42B shows that the human connectomes that consider only cortical regions have

a better fit between ignition recruitment and smax.



Figure 42. The ignition recruitment comparative between s-core and strength of each node
in all the human connectomes. (A) The explained variance of Spearman rank correlation (ρ2)
between ignition recruitment and the smax of Human (0.867, percentile (2.5, 97.5) = (0.858,
0.874), red dot), Wirsich (blue dot), Schirner (orange dot), Deco76 (green dot), Deco90 (purple
dot), and Deco116 (brown dot). (B) The ρ2 between ignition recruitment and the strength of
Human (0.687, percentile (2.5, 97.5) = (0.672, 0.702)), Wirsich, Schirner, Deco76, Deco90, and
Deco116. The significance of ρ2 was evaluated using 10.000 replicas from bootstrap resampling
(violin plots).



2. The script of the dynamic simulation of themean-fieldmodel

def run_sim32(pars, IC='handl', TofS='det', sd=1):

"""Input:
----------
pars : dict

Parameters, see function default_pars()
IC: str

Initial conditions, 'rn': random, 'handl':high and low Initial
Condtions, 'no_rn': initial conditions no random(0)

TofS : str
Tipe of Simulation, 'stc': stcochastic, or

'det':deterministic simulatio
sd : int

seed of random initial conditions
Output:
---------
r(t) for vector t"""

# Retrieve parameters
C = pars['C'] #Network
N = pars['N'] #Nodes
w, G = pars['w'], pars['G'] #Local and Global

connecticity parameters
JN = pars['JN'] #Ex strenght
tauS, gamma = pars['tauS'], pars['gamma'] #

if TofS == 'stc':
I0, tau0, sigma = pars['I0'], pars['tau0'], pars['sigma']#

elif TofS == 'det':
I0 = pars['I0']

if IC != 'rn':
Sl, Sh = pars['Sl'], pars['Sh'] #

range_t = pars['range_t'] #Range time vector points
nt = range_t.size #Total time
dt = range_t[1] - range_t[0] #delta time

#Number of simulations
nsim = G.shape[0]

# Initialize
S = np.zeros([nt, N, nsim],dtype=np.float32);
#Initial State
r = np.zeros([nt, N, nsim],dtype=np.float32);

# Set random seed
print( 'random number:' ,np.random.uniform(Sl, Sh))
if IC == 'no_rn':

S[0] = 0.0 * np.ones(size=(N,nsim))
elif IC == 'handl':



S[0] = np.random.uniform(Sl, Sh, (N, 1)) *
np.ones((1,nsim),dtype=np.float32) #Condiciones Iniciales
Semi-Aletoria

elif IC == 'rn':
S[0] = np.random.uniform(0, 1.0, (N, nsim) ) #Condiciones

Iniciales Semi-Aletorias
elif IC == 'icvar':

S[0] = ic_v

#Tipe of Simulation
if TofS == 'stc':

Ieta = I0 + sigma*np.random.randn(N)
noise = np.random.randn(N,nt) #White Noise

elif TofS == 'det':
Ieta = I0 #White Noise

#Start to Running Simulation
t0 = time.time()
print( 'Running...')
for idx in range(1, nt):

# Total synaptic input
Isyn = w*JN*S[idx-1] + G*JN*(np.sum(C[:,:,None]*

S[idx-1][None,:,:],1)) + Ieta
r[idx-1] = F(Isyn)

#---- Dynamical equations
-------------------------------------------

# Update Mean NMDA-mediated synaptic dynamics
S[idx] = S[idx-1] + dt*(-S[idx-1]/tauS +

(1-S[idx-1])*gamma*r[idx-1])

# Update Ornstein-Uhlenbeck process
if TofS == 'stc':

Ieta = Ieta + (dt/tau0)*(I0-Ieta) +
np.sqrt(dt/tau0)*sigma*noise[:,idx]

elif TofS == 'det':
Ieta = Ieta

r[-1] = r[-2]
print( 'done!, total time: ', time.time()-t0)
Results = {'r':r}
return Results







Bibliography

1. Achard, S. et al. (2006) ‘A resilient, low-frequency, small-world human brain functional
network with highly connected association cortical hubs’, The Journal of neuroscience: the
official journal of the Society for Neuroscience, 26(1), pp. 63–72.

2. Alstott, J. et al. (2009) ‘Modeling the impact of lesions in the human brain’, PLoS computational
biology, 5(6), p. e1000408.

3. Alstott, J. et al. (2014) ‘A unifying framework for measuring weighted rich clubs’, Scientific
reports, 4, p. 7258.

4. Alvarez-hamelin, J. I., Luca Dall\textquotesingle Asta, Alain Barrat, and Alessandro Vespignani.
2006. “Large Scale Networks Fingerprinting and Visualization Using the K-Core
Decomposition.” In Advances in Neural Information Processing Systems 18, edited by Y. Weiss,
B. Schölkopf, and J. C. Platt, 41–50. MIT Press.

5. Aulet, L. S. et al. (2019) ‘Canine sense of quantity: evidence for numerical ratio-dependent
activation in parietotemporal cortex’, Biology letters, 15(12), p. 20190666.

6. Baars, B. J. (30 de julio de 1993) A Cognitive Theory of Consciousness. Edición: New Ed.
Cambridge University Press.

7. Bailey, A. Brock University, St. Catharines, Canada, Mario Ventresca University of Toronto,
Toronto, Canada, and Beatrice Ombuki-Berman Brock University, St. Catharines, Canada. n.d.
“Automatic Generation of Graph Models for Complex Networks by Genetic Programming |
Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation.”
Accessed February 14, 2020. https://doi.org/10.1145/2330163.2330263.

8. Bakker, R., Wachtler, T. and Diesmann, M. (2012) ‘CoCoMac 2.0 and the future of tract-tracing
databases’, Frontiers in neuroinformatics, 6, p. 30.

9. Baria, A. T., Maniscalco, B. and He, B. J. (2017) ‘Initial-state-dependent, robust, transient neural
dynamics encode conscious visual perception’, PLoS computational biology, 13(11), p.
e1005806.

10.Barttfeld, P. et al. (2015) ‘Signature of consciousness in the dynamics of resting-state brain
activity’, Proceedings of the National Academy of Sciences of the United States of America,
112(3), pp. 887–892.

11.Bassett, D. S. and Bullmore, E. T. (2017) ‘Small-World Brain Networks Revisited’, The
Neuroscientist: a review journal bringing neurobiology, neurology and psychiatry, 23(5), pp.
499–516.

12.Battaglia, D. et al. (2012) ‘Dynamic effective connectivity of inter-areal brain circuits’, PLoS
computational biology, 8(3), p. e1002438.

13.Battista, C. et al. (2018) ‘Mechanisms of interactive specialization and emergence of functional
brain circuits supporting cognitive development in children’, NPJ science of learning, 3, p. 1.

14.Bayne, Tim, Jakob Hohwy, and Adrian M. Owen. 2016. “Are There Levels of Consciousness?”
Trends in Cognitive Sciences 20 (6): 405–13.

15.Bedny, Marina, Alvaro Pascual-Leone, David Dodell-Feder, Evelina Fedorenko, and Rebecca
Saxe. 2011. “Language Processing in the Occipital Cortex of Congenitally Blind Adults.”
Proceedings of the National Academy of Sciences of the United States of America 108 (11):
4429–34.

16.Bergmann, Johanna, Erhan Genç, Axel Kohler, Wolf Singer, and Joel Pearson. 2016. “Neural
Anatomy of Primary Visual Cortex Limits Visual Working Memory.” Cerebral Cortex 26 (1):
43–50.

17.Betzel, R. F. et al. (2019) ‘Distance-dependent consensus thresholds for generating

http://paperpile.com/b/eh6Mqi/EphA
http://paperpile.com/b/eh6Mqi/EphA
http://paperpile.com/b/eh6Mqi/EphA
http://paperpile.com/b/eh6Mqi/EphA
http://paperpile.com/b/eh6Mqi/EphA
http://paperpile.com/b/eh6Mqi/EphA
http://paperpile.com/b/eh6Mqi/EphA
http://paperpile.com/b/eh6Mqi/Ofaw
http://paperpile.com/b/eh6Mqi/Ofaw
http://paperpile.com/b/eh6Mqi/Ofaw
http://paperpile.com/b/eh6Mqi/Ofaw
http://paperpile.com/b/eh6Mqi/Ofaw
http://paperpile.com/b/eh6Mqi/Ofaw
http://paperpile.com/b/eh6Mqi/k4nG
http://paperpile.com/b/eh6Mqi/k4nG
http://paperpile.com/b/eh6Mqi/k4nG
http://paperpile.com/b/eh6Mqi/k4nG
http://paperpile.com/b/eh6Mqi/k4nG
http://paperpile.com/b/eh6Mqi/k4nG
http://paperpile.com/b/2HuPwB/PkAz
http://paperpile.com/b/2HuPwB/PkAz
http://paperpile.com/b/2HuPwB/PkAz
http://paperpile.com/b/2HuPwB/PkAz
http://paperpile.com/b/2HuPwB/PkAz
http://paperpile.com/b/2HuPwB/PkAz
http://paperpile.com/b/eh6Mqi/Qtj9
http://paperpile.com/b/eh6Mqi/Qtj9
http://paperpile.com/b/eh6Mqi/Qtj9
http://paperpile.com/b/eh6Mqi/Qtj9
http://paperpile.com/b/eh6Mqi/Qtj9
http://paperpile.com/b/eh6Mqi/Qtj9
http://paperpile.com/b/eh6Mqi/OthY
http://paperpile.com/b/eh6Mqi/OthY
http://paperpile.com/b/eh6Mqi/OthY
http://paperpile.com/b/eh6Mqi/OthY
http://paperpile.com/b/ZECFcP/4IXw
http://paperpile.com/b/ZECFcP/4IXw
http://paperpile.com/b/ZECFcP/4IXw
http://paperpile.com/b/ZECFcP/4IXw
http://paperpile.com/b/ZECFcP/4IXw
http://dx.doi.org/10.1145/2330163.2330263
http://paperpile.com/b/ZECFcP/4IXw
http://paperpile.com/b/eh6Mqi/zDrh
http://paperpile.com/b/eh6Mqi/zDrh
http://paperpile.com/b/eh6Mqi/zDrh
http://paperpile.com/b/eh6Mqi/zDrh
http://paperpile.com/b/eh6Mqi/H302
http://paperpile.com/b/eh6Mqi/H302
http://paperpile.com/b/eh6Mqi/H302
http://paperpile.com/b/eh6Mqi/H302
http://paperpile.com/b/eh6Mqi/H302
http://paperpile.com/b/eh6Mqi/MRZX
http://paperpile.com/b/eh6Mqi/MRZX
http://paperpile.com/b/eh6Mqi/MRZX
http://paperpile.com/b/eh6Mqi/MRZX
http://paperpile.com/b/eh6Mqi/MRZX
http://paperpile.com/b/eh6Mqi/MRZX
http://paperpile.com/b/eh6Mqi/MRZX
http://paperpile.com/b/eh6Mqi/Dp5e
http://paperpile.com/b/eh6Mqi/Dp5e
http://paperpile.com/b/eh6Mqi/Dp5e
http://paperpile.com/b/eh6Mqi/Dp5e
http://paperpile.com/b/eh6Mqi/Dp5e
http://paperpile.com/b/eh6Mqi/R8O3
http://paperpile.com/b/eh6Mqi/R8O3
http://paperpile.com/b/eh6Mqi/R8O3
http://paperpile.com/b/eh6Mqi/R8O3
http://paperpile.com/b/eh6Mqi/R8O3
http://paperpile.com/b/eh6Mqi/R8O3
http://paperpile.com/b/eh6Mqi/SSfC
http://paperpile.com/b/eh6Mqi/SSfC
http://paperpile.com/b/eh6Mqi/SSfC
http://paperpile.com/b/eh6Mqi/SSfC
http://paperpile.com/b/eh6Mqi/SSfC
http://paperpile.com/b/eh6Mqi/SSfC
http://paperpile.com/b/ZECFcP/Nw6N
http://paperpile.com/b/ZECFcP/Nw6N
http://paperpile.com/b/ZECFcP/Nw6N
http://paperpile.com/b/ZECFcP/Nw6N
http://paperpile.com/b/ZECFcP/pTB5
http://paperpile.com/b/ZECFcP/pTB5
http://paperpile.com/b/ZECFcP/pTB5
http://paperpile.com/b/ZECFcP/pTB5
http://paperpile.com/b/ZECFcP/pTB5
http://paperpile.com/b/ZECFcP/pTB5
http://paperpile.com/b/ZECFcP/zVjx
http://paperpile.com/b/ZECFcP/zVjx
http://paperpile.com/b/ZECFcP/zVjx
http://paperpile.com/b/ZECFcP/zVjx
http://paperpile.com/b/ZECFcP/zVjx
http://paperpile.com/b/eh6Mqi/5Wno
http://paperpile.com/b/eh6Mqi/5Wno
http://paperpile.com/b/eh6Mqi/5Wno


18.group-representative structural brain networks’, Network neuroscience (Cambridge, Mass.), 3(2),
pp. 475–496.

19.Betzel, R. F., Medaglia, J. D. and Bassett, D. S. (2018) ‘Diversity of meso-scale architecture in
human and non-human connectomes’, Nature communications, 9(1), p. 346.

20.Bota, Mihail, Hong-Wei Dong, and Larry W. Swanson. 2005. “Brain Architecture Management
System.” Neuroinformatics 3 (1): 15–48.

21.Bota, M., Sporns, O. and Swanson, L. W. (2015) ‘Architecture of the cerebral cortical
association connectome underlying cognition’, Proceedings of the National Academy of Sciences
of the United States of America, 112(16), pp. E2093–101.

22.Breakspear, M. (2017) ‘Dynamic models of large-scale brain activity’, Nature neuroscience,
20(3), pp. 340–352.

23.Bressler, S. L. and Menon, V. (2010) ‘Large-scale brain networks in cognition: emerging
methods and principles’, Trends in cognitive sciences, 14(6), pp. 277–290.

24.Brink, Ruud L. van den, Sander Nieuwenhuis, and Tobias H. Donner. 2018. “Amplification and
Suppression of Distinct Brainwide Activity Patterns by Catecholamines.” The Journal of
Neuroscience: The Official Journal of the Society for Neuroscience 38 (34): 7476–91.

25.Buckner, R. L. et al. (2009) ‘Cortical hubs revealed by intrinsic functional connectivity:
mapping, assessment of stability, and relation to Alzheimer’s disease’, The Journal of
neuroscience: the official journal of the Society for Neuroscience, 29(6), pp. 1860–1873.

26.Butcher, J. C. 2016. Numerical Methods for Ordinary Differential Equations. John Wiley &
Sons.

27.Buzsáki, G. (2006) Rhythms of the Brain. New York: Oxford University Press.
28.Caballero Gaudes, C. et al. (2013) ‘Paradigm free mapping with sparse regression automatically

detects single-trial functional magnetic resonance imaging blood oxygenation level dependent
responses’, Human brain mapping, 34(3), pp. 501–518.

29.Cabral, J. et al. (2017) ‘Cognitive performance in healthy older adults relates to spontaneous
switching between states of functional connectivity during rest’, Scientific reports, 7(1), p. 5135.

30.Calhoun, V. D. et al. (2014) ‘The chronnectome: time-varying connectivity networks as the next
frontier in fMRI data discovery’, Neuron, 84(2), pp. 262–274.

31.Camino-Pontes, Borja, Ibai Diez, Antonio Jimenez-Marin, Javier Rasero, Asier Erramuzpe,
Paolo Bonifazi, Sebastiano Stramaglia, Stephan Swinnen, and Jesus M. Cortes. 2018.
“Interaction Information Along Lifespan of the Resting Brain Dynamics Reveals a Major
Redundant Role of the Default Mode Network.” Entropy 20 (10): 742.

32.Cavanna, Andrea E. 2007. “The Precuneus and Consciousness.” CNS Spectrums 12 (7): 545–52.
33.Chiang, A.-S. et al. (2011) ‘Three-dimensional reconstruction of brain-wide wiring networks in

Drosophila at single-cell resolution’, Current biology: CB, 21(1), pp. 1–11.
34.Churchland, Mark M., Byron M. Yu, John P. Cunningham, Leo P. Sugrue, Marlene R. Cohen,

Greg S. Corrado, William T. Newsome, et al. 2010. “Stimulus Onset Quenches Neural
Variability: A Widespread Cortical Phenomenon.” Nature Neuroscience 13 (3): 369–78.

35.Cole, M. W. et al. (2014) ‘Intrinsic and task-evoked network architectures of the human brain’,
Neuron, 83(1), pp. 238–251.

36.Cole, M. W., Pathak, S. and Schneider, W. (2010) ‘Identifying the brain’s most globally
connected regions’, NeuroImage, 49(4), pp. 3132–3148.

37.Connor, D., and M. Shanahan. 2007. “A Simulated Global Neuronal Workspace with Stochastic
Wiring.” AAAI Fall Symposium - Technical Report FS-07-01: 43–48.

38.Coppen, Emma M., Jeroen van der Grond, Anne Hafkemeijer, Jurriaan J. H. Barkey Wolf, and
Raymund A. C. Roos. 2018. “Structural and Functional Changes of the Visual Cortex in Early
Huntington’s Disease.” Human Brain Mapping 39 (12): 4776–86.

39.Cossart, R., Aronov, D. and Yuste, R. (2003) ‘Attractor dynamics of network UP states in the

http://paperpile.com/b/eh6Mqi/5Wno
http://paperpile.com/b/eh6Mqi/5Wno
http://paperpile.com/b/eh6Mqi/5Wno
http://paperpile.com/b/eh6Mqi/5Wno
http://paperpile.com/b/eh6Mqi/c915
http://paperpile.com/b/eh6Mqi/c915
http://paperpile.com/b/eh6Mqi/c915
http://paperpile.com/b/eh6Mqi/c915
http://paperpile.com/b/2HuPwB/hEIq
http://paperpile.com/b/2HuPwB/hEIq
http://paperpile.com/b/2HuPwB/hEIq
http://paperpile.com/b/2HuPwB/hEIq
http://paperpile.com/b/eh6Mqi/KoZp
http://paperpile.com/b/eh6Mqi/KoZp
http://paperpile.com/b/eh6Mqi/KoZp
http://paperpile.com/b/eh6Mqi/KoZp
http://paperpile.com/b/eh6Mqi/KoZp
http://paperpile.com/b/eh6Mqi/iDwp
http://paperpile.com/b/eh6Mqi/iDwp
http://paperpile.com/b/eh6Mqi/iDwp
http://paperpile.com/b/eh6Mqi/iDwp
http://paperpile.com/b/eh6Mqi/KE79
http://paperpile.com/b/eh6Mqi/KE79
http://paperpile.com/b/eh6Mqi/KE79
http://paperpile.com/b/eh6Mqi/KE79
http://paperpile.com/b/sr3q9b/Sgnp
http://paperpile.com/b/sr3q9b/Sgnp
http://paperpile.com/b/sr3q9b/Sgnp
http://paperpile.com/b/sr3q9b/Sgnp
http://paperpile.com/b/sr3q9b/Sgnp
http://paperpile.com/b/eh6Mqi/xjxz
http://paperpile.com/b/eh6Mqi/xjxz
http://paperpile.com/b/eh6Mqi/xjxz
http://paperpile.com/b/eh6Mqi/xjxz
http://paperpile.com/b/eh6Mqi/xjxz
http://paperpile.com/b/eh6Mqi/xjxz
http://paperpile.com/b/eh6Mqi/xjxz
http://paperpile.com/b/sr3q9b/Y9QZ
http://paperpile.com/b/sr3q9b/Y9QZ
http://paperpile.com/b/sr3q9b/Y9QZ
http://paperpile.com/b/sr3q9b/Y9QZ
http://paperpile.com/b/eh6Mqi/Owxh
http://paperpile.com/b/eh6Mqi/Owxh
http://paperpile.com/b/eh6Mqi/Owxh
http://paperpile.com/b/eh6Mqi/u1l5
http://paperpile.com/b/eh6Mqi/u1l5
http://paperpile.com/b/eh6Mqi/u1l5
http://paperpile.com/b/eh6Mqi/u1l5
http://paperpile.com/b/eh6Mqi/u1l5
http://paperpile.com/b/eh6Mqi/u1l5
http://paperpile.com/b/eh6Mqi/u1l5
http://paperpile.com/b/eh6Mqi/WccQ
http://paperpile.com/b/eh6Mqi/WccQ
http://paperpile.com/b/eh6Mqi/WccQ
http://paperpile.com/b/eh6Mqi/WccQ
http://paperpile.com/b/eh6Mqi/WccQ
http://paperpile.com/b/eh6Mqi/WccQ
http://paperpile.com/b/eh6Mqi/CaSk
http://paperpile.com/b/eh6Mqi/CaSk
http://paperpile.com/b/eh6Mqi/CaSk
http://paperpile.com/b/eh6Mqi/CaSk
http://paperpile.com/b/eh6Mqi/CaSk
http://paperpile.com/b/eh6Mqi/CaSk
http://paperpile.com/b/ZECFcP/sbTH
http://paperpile.com/b/ZECFcP/sbTH
http://paperpile.com/b/ZECFcP/sbTH
http://paperpile.com/b/ZECFcP/sbTH
http://paperpile.com/b/ZECFcP/sbTH
http://paperpile.com/b/ZECFcP/sbTH
http://paperpile.com/b/ZECFcP/CWmg
http://paperpile.com/b/ZECFcP/CWmg
http://paperpile.com/b/ZECFcP/CWmg
http://paperpile.com/b/eh6Mqi/VelP
http://paperpile.com/b/eh6Mqi/VelP
http://paperpile.com/b/eh6Mqi/VelP
http://paperpile.com/b/eh6Mqi/VelP
http://paperpile.com/b/eh6Mqi/VelP
http://paperpile.com/b/eh6Mqi/VelP
http://paperpile.com/b/ZECFcP/J6di
http://paperpile.com/b/ZECFcP/J6di
http://paperpile.com/b/ZECFcP/J6di
http://paperpile.com/b/ZECFcP/J6di
http://paperpile.com/b/ZECFcP/J6di
http://paperpile.com/b/eh6Mqi/5FL3
http://paperpile.com/b/eh6Mqi/5FL3
http://paperpile.com/b/eh6Mqi/5FL3
http://paperpile.com/b/eh6Mqi/5FL3
http://paperpile.com/b/eh6Mqi/5FL3
http://paperpile.com/b/eh6Mqi/5FL3
http://paperpile.com/b/eh6Mqi/YXpu
http://paperpile.com/b/eh6Mqi/YXpu
http://paperpile.com/b/eh6Mqi/YXpu
http://paperpile.com/b/eh6Mqi/YXpu
http://paperpile.com/b/ZECFcP/xlm7
http://paperpile.com/b/ZECFcP/xlm7
http://paperpile.com/b/ZECFcP/xlm7
http://paperpile.com/b/ZECFcP/xlm7
http://paperpile.com/b/ZECFcP/dEHG
http://paperpile.com/b/ZECFcP/dEHG
http://paperpile.com/b/ZECFcP/dEHG
http://paperpile.com/b/ZECFcP/dEHG
http://paperpile.com/b/ZECFcP/dEHG
http://paperpile.com/b/eh6Mqi/GMHi


neocortex’, Nature, 423(6937), pp. 283–288.
40.Coullon, Gaelle S. L., Uzay E. Emir, Ione Fine, Kate E. Watkins, and Holly Bridge. 2015.

“Neurochemical Changes in the Pericalcarine Cortex in Congenital Blindness Attributable to
Bilateral Anophthalmia.” Journal of Neurophysiology 114 (3): 1725–33.

41.Deco, G. et al. (2013) ‘Resting-state functional connectivity emerges from structurally and
dynamically shaped slow linear fluctuations’, The Journal of neuroscience: the official journal
of the Society for Neuroscience, 33(27), pp. 11239–11252.

42.Deco, G. et al. (2015) ‘Rethinking segregation and integration: contributions of whole-brain
modelling’, Nature reviews. Neuroscience, 16(7), pp. 430–439.

43.Deco, G. et al. (2017) ‘Novel Intrinsic Ignition Method Measuring Local-Global Integration
Characterizes Wakefulness and Deep Sleep’, eNeuro, 4(5). doi:
10.1523/ENEURO.0106-17.2017.

44.Deco, Gustavo, Morten L. Kringelbach, Viktor K. Jirsa, and Petra Ritter. 2017. “The Dynamics
of Resting Fluctuations in the Brain: Metastability and Its Dynamical Cortical Core.” Scientific
Reports 7 (1): 3095.

45.Deco, G. et al. (2018) ‘Whole-Brain Multimodal Neuroimaging Model Using Serotonin
Receptor Maps Explains Non-linear Functional Effects of LSD’, Current biology: CB, 28(19),
pp. 3065–3074.e6.

46.Deco, G., Cruzat, J. and Kringelbach, M. L. (2019) ‘Brain songs framework used for discovering
the relevant timescale of the human brain’, Nature communications, 10(1), p. 583.

47.Deco, G. and Jirsa, V. K. (2012) ‘Ongoing cortical activity at rest: criticality, multistability, and
ghost attractors’, The Journal of neuroscience: the official journal of the Society for
Neuroscience, 32(10), pp. 3366–3375.

48.Deco, G., Jirsa, V. K. and McIntosh, A. R. (2013) ‘Resting brains never rest: computational
insights into potential cognitive architectures’, Trends in neurosciences, 36(5), pp. 268–274.

49.Deco, G. and Kringelbach, M. L. (2017) ‘Hierarchy of Information Processing in the Brain: A
Novel “Intrinsic Ignition” Framework’, Neuron, 94(5), pp. 961–968.

50.Dehaene, S., Sergent, C. and Changeux, J.-P. (2003) ‘A neuronal network model linking
subjective reports and objective physiological data during conscious perception’, Proceedings of
the National Academy of Sciences of the United States of America, 100(14), pp. 8520–8525.

51.Dehaene, Stanislas, and Jean-Pierre Changeux. 2011. “Experimental and Theoretical
Approaches to Conscious Processing.” Neuron 70 (2): 200–227.

52.Del Cul, A., Baillet, S. and Dehaene, S. (2007) ‘Brain dynamics underlying the nonlinear
threshold for access to consciousness’, PLoS biology, 5(10), p. e260.

53.Desikan, R. S. et al. (2006) ‘An automated labeling system for subdividing the human cerebral
cortex on MRI scans into gyral based regions of interest’, NeuroImage, 31(3), pp. 968–980.

54.Destexhe, A. (2007) ‘High-conductance state’, Scholarpedia journal, 2(11), p. 1341.
55.Dickstein, Steven G., Katie Bannon, F. Xavier Castellanos, and Michael P. Milham. 2006. “The

Neural Correlates of Attention Deficit Hyperactivity Disorder: An ALE Meta-Analysis.” Journal
of Child Psychology and Psychiatry, and Allied Disciplines 47 (10): 1051–62.

56.Finn, E. S. et al. (2019) ‘Layer-dependent activity in human prefrontal cortex during working
memory’, Nature neuroscience, 22(10), pp. 1687–1695.

57.Fischl, B. et al. (2004) ‘Automatically parcellating the human cerebral cortex’, Cerebral cortex ,
14(1), pp. 11–22.

58.Fornito, A., Zalesky, A. and Bullmore, E. T. (2016) Fundamentals of Brain Network Analysis.
Academic Press.

59.Fox, M. D. and Raichle, M. E. (2007) ‘Spontaneous fluctuations in brain activity observed with
functional magnetic resonance imaging’, Nature reviews. Neuroscience, 8(9), pp. 700–711.

60.Freyer, F. et al. (2012) ‘A canonical model of multistability and scale-invariance in biological

http://paperpile.com/b/eh6Mqi/GMHi
http://paperpile.com/b/eh6Mqi/GMHi
http://paperpile.com/b/eh6Mqi/GMHi
http://paperpile.com/b/ZECFcP/2VRL
http://paperpile.com/b/ZECFcP/2VRL
http://paperpile.com/b/ZECFcP/2VRL
http://paperpile.com/b/ZECFcP/2VRL
http://paperpile.com/b/ZECFcP/2VRL
http://paperpile.com/b/eh6Mqi/aIrM
http://paperpile.com/b/eh6Mqi/aIrM
http://paperpile.com/b/eh6Mqi/aIrM
http://paperpile.com/b/eh6Mqi/aIrM
http://paperpile.com/b/eh6Mqi/aIrM
http://paperpile.com/b/eh6Mqi/aIrM
http://paperpile.com/b/eh6Mqi/aIrM
http://paperpile.com/b/eh6Mqi/tKHZ
http://paperpile.com/b/eh6Mqi/tKHZ
http://paperpile.com/b/eh6Mqi/tKHZ
http://paperpile.com/b/eh6Mqi/tKHZ
http://paperpile.com/b/eh6Mqi/tKHZ
http://paperpile.com/b/eh6Mqi/tKHZ
http://paperpile.com/b/eh6Mqi/sXry
http://paperpile.com/b/eh6Mqi/sXry
http://paperpile.com/b/eh6Mqi/sXry
http://paperpile.com/b/eh6Mqi/sXry
http://paperpile.com/b/eh6Mqi/sXry
http://paperpile.com/b/eh6Mqi/sXry
http://paperpile.com/b/eh6Mqi/sXry
http://dx.doi.org/10.1523/ENEURO.0106-17.2017
http://paperpile.com/b/eh6Mqi/sXry
http://paperpile.com/b/E3bCBc/O1oL
http://paperpile.com/b/E3bCBc/O1oL
http://paperpile.com/b/E3bCBc/O1oL
http://paperpile.com/b/E3bCBc/O1oL
http://paperpile.com/b/E3bCBc/O1oL
http://paperpile.com/b/eh6Mqi/0D0q
http://paperpile.com/b/eh6Mqi/0D0q
http://paperpile.com/b/eh6Mqi/0D0q
http://paperpile.com/b/eh6Mqi/0D0q
http://paperpile.com/b/eh6Mqi/0D0q
http://paperpile.com/b/eh6Mqi/0D0q
http://paperpile.com/b/eh6Mqi/0D0q
http://paperpile.com/b/eh6Mqi/fA2t
http://paperpile.com/b/eh6Mqi/fA2t
http://paperpile.com/b/eh6Mqi/fA2t
http://paperpile.com/b/eh6Mqi/fA2t
http://paperpile.com/b/eh6Mqi/5MiZ
http://paperpile.com/b/eh6Mqi/5MiZ
http://paperpile.com/b/eh6Mqi/5MiZ
http://paperpile.com/b/eh6Mqi/5MiZ
http://paperpile.com/b/eh6Mqi/5MiZ
http://paperpile.com/b/eh6Mqi/59E9
http://paperpile.com/b/eh6Mqi/59E9
http://paperpile.com/b/eh6Mqi/59E9
http://paperpile.com/b/eh6Mqi/59E9
http://paperpile.com/b/eh6Mqi/jJQE
http://paperpile.com/b/eh6Mqi/jJQE
http://paperpile.com/b/eh6Mqi/jJQE
http://paperpile.com/b/eh6Mqi/jJQE
http://paperpile.com/b/eh6Mqi/ZoK0
http://paperpile.com/b/eh6Mqi/ZoK0
http://paperpile.com/b/eh6Mqi/ZoK0
http://paperpile.com/b/eh6Mqi/ZoK0
http://paperpile.com/b/eh6Mqi/ZoK0
http://paperpile.com/b/ZECFcP/baCp
http://paperpile.com/b/ZECFcP/baCp
http://paperpile.com/b/ZECFcP/baCp
http://paperpile.com/b/ZECFcP/baCp
http://paperpile.com/b/eh6Mqi/QTOu
http://paperpile.com/b/eh6Mqi/QTOu
http://paperpile.com/b/eh6Mqi/QTOu
http://paperpile.com/b/eh6Mqi/QTOu
http://paperpile.com/b/eh6Mqi/VkmG
http://paperpile.com/b/eh6Mqi/VkmG
http://paperpile.com/b/eh6Mqi/VkmG
http://paperpile.com/b/eh6Mqi/VkmG
http://paperpile.com/b/eh6Mqi/VkmG
http://paperpile.com/b/eh6Mqi/VkmG
http://paperpile.com/b/eh6Mqi/2yxE
http://paperpile.com/b/eh6Mqi/2yxE
http://paperpile.com/b/eh6Mqi/2yxE
http://paperpile.com/b/ZECFcP/1E0L
http://paperpile.com/b/ZECFcP/1E0L
http://paperpile.com/b/ZECFcP/1E0L
http://paperpile.com/b/ZECFcP/1E0L
http://paperpile.com/b/ZECFcP/1E0L
http://paperpile.com/b/eh6Mqi/6hZA
http://paperpile.com/b/eh6Mqi/6hZA
http://paperpile.com/b/eh6Mqi/6hZA
http://paperpile.com/b/eh6Mqi/6hZA
http://paperpile.com/b/eh6Mqi/6hZA
http://paperpile.com/b/eh6Mqi/6hZA
http://paperpile.com/b/eh6Mqi/JYRZ
http://paperpile.com/b/eh6Mqi/JYRZ
http://paperpile.com/b/eh6Mqi/JYRZ
http://paperpile.com/b/eh6Mqi/JYRZ
http://paperpile.com/b/eh6Mqi/JYRZ
http://paperpile.com/b/eh6Mqi/JYRZ
http://paperpile.com/b/eh6Mqi/0kmd
http://paperpile.com/b/eh6Mqi/0kmd
http://paperpile.com/b/eh6Mqi/0kmd
http://paperpile.com/b/eh6Mqi/0kmd
http://paperpile.com/b/eh6Mqi/xOeG
http://paperpile.com/b/eh6Mqi/xOeG
http://paperpile.com/b/eh6Mqi/xOeG
http://paperpile.com/b/eh6Mqi/xOeG
http://paperpile.com/b/eh6Mqi/avUX
http://paperpile.com/b/eh6Mqi/avUX
http://paperpile.com/b/eh6Mqi/avUX


systems’, PLoS computational biology, 8(8), p. e1002634.
61.Gămănuţ, Răzvan, Henry Kennedy, Zoltán Toroczkai, Mária Ercsey-Ravasz, David C. Van

Essen, Kenneth Knoblauch, and Andreas Burkhalter. 2018. “The Mouse Cortical Connectome,
Characterized by an Ultra-Dense Cortical Graph, Maintains Specificity by Distinct Connectivity
Profiles.” Neuron 97 (3): 698–715.e10.

62.Ghahremani, Maryam, R. Matthew Hutchison, Ravi S. Menon, and Stefan Everling. 2017.
“Frontoparietal Functional Connectivity in the Common Marmoset.” Cerebral Cortex 27 (8):
3890–3905.

63.Glomb, K. et al. (2017) ‘Resting state networks in empirical and simulated dynamic functional
connectivity’, NeuroImage, 159, pp. 388–402.

64.Golan, T. et al. (2016) ‘Human intracranial recordings link suppressed transients rather than
“filling-in” to perceptual continuity across blinks’, eLife, 5. doi: 10.7554/eLife.17243.

65.Gollo, L. L. et al. (2015) ‘Dwelling quietly in the rich club: brain network determinants of slow
cortical fluctuations’, Philosophical transactions of the Royal Society of London. Series B,
Biological sciences, 370(1668). doi: 10.1098/rstb.2014.0165.

66.Hagmann, Patric, Maciej Kurant, Xavier Gigandet, Patrick Thiran, Van J. Wedeen, Reto Meuli,
and Jean-Philippe Thiran. 2007. “Mapping Human Whole-Brain Structural Networks with
Diffusion MRI.” PloS One 2 (7): e597.

67.Hagmann, Patric, Leila Cammoun, Xavier Gigandet, Reto Meuli, Christopher J. Honey, Van J.
Wedeen, and Olaf Sporns. 2008. “Mapping the Structural Core of Human Cerebral Cortex.”
PLoS Biology 6 (7): e159.

68.Ham, Michael I., Luis M. Bettencourt, Floyd D. McDaniel, and Guenter W. Gross. 2008.
“Spontaneous Coordinated Activity in Cultured Networks: Analysis of Multiple Ignition Sites,
Primary Circuits, and Burst Phase Delay Distributions.” Journal of Computational Neuroscience
24 (3): 346–57.

69.Hansen, E. C. A. et al. (2015) ‘Functional connectivity dynamics: modeling the switching
behavior of the resting state’, NeuroImage, 105, pp. 525–535.

70.Harriger, L., van den Heuvel, M. P. and Sporns, O. (2012) ‘Rich club organization of macaque
cerebral cortex and its role in network communication’, PloS one, 7(9), p. e46497.

71.He, B. J. et al. (2008) ‘Electrophysiological correlates of the brain’s intrinsic large-scale
functional architecture’, Proceedings of the National Academy of Sciences of the United States of
America, 105(41), pp. 16039–16044.

72.Heuvel, Martijn P. van den, Edward T. Bullmore, and Olaf Sporns. 2016. “Comparative
Connectomics.” Trends in Cognitive Sciences 20 (5): 345–61.

73.Hilgetag, C. C. and Kaiser, M. (2004) ‘Clustered organization of cortical connectivity’,
Neuroinformatics, 2(3), pp. 353–360.

74.Hlinka, Jaroslav, Milan Palus, Martin Vejmelka, Dante Mantini, and Maurizio Corbetta. 2011.
“Functional Connectivity in Resting-State fMRI: Is Linear Correlation Sufficient?” NeuroImage
54 (3): 2218–25.

75.Holcman, D. and Tsodyks, M. (2006) ‘The emergence of Up and Down states in cortical
networks’, PLoS computational biology, 2(3), p. e23.

76.Honey, C. J. et al. (2007) ‘Network structure of cerebral cortex shapes functional connectivity
on multiple time scales’, Proceedings of the National Academy of Sciences of the United States
of America. National Academy of Sciences, 104(24), pp. 10240–10245.

77.Honey, C. J. et al. (2009) ‘Predicting human resting-state functional connectivity from structural
connectivity’, Proceedings of the National Academy of Sciences of the United States of America,
106(6), pp. 2035–2040.

78.Huk, A. C. and Shadlen, M. N. (2005) ‘Neural activity in macaque parietal cortex reflects
temporal integration of visual motion signals during perceptual decision making’, The Journal of

http://paperpile.com/b/eh6Mqi/avUX
http://paperpile.com/b/eh6Mqi/avUX
http://paperpile.com/b/eh6Mqi/avUX
http://paperpile.com/b/ZECFcP/nTQA
http://paperpile.com/b/ZECFcP/nTQA
http://paperpile.com/b/ZECFcP/nTQA
http://paperpile.com/b/ZECFcP/nTQA
http://paperpile.com/b/ZECFcP/nTQA
http://paperpile.com/b/ZECFcP/nTQA
http://paperpile.com/b/ZECFcP/dA15
http://paperpile.com/b/ZECFcP/dA15
http://paperpile.com/b/ZECFcP/dA15
http://paperpile.com/b/ZECFcP/dA15
http://paperpile.com/b/ZECFcP/dA15
http://paperpile.com/b/eh6Mqi/KwqX
http://paperpile.com/b/eh6Mqi/KwqX
http://paperpile.com/b/eh6Mqi/KwqX
http://paperpile.com/b/eh6Mqi/KwqX
http://paperpile.com/b/eh6Mqi/KwqX
http://paperpile.com/b/eh6Mqi/KwqX
http://paperpile.com/b/eh6Mqi/l2e5
http://paperpile.com/b/eh6Mqi/l2e5
http://paperpile.com/b/eh6Mqi/l2e5
http://paperpile.com/b/eh6Mqi/l2e5
http://paperpile.com/b/eh6Mqi/l2e5
http://paperpile.com/b/eh6Mqi/l2e5
http://dx.doi.org/10.7554/eLife.17243
http://paperpile.com/b/eh6Mqi/l2e5
http://paperpile.com/b/eh6Mqi/zgdJ
http://paperpile.com/b/eh6Mqi/zgdJ
http://paperpile.com/b/eh6Mqi/zgdJ
http://paperpile.com/b/eh6Mqi/zgdJ
http://paperpile.com/b/eh6Mqi/zgdJ
http://paperpile.com/b/eh6Mqi/zgdJ
http://paperpile.com/b/eh6Mqi/zgdJ
http://dx.doi.org/10.1098/rstb.2014.0165
http://paperpile.com/b/eh6Mqi/zgdJ
http://paperpile.com/b/2HuPwB/SBap
http://paperpile.com/b/2HuPwB/SBap
http://paperpile.com/b/2HuPwB/SBap
http://paperpile.com/b/2HuPwB/SBap
http://paperpile.com/b/2HuPwB/SBap
http://paperpile.com/b/ZECFcP/xK0I
http://paperpile.com/b/ZECFcP/xK0I
http://paperpile.com/b/ZECFcP/xK0I
http://paperpile.com/b/ZECFcP/xK0I
http://paperpile.com/b/ZECFcP/xK0I
http://paperpile.com/b/ZECFcP/jr7i
http://paperpile.com/b/ZECFcP/jr7i
http://paperpile.com/b/ZECFcP/jr7i
http://paperpile.com/b/ZECFcP/jr7i
http://paperpile.com/b/ZECFcP/jr7i
http://paperpile.com/b/ZECFcP/jr7i
http://paperpile.com/b/eh6Mqi/M3he
http://paperpile.com/b/eh6Mqi/M3he
http://paperpile.com/b/eh6Mqi/M3he
http://paperpile.com/b/eh6Mqi/M3he
http://paperpile.com/b/eh6Mqi/M3he
http://paperpile.com/b/eh6Mqi/M3he
http://paperpile.com/b/eh6Mqi/b3kh
http://paperpile.com/b/eh6Mqi/b3kh
http://paperpile.com/b/eh6Mqi/b3kh
http://paperpile.com/b/eh6Mqi/b3kh
http://paperpile.com/b/eh6Mqi/xOYx
http://paperpile.com/b/eh6Mqi/xOYx
http://paperpile.com/b/eh6Mqi/xOYx
http://paperpile.com/b/eh6Mqi/xOYx
http://paperpile.com/b/eh6Mqi/xOYx
http://paperpile.com/b/eh6Mqi/xOYx
http://paperpile.com/b/eh6Mqi/xOYx
http://paperpile.com/b/ZECFcP/OCnq
http://paperpile.com/b/ZECFcP/OCnq
http://paperpile.com/b/ZECFcP/OCnq
http://paperpile.com/b/ZECFcP/OCnq
http://paperpile.com/b/eh6Mqi/stEb
http://paperpile.com/b/eh6Mqi/stEb
http://paperpile.com/b/eh6Mqi/stEb
http://paperpile.com/b/eh6Mqi/stEb
http://paperpile.com/b/2HuPwB/QPyn
http://paperpile.com/b/2HuPwB/QPyn
http://paperpile.com/b/2HuPwB/QPyn
http://paperpile.com/b/2HuPwB/QPyn
http://paperpile.com/b/2HuPwB/QPyn
http://paperpile.com/b/eh6Mqi/Nuql
http://paperpile.com/b/eh6Mqi/Nuql
http://paperpile.com/b/eh6Mqi/Nuql
http://paperpile.com/b/eh6Mqi/Nuql
http://paperpile.com/b/eh6Mqi/a00a
http://paperpile.com/b/eh6Mqi/a00a
http://paperpile.com/b/eh6Mqi/a00a
http://paperpile.com/b/eh6Mqi/a00a
http://paperpile.com/b/eh6Mqi/a00a
http://paperpile.com/b/eh6Mqi/a00a
http://paperpile.com/b/eh6Mqi/a00a
http://paperpile.com/b/eh6Mqi/CcVq
http://paperpile.com/b/eh6Mqi/CcVq
http://paperpile.com/b/eh6Mqi/CcVq
http://paperpile.com/b/eh6Mqi/CcVq
http://paperpile.com/b/eh6Mqi/CcVq
http://paperpile.com/b/eh6Mqi/CcVq
http://paperpile.com/b/eh6Mqi/CcVq
http://paperpile.com/b/eh6Mqi/vqOt
http://paperpile.com/b/eh6Mqi/vqOt
http://paperpile.com/b/eh6Mqi/vqOt


neuroscience: the official journal of the Society for Neuroscience, 25(45), pp. 10420–10436.
79.Humphries, Mark D., and Kevin Gurney. 2008. “Network ‘Small-World-Ness’: A Quantitative

Method for Determining Canonical Network Equivalence.” PloS One 3 (4): e0002051.
80.Humphries, M. D., K. Gurney, and T. J. Prescott. 2006. “The Brainstem Reticular Formation Is a

Small-World, Not Scale-Free, Network.” Proceedings. Biological Sciences / The Royal Society
273 (1585): 503–11.

81.Hutchison, R. M. et al. (2013) ‘Dynamic functional connectivity: promise, issues, and
interpretations’, NeuroImage, 80, pp. 360–378.

82.Hütt, M.-T., Kaiser, M. and Hilgetag, C. C. (2014) ‘Perspective: network-guided pattern
formation of neural dynamics’, Philosophical transactions of the Royal Society of London.
Series B, Biological sciences, 369(1653). doi: 10.1098/rstb.2013.0522.

83.Joglekar, M. R. et al. (2018) ‘Inter-areal Balanced Amplification Enhances Signal Propagation
in a Large-Scale Circuit Model of the Primate Cortex’, Neuron, 98(1), pp. 222–234.e8.

84.Kaiser, Marcus, and Claus C. Hilgetag. 2006. “Nonoptimal Component Placement, but Short
Processing Paths, due to Long-Distance Projections in Neural Systems.” PLoS Computational
Biology 2 (7): e95.

85.Karahanoğlu, F. I. et al. (2013) ‘Total activation: fMRI deconvolution through spatio-temporal
regularization’, NeuroImage, 73, pp. 121–134.

86.Kenet, T. et al. (2003) ‘Spontaneously emerging cortical representations of visual attributes’,
Nature, 425(6961), pp. 954–956.

87.Kenny, Eva R., John T. O’Brien, David A. Cousins, Jonathan Richardson, Alan J. Thomas,
Michael J. Firbank, and Andrew M. Blamire. 2010. “Functional Connectivity in Late-Life
Depression Using Resting-State Functional Magnetic Resonance Imaging.” The American
Journal of Geriatric Psychiatry: Official Journal of the American Association for Geriatric
Psychiatry 18 (7): 643–51.

88.Khundrakpam, Budhachandra S., Andrew Reid, Jens Brauer, Felix Carbonell, John Lewis,
Stephanie Ameis, Sherif Karama, et al. 2013. “Developmental Changes in Organization of
Structural Brain Networks.” Cerebral Cortex 23 (9): 2072–85.

89.Kieliba, P. et al. (2019) ‘Large-scale intrinsic connectivity is consistent across varying task
demands’, PloS one, 14(4), p. e0213861.

90.Kirst, C., Timme, M. and Battaglia, D. (2016) ‘Dynamic information routing in complex
networks’, Nature communications, 7, p. 11061.

91.Kitsak, M. et al. (2010) ‘Identification of influential spreaders in complex networks’, Nature
physics, 6(11), pp. 888–893.

92.Kopell, N. J. et al. (2014) ‘Beyond the connectome: the dynome’, Neuron, 83(6), pp.
1319–1328.

93.Kozlovskiy, Stanislav A., Sophie D. Shirenova, Anastasia K. Neklyudova, and Alexander V.
Vartanov. 2017. “Brain Mechanisms of the Tip-of-the-Tongue State: An
Electroencephalography-Based Source Localization Study.” Psychology in Russia: State of the
Art 10 (3): 218–30.

94.Lampl, I., Reichova, I. and Ferster, D. (1999) ‘Synchronous membrane potential fluctuations in
neurons of the cat visual cortex’, Neuron, 22(2), pp. 361–374.

95.Li, Mike, Yinuo Han, Matthew J. Aburn, Michael Breakspear, Russell A. Poldrack, James M.
Shine, and Joseph T. Lizier. 2019. “Transitions in Information Processing Dynamics at the
Whole-Brain Network Level Are Driven by Alterations in Neural Gain.” PLoS Computational
Biology 15 (10): e1006957.

96.Lombardo, Diego, Catherine Cassé-Perrot, Jean-Philippe Ranjeva, Arnaud Le Troter, Maxime
Guye, Jonathan Wirsich, Pierre Payoux, et al. 2020. “Modular Slowing of Resting-State
Dynamic Functional Connectivity as a Marker of Cognitive Dysfunction Induced by Sleep

http://paperpile.com/b/eh6Mqi/vqOt
http://paperpile.com/b/eh6Mqi/vqOt
http://paperpile.com/b/E3bCBc/fIiS
http://paperpile.com/b/E3bCBc/fIiS
http://paperpile.com/b/E3bCBc/fIiS
http://paperpile.com/b/E3bCBc/fIiS
http://paperpile.com/b/E3bCBc/yb3F
http://paperpile.com/b/E3bCBc/yb3F
http://paperpile.com/b/E3bCBc/yb3F
http://paperpile.com/b/E3bCBc/yb3F
http://paperpile.com/b/E3bCBc/yb3F
http://paperpile.com/b/eh6Mqi/RRN2
http://paperpile.com/b/eh6Mqi/RRN2
http://paperpile.com/b/eh6Mqi/RRN2
http://paperpile.com/b/eh6Mqi/RRN2
http://paperpile.com/b/eh6Mqi/RRN2
http://paperpile.com/b/eh6Mqi/RRN2
http://paperpile.com/b/eh6Mqi/xJo0
http://paperpile.com/b/eh6Mqi/xJo0
http://paperpile.com/b/eh6Mqi/xJo0
http://paperpile.com/b/eh6Mqi/xJo0
http://paperpile.com/b/eh6Mqi/xJo0
http://dx.doi.org/10.1098/rstb.2013.0522
http://paperpile.com/b/eh6Mqi/xJo0
http://paperpile.com/b/eh6Mqi/5MLR
http://paperpile.com/b/eh6Mqi/5MLR
http://paperpile.com/b/eh6Mqi/5MLR
http://paperpile.com/b/eh6Mqi/5MLR
http://paperpile.com/b/eh6Mqi/5MLR
http://paperpile.com/b/eh6Mqi/5MLR
http://paperpile.com/b/ZECFcP/fuvU
http://paperpile.com/b/ZECFcP/fuvU
http://paperpile.com/b/ZECFcP/fuvU
http://paperpile.com/b/ZECFcP/fuvU
http://paperpile.com/b/ZECFcP/fuvU
http://paperpile.com/b/eh6Mqi/JHVv
http://paperpile.com/b/eh6Mqi/JHVv
http://paperpile.com/b/eh6Mqi/JHVv
http://paperpile.com/b/eh6Mqi/JHVv
http://paperpile.com/b/eh6Mqi/JHVv
http://paperpile.com/b/eh6Mqi/JHVv
http://paperpile.com/b/eh6Mqi/e6g6
http://paperpile.com/b/eh6Mqi/e6g6
http://paperpile.com/b/eh6Mqi/e6g6
http://paperpile.com/b/eh6Mqi/e6g6
http://paperpile.com/b/eh6Mqi/e6g6
http://paperpile.com/b/eh6Mqi/e6g6
http://paperpile.com/b/ZECFcP/Wb6v
http://paperpile.com/b/ZECFcP/Wb6v
http://paperpile.com/b/ZECFcP/Wb6v
http://paperpile.com/b/ZECFcP/Wb6v
http://paperpile.com/b/ZECFcP/Wb6v
http://paperpile.com/b/ZECFcP/Wb6v
http://paperpile.com/b/ZECFcP/Wb6v
http://paperpile.com/b/ZECFcP/sQWe
http://paperpile.com/b/ZECFcP/sQWe
http://paperpile.com/b/ZECFcP/sQWe
http://paperpile.com/b/ZECFcP/sQWe
http://paperpile.com/b/ZECFcP/sQWe
http://paperpile.com/b/eh6Mqi/YTVW
http://paperpile.com/b/eh6Mqi/YTVW
http://paperpile.com/b/eh6Mqi/YTVW
http://paperpile.com/b/eh6Mqi/YTVW
http://paperpile.com/b/eh6Mqi/YTVW
http://paperpile.com/b/eh6Mqi/YTVW
http://paperpile.com/b/eh6Mqi/JtN9
http://paperpile.com/b/eh6Mqi/JtN9
http://paperpile.com/b/eh6Mqi/JtN9
http://paperpile.com/b/eh6Mqi/JtN9
http://paperpile.com/b/eh6Mqi/YEWH
http://paperpile.com/b/eh6Mqi/YEWH
http://paperpile.com/b/eh6Mqi/YEWH
http://paperpile.com/b/eh6Mqi/YEWH
http://paperpile.com/b/eh6Mqi/YEWH
http://paperpile.com/b/eh6Mqi/YEWH
http://paperpile.com/b/eh6Mqi/9COi
http://paperpile.com/b/eh6Mqi/9COi
http://paperpile.com/b/eh6Mqi/9COi
http://paperpile.com/b/eh6Mqi/9COi
http://paperpile.com/b/eh6Mqi/9COi
http://paperpile.com/b/eh6Mqi/9COi
http://paperpile.com/b/ZECFcP/njz2
http://paperpile.com/b/ZECFcP/njz2
http://paperpile.com/b/ZECFcP/njz2
http://paperpile.com/b/ZECFcP/njz2
http://paperpile.com/b/ZECFcP/njz2
http://paperpile.com/b/ZECFcP/njz2
http://paperpile.com/b/eh6Mqi/W8IR
http://paperpile.com/b/eh6Mqi/W8IR
http://paperpile.com/b/eh6Mqi/W8IR
http://paperpile.com/b/eh6Mqi/W8IR
http://paperpile.com/b/sr3q9b/bCcT
http://paperpile.com/b/sr3q9b/bCcT
http://paperpile.com/b/sr3q9b/bCcT
http://paperpile.com/b/sr3q9b/bCcT
http://paperpile.com/b/sr3q9b/bCcT
http://paperpile.com/b/sr3q9b/bCcT
http://paperpile.com/b/ZECFcP/ep5e
http://paperpile.com/b/ZECFcP/ep5e
http://paperpile.com/b/ZECFcP/ep5e


Deprivation.” bioRxiv. https://doi.org/10.1101/2020.01.17.910810.
97.Lynall, M.-E. et al. (2010) ‘Functional connectivity and brain networks in schizophrenia’, The

Journal of neuroscience: the official journal of the Society for Neuroscience, 30(28), pp.
9477–9487.

98.Lynn, C. W. and Bassett, D. S. (2019) ‘The physics of brain network structure, function and
control’, Nature Reviews Physics, 1(5), pp. 318–332.

99.Markov, Nikola T., Maria Ercsey-Ravasz, Camille Lamy, Ana Rita Ribeiro Gomes, Loïc
Magrou, Pierre Misery, Pascale Giroud, et al. 2013. “The Role of Long-Range Connections on
the Specificity of the Macaque Interareal Cortical Network.” Proceedings of the National
Academy of Sciences of the United States of America 110 (13): 5187–92.

100. Maslov, Sergei, and Kim Sneppen. 2002. “Specificity and Stability in Topology of Protein
Networks.” Science 296 (5569): 910–13.

101. Medel, Vicente, Joaquín Valdés, Samy Castro, Tomás Ossandón, and Gonzalo Boncompte.
2019. “Commentary: Amplification and Suppression of Distinct Brainwide Activity Patterns by
Catecholamines.” Frontiers in Behavioral Neuroscience.

102. Messé, A. et al. (2014) ‘Relating structure and function in the human brain: relative
contributions of anatomy, stationary dynamics, and non-stationarities’, PLoS computational
biology, 10(3), p. e1003530.

103. Messé, A. et al. (2015) ‘A closer look at the apparent correlation of structural and
functional connectivity in excitable neural networks’, Scientific reports, 5, p. 7870.

104. Mišić, B. et al. (2015) ‘Cooperative and Competitive Spreading Dynamics on the Human
Connectome’, Neuron, 86(6), pp. 1518–1529.

105. Moutard, C., Dehaene, S. and Malach, R. (2015) ‘Spontaneous Fluctuations and Non-linear
Ignitions: Two Dynamic Faces of Cortical Recurrent Loops’, Neuron, 88(1), pp. 194–206.

106. Navarro-Lobato, I. and Genzel, L. (2019) ‘The up and down of sleep: From molecules to
electrophysiology’, Neurobiology of learning and memory, 160, pp. 3–10.

107. Nir, Y. et al. (2006) ‘Widespread functional connectivity and fMRI fluctuations in human
visual cortex in the absence of visual stimulation’, NeuroImage, 30(4), pp. 1313–1324.

108. Nir, Y. et al. (2008) ‘Interhemispheric correlations of slow spontaneous neuronal
fluctuations revealed in human sensory cortex’, Nature neuroscience, 11(9), pp. 1100–1108.

109. Noy, N. et al. (2015) ‘Ignition’s glow: Ultra-fast spread of global cortical activity
accompanying local “ignitions” in visual cortex during conscious visual perception’,
Consciousness and cognition, 35, pp. 206–224.

110. Oh, Seung Wook, Julie A. Harris, Lydia Ng, Brent Winslow, Nicholas Cain, Stefan Mihalas,
Quanxin Wang, et al. 2014. “A Mesoscale Connectome of the Mouse Brain.” Nature 508 (7495):
207–14.

111. Opsahl, Tore, Vittoria Colizza, Pietro Panzarasa, and José J. Ramasco. 2008. “Prominence
and Control: The Weighted Rich-Club Effect.” Physical Review Letters 101 (16): 168702.

112. Orio, P. et al. (2018) ‘Chaos versus noise as drivers of multistability in neural networks’,
Chaos , 28(10), p. 106321.

113. Palmqvist, Sebastian, Michael Schöll, Olof Strandberg, Niklas Mattsson, Erik Stomrud,
Henrik Zetterberg, Kaj Blennow, Susan Landau, William Jagust, and Oskar Hansson. 2017.
“Earliest Accumulation of β-Amyloid Occurs within the Default-Mode Network and
Concurrently Affects Brain Connectivity.” Nature Communications 8 (1): 1214.

114. Papegaaij, S. et al. (2017) ‘Neural correlates of motor-cognitive dual-tasking in young and
old adults’, PloS one, 12(12), p. e0189025.

115. Parker, Jason G., Eric J. Zalusky, and Cemil Kirbas. 2014. “Functional MRI Mapping of
Visual Function and Selective Attention for Performance Assessment and Presurgical Planning
Using Conjunctive Visual Search.” Brain and Behavior 4 (2): 227–37.

http://paperpile.com/b/ZECFcP/ep5e
http://paperpile.com/b/ZECFcP/ep5e
http://paperpile.com/b/ZECFcP/ep5e
http://dx.doi.org/10.1101/2020.01.17.910810
http://paperpile.com/b/ZECFcP/ep5e
http://paperpile.com/b/eh6Mqi/cSz3
http://paperpile.com/b/eh6Mqi/cSz3
http://paperpile.com/b/eh6Mqi/cSz3
http://paperpile.com/b/eh6Mqi/cSz3
http://paperpile.com/b/eh6Mqi/cSz3
http://paperpile.com/b/eh6Mqi/cSz3
http://paperpile.com/b/eh6Mqi/cSz3
http://paperpile.com/b/eh6Mqi/WBb5
http://paperpile.com/b/eh6Mqi/WBb5
http://paperpile.com/b/eh6Mqi/WBb5
http://paperpile.com/b/eh6Mqi/WBb5
http://paperpile.com/b/ZECFcP/PMCS
http://paperpile.com/b/ZECFcP/PMCS
http://paperpile.com/b/ZECFcP/PMCS
http://paperpile.com/b/ZECFcP/PMCS
http://paperpile.com/b/ZECFcP/PMCS
http://paperpile.com/b/ZECFcP/PMCS
http://paperpile.com/b/2HuPwB/0Nah
http://paperpile.com/b/2HuPwB/0Nah
http://paperpile.com/b/2HuPwB/0Nah
http://paperpile.com/b/2HuPwB/0Nah
http://paperpile.com/b/sr3q9b/QC92
http://paperpile.com/b/sr3q9b/QC92
http://paperpile.com/b/sr3q9b/QC92
http://paperpile.com/b/sr3q9b/QC92
http://paperpile.com/b/sr3q9b/QC92
http://paperpile.com/b/eh6Mqi/QRj5
http://paperpile.com/b/eh6Mqi/QRj5
http://paperpile.com/b/eh6Mqi/QRj5
http://paperpile.com/b/eh6Mqi/QRj5
http://paperpile.com/b/eh6Mqi/QRj5
http://paperpile.com/b/eh6Mqi/QRj5
http://paperpile.com/b/eh6Mqi/QRj5
http://paperpile.com/b/eh6Mqi/28eU
http://paperpile.com/b/eh6Mqi/28eU
http://paperpile.com/b/eh6Mqi/28eU
http://paperpile.com/b/eh6Mqi/28eU
http://paperpile.com/b/eh6Mqi/28eU
http://paperpile.com/b/eh6Mqi/28eU
http://paperpile.com/b/eh6Mqi/hNnz
http://paperpile.com/b/eh6Mqi/hNnz
http://paperpile.com/b/eh6Mqi/hNnz
http://paperpile.com/b/eh6Mqi/hNnz
http://paperpile.com/b/eh6Mqi/hNnz
http://paperpile.com/b/eh6Mqi/hNnz
http://paperpile.com/b/eh6Mqi/HqcA
http://paperpile.com/b/eh6Mqi/HqcA
http://paperpile.com/b/eh6Mqi/HqcA
http://paperpile.com/b/eh6Mqi/HqcA
http://paperpile.com/b/eh6Mqi/vo6g
http://paperpile.com/b/eh6Mqi/vo6g
http://paperpile.com/b/eh6Mqi/vo6g
http://paperpile.com/b/eh6Mqi/vo6g
http://paperpile.com/b/eh6Mqi/ZZan
http://paperpile.com/b/eh6Mqi/ZZan
http://paperpile.com/b/eh6Mqi/ZZan
http://paperpile.com/b/eh6Mqi/ZZan
http://paperpile.com/b/eh6Mqi/ZZan
http://paperpile.com/b/eh6Mqi/ZZan
http://paperpile.com/b/eh6Mqi/DAB2
http://paperpile.com/b/eh6Mqi/DAB2
http://paperpile.com/b/eh6Mqi/DAB2
http://paperpile.com/b/eh6Mqi/DAB2
http://paperpile.com/b/eh6Mqi/DAB2
http://paperpile.com/b/eh6Mqi/DAB2
http://paperpile.com/b/eh6Mqi/WofY
http://paperpile.com/b/eh6Mqi/WofY
http://paperpile.com/b/eh6Mqi/WofY
http://paperpile.com/b/eh6Mqi/WofY
http://paperpile.com/b/eh6Mqi/WofY
http://paperpile.com/b/eh6Mqi/WofY
http://paperpile.com/b/eh6Mqi/WofY
http://paperpile.com/b/2HuPwB/vjHF
http://paperpile.com/b/2HuPwB/vjHF
http://paperpile.com/b/2HuPwB/vjHF
http://paperpile.com/b/2HuPwB/vjHF
http://paperpile.com/b/2HuPwB/vjHF
http://paperpile.com/b/2HuPwB/yZe1
http://paperpile.com/b/2HuPwB/yZe1
http://paperpile.com/b/2HuPwB/yZe1
http://paperpile.com/b/2HuPwB/yZe1
http://paperpile.com/b/eh6Mqi/UEdv
http://paperpile.com/b/eh6Mqi/UEdv
http://paperpile.com/b/eh6Mqi/UEdv
http://paperpile.com/b/eh6Mqi/UEdv
http://paperpile.com/b/eh6Mqi/UEdv
http://paperpile.com/b/eh6Mqi/UEdv
http://paperpile.com/b/ZECFcP/fzKR
http://paperpile.com/b/ZECFcP/fzKR
http://paperpile.com/b/ZECFcP/fzKR
http://paperpile.com/b/ZECFcP/fzKR
http://paperpile.com/b/ZECFcP/fzKR
http://paperpile.com/b/ZECFcP/fzKR
http://paperpile.com/b/eh6Mqi/ShBY
http://paperpile.com/b/eh6Mqi/ShBY
http://paperpile.com/b/eh6Mqi/ShBY
http://paperpile.com/b/eh6Mqi/ShBY
http://paperpile.com/b/eh6Mqi/ShBY
http://paperpile.com/b/eh6Mqi/ShBY
http://paperpile.com/b/ZECFcP/PCKh
http://paperpile.com/b/ZECFcP/PCKh
http://paperpile.com/b/ZECFcP/PCKh
http://paperpile.com/b/ZECFcP/PCKh
http://paperpile.com/b/ZECFcP/PCKh


116. de Pasquale, F. et al. (2010) ‘Temporal dynamics of spontaneous MEG activity in brain
networks’, Proceedings of the National Academy of Sciences of the United States of America,
107(13), pp. 6040–6045.

117. de Pasquale, F. et al. (2013) ‘The connectivity of functional cores reveals different degrees
of segregation and integration in the brain at rest’, NeuroImage, 69, pp. 51–61.

118. de Pasquale, F. et al. (2018) ‘Cortical cores in network dynamics’, NeuroImage, 180(Pt B),
pp. 370–382.

119. Petridou, N. et al. (2013) ‘Periods of rest in fMRI contain individual spontaneous events
which are related to slowly fluctuating spontaneous activity’, Human brain mapping, 34(6), pp.
1319–1329.

120. Pinto, Lucas, Michael J. Goard, Daniel Estandian, Min Xu, Alex C. Kwan, Seung-Hee Lee,
Thomas C. Harrison, Guoping Feng, and Yang Dan. 2013. “Fast Modulation of Visual
Perception by Basal Forebrain Cholinergic Neurons.” Nature Neuroscience 16 (12): 1857–63.

121. Rock, K. et al. (2014) ‘Dynamics of infectious diseases’, Reports on Progress in Physics,
77(2), p. 026602.

122. Roitman, J. D. and Shadlen, M. N. (2002) ‘Response of neurons in the lateral intraparietal
area during a combined visual discrimination reaction time task’, The Journal of neuroscience:
the official journal of the Society for Neuroscience, 22(21), pp. 9475–9489.

123. Rolls, E. T., Joliot, M. and Tzourio-Mazoyer, N. (2015) ‘Implementation of a new
parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas’, NeuroImage,
122, pp. 1–5.

124. Rosas, Fernando, Pedro A. M. Mediano, Michael Gastpar, and Henrik J. Jensen. 2019.
“Quantifying High-Order Interdependencies via Multivariate Extensions of the Mutual
Information.” arXiv [cs.IT]. arXiv. http://arxiv.org/abs/1902.11239.

125. Rubinov, M. et al. (2015) ‘Wiring cost and topological participation of the mouse brain
connectome’, Proceedings of the National Academy of Sciences of the United States of America,
112(32), pp. 10032–10037.

126. Rubinov, M. and Sporns, O. (2010) ‘Complex network measures of brain connectivity: uses
and interpretations’, NeuroImage, 52(3), pp. 1059–1069.

127. Sabbah, Norman, Nicolae Sanda, Colas N. Authié, Saddek Mohand-Saïd, José-Alain Sahel,
Christophe Habas, Amir Amedi, and Avinoam B. Safran. 2017. “Reorganization of Early Visual
Cortex Functional Connectivity Following Selective Peripheral and Central Visual Loss.”
Scientific Reports 7 (February): 43223.

128. Salehi, M. et al. (2020) ‘There is no single functional atlas even for a single individual:
Functional parcel definitions change with task’, NeuroImage, 208, p. 116366.

129. Salvador, R. et al. (2005) ‘Neurophysiological architecture of functional magnetic
resonance images of human brain’, Cerebral cortex , 15(9), pp. 1332–1342.

130. Schirner, M. et al. (2015) ‘An automated pipeline for constructing personalized virtual
brains from multimodal neuroimaging data’, NeuroImage, 117, pp. 343–357.

131. Schurger, A. et al. (2015) ‘Cortical activity is more stable when sensory stimuli are
consciously perceived’, Proceedings of the National Academy of Sciences of the United States of
America, 112(16), pp. E2083–92.

132. Seguin, C., Razi, A. and Zalesky, A. (2019) ‘Inferring neural signalling directionality from
undirected structural connectomes’, Nature communications, 10(1), p. 4289.

133. Seth, A. (2007) ‘Models of consciousness’, Scholarpedia journal, 2(1), p. 1328.
134. Shih, C.-T. et al. (2015) ‘Connectomics-based analysis of information flow in the

Drosophila brain’, Current biology: CB, 25(10), pp. 1249–1258.
135. Shine, James M., Matthew J. Aburn, Michael Breakspear, and Russell A. Poldrack. 2018.

“The Modulation of Neural Gain Facilitates a Transition between Functional Segregation and

http://paperpile.com/b/eh6Mqi/7PiJ
http://paperpile.com/b/eh6Mqi/7PiJ
http://paperpile.com/b/eh6Mqi/7PiJ
http://paperpile.com/b/eh6Mqi/7PiJ
http://paperpile.com/b/eh6Mqi/7PiJ
http://paperpile.com/b/eh6Mqi/7PiJ
http://paperpile.com/b/eh6Mqi/7PiJ
http://paperpile.com/b/eh6Mqi/NULg
http://paperpile.com/b/eh6Mqi/NULg
http://paperpile.com/b/eh6Mqi/NULg
http://paperpile.com/b/eh6Mqi/NULg
http://paperpile.com/b/eh6Mqi/NULg
http://paperpile.com/b/eh6Mqi/NULg
http://paperpile.com/b/eh6Mqi/rRAR
http://paperpile.com/b/eh6Mqi/rRAR
http://paperpile.com/b/eh6Mqi/rRAR
http://paperpile.com/b/eh6Mqi/rRAR
http://paperpile.com/b/eh6Mqi/rRAR
http://paperpile.com/b/eh6Mqi/rRAR
http://paperpile.com/b/eh6Mqi/wsIm
http://paperpile.com/b/eh6Mqi/wsIm
http://paperpile.com/b/eh6Mqi/wsIm
http://paperpile.com/b/eh6Mqi/wsIm
http://paperpile.com/b/eh6Mqi/wsIm
http://paperpile.com/b/eh6Mqi/wsIm
http://paperpile.com/b/eh6Mqi/wsIm
http://paperpile.com/b/ZECFcP/zHes
http://paperpile.com/b/ZECFcP/zHes
http://paperpile.com/b/ZECFcP/zHes
http://paperpile.com/b/ZECFcP/zHes
http://paperpile.com/b/ZECFcP/zHes
http://paperpile.com/b/eh6Mqi/CEoS
http://paperpile.com/b/eh6Mqi/CEoS
http://paperpile.com/b/eh6Mqi/CEoS
http://paperpile.com/b/eh6Mqi/CEoS
http://paperpile.com/b/eh6Mqi/CEoS
http://paperpile.com/b/eh6Mqi/CEoS
http://paperpile.com/b/eh6Mqi/lDoc
http://paperpile.com/b/eh6Mqi/lDoc
http://paperpile.com/b/eh6Mqi/lDoc
http://paperpile.com/b/eh6Mqi/lDoc
http://paperpile.com/b/eh6Mqi/lDoc
http://paperpile.com/b/eh6Mqi/gnwV
http://paperpile.com/b/eh6Mqi/gnwV
http://paperpile.com/b/eh6Mqi/gnwV
http://paperpile.com/b/eh6Mqi/gnwV
http://paperpile.com/b/eh6Mqi/gnwV
http://paperpile.com/b/ZECFcP/mFBJ
http://paperpile.com/b/ZECFcP/mFBJ
http://paperpile.com/b/ZECFcP/mFBJ
http://paperpile.com/b/ZECFcP/mFBJ
http://paperpile.com/b/ZECFcP/mFBJ
http://arxiv.org/abs/1902.11239
http://paperpile.com/b/ZECFcP/mFBJ
http://paperpile.com/b/eh6Mqi/8n9u
http://paperpile.com/b/eh6Mqi/8n9u
http://paperpile.com/b/eh6Mqi/8n9u
http://paperpile.com/b/eh6Mqi/8n9u
http://paperpile.com/b/eh6Mqi/8n9u
http://paperpile.com/b/eh6Mqi/8n9u
http://paperpile.com/b/eh6Mqi/8n9u
http://paperpile.com/b/eh6Mqi/XkEP
http://paperpile.com/b/eh6Mqi/XkEP
http://paperpile.com/b/eh6Mqi/XkEP
http://paperpile.com/b/eh6Mqi/XkEP
http://paperpile.com/b/ZECFcP/xmrf
http://paperpile.com/b/ZECFcP/xmrf
http://paperpile.com/b/ZECFcP/xmrf
http://paperpile.com/b/ZECFcP/xmrf
http://paperpile.com/b/ZECFcP/xmrf
http://paperpile.com/b/ZECFcP/xmrf
http://paperpile.com/b/eh6Mqi/ChrM
http://paperpile.com/b/eh6Mqi/ChrM
http://paperpile.com/b/eh6Mqi/ChrM
http://paperpile.com/b/eh6Mqi/ChrM
http://paperpile.com/b/eh6Mqi/ChrM
http://paperpile.com/b/eh6Mqi/ChrM
http://paperpile.com/b/eh6Mqi/NevA
http://paperpile.com/b/eh6Mqi/NevA
http://paperpile.com/b/eh6Mqi/NevA
http://paperpile.com/b/eh6Mqi/NevA
http://paperpile.com/b/eh6Mqi/NevA
http://paperpile.com/b/eh6Mqi/NevA
http://paperpile.com/b/eh6Mqi/MSNk
http://paperpile.com/b/eh6Mqi/MSNk
http://paperpile.com/b/eh6Mqi/MSNk
http://paperpile.com/b/eh6Mqi/MSNk
http://paperpile.com/b/eh6Mqi/MSNk
http://paperpile.com/b/eh6Mqi/MSNk
http://paperpile.com/b/eh6Mqi/lFv8
http://paperpile.com/b/eh6Mqi/lFv8
http://paperpile.com/b/eh6Mqi/lFv8
http://paperpile.com/b/eh6Mqi/lFv8
http://paperpile.com/b/eh6Mqi/lFv8
http://paperpile.com/b/eh6Mqi/lFv8
http://paperpile.com/b/eh6Mqi/lFv8
http://paperpile.com/b/eh6Mqi/sxTC
http://paperpile.com/b/eh6Mqi/sxTC
http://paperpile.com/b/eh6Mqi/sxTC
http://paperpile.com/b/eh6Mqi/sxTC
http://paperpile.com/b/eh6Mqi/CeaT
http://paperpile.com/b/eh6Mqi/CeaT
http://paperpile.com/b/eh6Mqi/CeaT
http://paperpile.com/b/eh6Mqi/RvRM
http://paperpile.com/b/eh6Mqi/RvRM
http://paperpile.com/b/eh6Mqi/RvRM
http://paperpile.com/b/eh6Mqi/RvRM
http://paperpile.com/b/eh6Mqi/RvRM
http://paperpile.com/b/eh6Mqi/RvRM
http://paperpile.com/b/ZECFcP/9IpU
http://paperpile.com/b/ZECFcP/9IpU


Integration in the Brain.” eLife 7 (January). https://doi.org/10.7554/eLife.31130.
136. Shine, James M., Michael Breakspear, Peter T. Bell, Kaylena A. Ehgoetz Martens, Richard

Shine, Oluwasanmi Koyejo, Olaf Sporns, and Russell A. Poldrack. 2019. “Human Cognition
Involves the Dynamic Integration of Neural Activity and Neuromodulatory Systems.” Nature
Neuroscience 22 (2): 289–96.

137. Smit, D. J. A. et al. (2008) ‘Heritability of “small-world” networks in the brain: a graph
theoretical analysis of resting-state EEG functional connectivity’, Human brain mapping, 29(12),
pp. 1368–1378.

138. Spiegler, Andreas, Thomas R. Knösche, Karin Schwab, Jens Haueisen, and Fatihcan M.
Atay. 2011. “Modeling Brain Resonance Phenomena Using a Neural Mass Model.” PLoS
Computational Biology 7 (12): e1002298.

139. Sporns, O. (2016) Networks of the Brain. MIT Press.
140. Sporns, O., Tononi, G. and Kötter, R. (2005) ‘The human connectome: A structural

description of the human brain’, PLoS computational biology, 1(4), p. e42.
141. Stam, C. J. (2004) ‘Functional connectivity patterns of human magnetoencephalographic

recordings: a “small-world” network?’, Neuroscience letters, 355(1-2), pp. 25–28.
142. Stefanescu, Roxana A., and Viktor K. Jirsa. 2008. “A Low Dimensional Description of

Globally Coupled Heterogeneous Neural Networks of Excitatory and Inhibitory Neurons.” PLoS
Computational Biology 4 (11): e1000219.

143. Swanson, L. W., Hahn, J. D. and Sporns, O. (2017) ‘Organizing principles for the cerebral
cortex network of commissural and association connections’, Proceedings of the National
Academy of Sciences of the United States of America, 114(45), pp. E9692–E9701.

144. Tagliazucchi, E. et al. (2012) ‘Criticality in large-scale brain FMRI dynamics unveiled by a
novel point process analysis’, Frontiers in physiology, 3, p. 15.

145. Teeuw, Jalmar, Rachel M. Brouwer, João P. O. F. T. Guimarães, Philip Brandner, Marinka
M. G. Koenis, Suzanne C. Swagerman, Maxime Verwoert, Dorret I. Boomsma, and Hilleke E.
Hulshoff Pol. 2019. “Genetic and Environmental Influences on Functional Connectivity within
and between Canonical Cortical Resting-State Networks throughout Adolescent Development in
Boys and Girls.” NeuroImage 202 (November): 116073.

146. Telesford, Qawi K., Karen E. Joyce, Satoru Hayasaka, Jonathan H. Burdette, and Paul J.
Laurienti. 2011. “The Ubiquity of Small-World Networks.” Brain Connectivity 1 (5): 367–75.

147. Theodoni, P. et al. (2020) ‘Structural attributes and principles of the neocortical
connectome in the marmoset monkey’, bioRxiv. doi: 10.1101/2020.02.28.969824.

148. Tomasi, D. and Volkow, N. D. (2010) ‘Functional connectivity density mapping’,
Proceedings of the National Academy of Sciences of the United States of America, 107(21), pp.
9885–9890.

149. Tomasi, D. and Volkow, N. D. (2011) ‘Functional connectivity hubs in the human brain’,
NeuroImage, 57(3), pp. 908–917.

150. Tzourio-Mazoyer, N. et al. (2002) ‘Automated anatomical labeling of activations in SPM
using a macroscopic anatomical parcellation of the MNI MRI single-subject brain’, NeuroImage,
15(1), pp. 273–289.

151. Utevsky, Amanda V., David V. Smith, and Scott A. Huettel. 2014. “Precuneus Is a
Functional Core of the Default-Mode Network.” The Journal of Neuroscience: The Official
Journal of the Society for Neuroscience 34 (3): 932–40.

152. Vaessen, M. J. et al. (2010) ‘The effect and reproducibility of different clinical DTI
gradient sets on small world brain connectivity measures’, NeuroImage, 51(3), pp. 1106–1116.

153. Valencia, M. et al. (2008) ‘Dynamic small-world behavior in functional brain networks
unveiled by an event-related networks approach’, Physical review. E, Statistical, nonlinear, and
soft matter physics, 77(5 Pt 1), p. 050905.

http://paperpile.com/b/ZECFcP/9IpU
http://paperpile.com/b/ZECFcP/9IpU
http://paperpile.com/b/ZECFcP/9IpU
http://dx.doi.org/10.7554/eLife.31130
http://paperpile.com/b/ZECFcP/9IpU
http://paperpile.com/b/sr3q9b/VCH9
http://paperpile.com/b/sr3q9b/VCH9
http://paperpile.com/b/sr3q9b/VCH9
http://paperpile.com/b/sr3q9b/VCH9
http://paperpile.com/b/sr3q9b/VCH9
http://paperpile.com/b/sr3q9b/VCH9
http://paperpile.com/b/eh6Mqi/HzK2
http://paperpile.com/b/eh6Mqi/HzK2
http://paperpile.com/b/eh6Mqi/HzK2
http://paperpile.com/b/eh6Mqi/HzK2
http://paperpile.com/b/eh6Mqi/HzK2
http://paperpile.com/b/eh6Mqi/HzK2
http://paperpile.com/b/eh6Mqi/HzK2
http://paperpile.com/b/ZECFcP/sUc2
http://paperpile.com/b/ZECFcP/sUc2
http://paperpile.com/b/ZECFcP/sUc2
http://paperpile.com/b/ZECFcP/sUc2
http://paperpile.com/b/ZECFcP/sUc2
http://paperpile.com/b/eh6Mqi/rwKm
http://paperpile.com/b/eh6Mqi/rwKm
http://paperpile.com/b/eh6Mqi/rwKm
http://paperpile.com/b/eh6Mqi/rvBk
http://paperpile.com/b/eh6Mqi/rvBk
http://paperpile.com/b/eh6Mqi/rvBk
http://paperpile.com/b/eh6Mqi/rvBk
http://paperpile.com/b/eh6Mqi/zB6X
http://paperpile.com/b/eh6Mqi/zB6X
http://paperpile.com/b/eh6Mqi/zB6X
http://paperpile.com/b/eh6Mqi/zB6X
http://paperpile.com/b/ZECFcP/D2oi
http://paperpile.com/b/ZECFcP/D2oi
http://paperpile.com/b/ZECFcP/D2oi
http://paperpile.com/b/ZECFcP/D2oi
http://paperpile.com/b/ZECFcP/D2oi
http://paperpile.com/b/eh6Mqi/0asd
http://paperpile.com/b/eh6Mqi/0asd
http://paperpile.com/b/eh6Mqi/0asd
http://paperpile.com/b/eh6Mqi/0asd
http://paperpile.com/b/eh6Mqi/0asd
http://paperpile.com/b/eh6Mqi/jN1g
http://paperpile.com/b/eh6Mqi/jN1g
http://paperpile.com/b/eh6Mqi/jN1g
http://paperpile.com/b/eh6Mqi/jN1g
http://paperpile.com/b/eh6Mqi/jN1g
http://paperpile.com/b/eh6Mqi/jN1g
http://paperpile.com/b/ZECFcP/tpok
http://paperpile.com/b/ZECFcP/tpok
http://paperpile.com/b/ZECFcP/tpok
http://paperpile.com/b/ZECFcP/tpok
http://paperpile.com/b/ZECFcP/tpok
http://paperpile.com/b/ZECFcP/tpok
http://paperpile.com/b/ZECFcP/tpok
http://paperpile.com/b/2HuPwB/2DPS
http://paperpile.com/b/2HuPwB/2DPS
http://paperpile.com/b/2HuPwB/2DPS
http://paperpile.com/b/2HuPwB/2DPS
http://paperpile.com/b/eh6Mqi/uOrv
http://paperpile.com/b/eh6Mqi/uOrv
http://paperpile.com/b/eh6Mqi/uOrv
http://paperpile.com/b/eh6Mqi/uOrv
http://paperpile.com/b/eh6Mqi/uOrv
http://paperpile.com/b/eh6Mqi/uOrv
http://dx.doi.org/10.1101/2020.02.28.969824
http://paperpile.com/b/eh6Mqi/uOrv
http://paperpile.com/b/eh6Mqi/mQ2c
http://paperpile.com/b/eh6Mqi/mQ2c
http://paperpile.com/b/eh6Mqi/mQ2c
http://paperpile.com/b/eh6Mqi/mQ2c
http://paperpile.com/b/eh6Mqi/mQ2c
http://paperpile.com/b/eh6Mqi/X3wS
http://paperpile.com/b/eh6Mqi/X3wS
http://paperpile.com/b/eh6Mqi/X3wS
http://paperpile.com/b/eh6Mqi/X3wS
http://paperpile.com/b/eh6Mqi/IPjJ
http://paperpile.com/b/eh6Mqi/IPjJ
http://paperpile.com/b/eh6Mqi/IPjJ
http://paperpile.com/b/eh6Mqi/IPjJ
http://paperpile.com/b/eh6Mqi/IPjJ
http://paperpile.com/b/eh6Mqi/IPjJ
http://paperpile.com/b/eh6Mqi/IPjJ
http://paperpile.com/b/ZECFcP/vuSe
http://paperpile.com/b/ZECFcP/vuSe
http://paperpile.com/b/ZECFcP/vuSe
http://paperpile.com/b/ZECFcP/vuSe
http://paperpile.com/b/ZECFcP/vuSe
http://paperpile.com/b/eh6Mqi/WV81
http://paperpile.com/b/eh6Mqi/WV81
http://paperpile.com/b/eh6Mqi/WV81
http://paperpile.com/b/eh6Mqi/WV81
http://paperpile.com/b/eh6Mqi/WV81
http://paperpile.com/b/eh6Mqi/WV81
http://paperpile.com/b/eh6Mqi/k6a1
http://paperpile.com/b/eh6Mqi/k6a1
http://paperpile.com/b/eh6Mqi/k6a1
http://paperpile.com/b/eh6Mqi/k6a1
http://paperpile.com/b/eh6Mqi/k6a1
http://paperpile.com/b/eh6Mqi/k6a1
http://paperpile.com/b/eh6Mqi/k6a1


154. Vanni, S., T. Tanskanen, M. Seppä, K. Uutela, and R. Hari. 2001. “Coinciding Early
Activation of the Human Primary Visual Cortex and Anteromedial Cuneus.” Proceedings of the
National Academy of Sciences of the United States of America 98 (5): 2776–80.

155. Varela, F. et al. (2001) ‘The brainweb: phase synchronization and large-scale integration’,
Nature reviews. Neuroscience, 2(4), pp. 229–239.

156. Vertes, R. P., W. B. Hoover, and J. J. Rodriguez. 2012. “Projections of the Central Medial
Nucleus of the Thalamus in the Rat: Node in Cortical, Striatal and Limbic Forebrain Circuitry.”
Neuroscience 219 (September): 120–36.

157. van Vugt, B. et al. (2018) ‘The threshold for conscious report: Signal loss and response bias
in visual and frontal cortex’, Science, 360(6388), pp. 537–542.

158. Wallace, R. (14 de abril de 2005) Consciousness: A Mathematical Treatment of the Global
Neuronal Workspace Model. Edición: 2005. Springer.

159. Wang, X.-J. (2002) ‘Probabilistic decision making by slow reverberation in cortical
circuits’, Neuron, 36(5), pp. 955–968.

160. Watts, D. J. and Strogatz, S. H. (1998) ‘Collective dynamics of “small-world” networks’,
Nature, pp. 440–442. doi: 10.1038/30918.

161. Widjaja, E., M. Zamyadi, C. Raybaud, O. C. Snead, and M. L. Smith. 2013. “Abnormal
Functional Network Connectivity among Resting-State Networks in Children with Frontal Lobe
Epilepsy.” AJNR. American Journal of Neuroradiology 34 (12): 2386–92.

162. Wilson, C. (2008) ‘Up and down states’, Scholarpedia journal, 3(6), p. 1410.
163. Windey, Bert, and Axel Cleeremans. 2015. “Consciousness as a Graded and an All-or-None

Phenomenon: A Conceptual Analysis.” Consciousness and Cognition 35 (September): 185–91.
164. Wirsich, J. et al. (2018) ‘Brain Networks are Independently Modulated by Donepezil, Sleep,

and Sleep Deprivation’, Brain topography, 31(3), pp. 380–391.
165. Wong, K.-F. and Wang, X.-J. (2006) ‘A recurrent network mechanism of time integration in

perceptual decisions’, The Journal of neuroscience: the official journal of the Society for
Neuroscience, 26(4), pp. 1314–1328.

166. Xiao, Min, Haitao Ge, Budhachandra S. Khundrakpam, Junhai Xu, Gleb Bezgin, Yuan
Leng, Lu Zhao, et al. 2016. “Attention Performance Measured by Attention Network Test Is
Correlated with Global and Regional Efficiency of Structural Brain Networks.” Frontiers in
Behavioral Neuroscience 10 (October): 194.

167. Zhang, Sheng, Shang-Jui Tsai, Sien Hu, Jiansong Xu, Herta H. Chao, Vince D. Calhoun,
and Chiang-Shan R. Li. 2015. “Independent Component Analysis of Functional Networks for
Response Inhibition: Inter-Subject Variation in Stop Signal Reaction Time.” Human Brain
Mapping 36 (9): 3289–3302.

168. Zuo, X.-N. et al. (2012) ‘Network centrality in the human functional connectome’, Cerebral
cortex , 22(8), pp. 1862–1875.

http://paperpile.com/b/ZECFcP/Ik4N
http://paperpile.com/b/ZECFcP/Ik4N
http://paperpile.com/b/ZECFcP/Ik4N
http://paperpile.com/b/ZECFcP/Ik4N
http://paperpile.com/b/ZECFcP/Ik4N
http://paperpile.com/b/eh6Mqi/sNHP
http://paperpile.com/b/eh6Mqi/sNHP
http://paperpile.com/b/eh6Mqi/sNHP
http://paperpile.com/b/eh6Mqi/sNHP
http://paperpile.com/b/eh6Mqi/sNHP
http://paperpile.com/b/eh6Mqi/sNHP
http://paperpile.com/b/ZECFcP/3eQ8
http://paperpile.com/b/ZECFcP/3eQ8
http://paperpile.com/b/ZECFcP/3eQ8
http://paperpile.com/b/ZECFcP/3eQ8
http://paperpile.com/b/ZECFcP/3eQ8
http://paperpile.com/b/eh6Mqi/XyTe
http://paperpile.com/b/eh6Mqi/XyTe
http://paperpile.com/b/eh6Mqi/XyTe
http://paperpile.com/b/eh6Mqi/XyTe
http://paperpile.com/b/eh6Mqi/XyTe
http://paperpile.com/b/eh6Mqi/XyTe
http://paperpile.com/b/eh6Mqi/ucxN
http://paperpile.com/b/eh6Mqi/ucxN
http://paperpile.com/b/eh6Mqi/ucxN
http://paperpile.com/b/eh6Mqi/ucxN
http://paperpile.com/b/eh6Mqi/6QmZ
http://paperpile.com/b/eh6Mqi/6QmZ
http://paperpile.com/b/eh6Mqi/6QmZ
http://paperpile.com/b/eh6Mqi/6QmZ
http://paperpile.com/b/eh6Mqi/5HFP
http://paperpile.com/b/eh6Mqi/5HFP
http://paperpile.com/b/eh6Mqi/5HFP
http://paperpile.com/b/eh6Mqi/5HFP
http://dx.doi.org/10.1038/30918
http://paperpile.com/b/eh6Mqi/5HFP
http://paperpile.com/b/ZECFcP/itGa
http://paperpile.com/b/ZECFcP/itGa
http://paperpile.com/b/ZECFcP/itGa
http://paperpile.com/b/ZECFcP/itGa
http://paperpile.com/b/ZECFcP/itGa
http://paperpile.com/b/eh6Mqi/85P5
http://paperpile.com/b/eh6Mqi/85P5
http://paperpile.com/b/eh6Mqi/85P5
http://paperpile.com/b/ZECFcP/egpZ
http://paperpile.com/b/ZECFcP/egpZ
http://paperpile.com/b/ZECFcP/egpZ
http://paperpile.com/b/ZECFcP/egpZ
http://paperpile.com/b/eh6Mqi/vFH0
http://paperpile.com/b/eh6Mqi/vFH0
http://paperpile.com/b/eh6Mqi/vFH0
http://paperpile.com/b/eh6Mqi/vFH0
http://paperpile.com/b/eh6Mqi/vFH0
http://paperpile.com/b/eh6Mqi/vFH0
http://paperpile.com/b/eh6Mqi/9zol
http://paperpile.com/b/eh6Mqi/9zol
http://paperpile.com/b/eh6Mqi/9zol
http://paperpile.com/b/eh6Mqi/9zol
http://paperpile.com/b/eh6Mqi/9zol
http://paperpile.com/b/ZECFcP/nNta
http://paperpile.com/b/ZECFcP/nNta
http://paperpile.com/b/ZECFcP/nNta
http://paperpile.com/b/ZECFcP/nNta
http://paperpile.com/b/ZECFcP/nNta
http://paperpile.com/b/ZECFcP/nNta
http://paperpile.com/b/ZECFcP/TLX2
http://paperpile.com/b/ZECFcP/TLX2
http://paperpile.com/b/ZECFcP/TLX2
http://paperpile.com/b/ZECFcP/TLX2
http://paperpile.com/b/ZECFcP/TLX2
http://paperpile.com/b/ZECFcP/TLX2
http://paperpile.com/b/eh6Mqi/rom5
http://paperpile.com/b/eh6Mqi/rom5
http://paperpile.com/b/eh6Mqi/rom5
http://paperpile.com/b/eh6Mqi/rom5
http://paperpile.com/b/eh6Mqi/rom5
http://paperpile.com/b/eh6Mqi/rom5

	THE MESOSCALE ORGANIZATION OF HUMAN CONNECTOME SHA
	Results chapter 1 - Optimizing the detection of co
	Results chapter 2 - The specific core-shell organi
	Results chapter 3 - Brain network under attack: pr
	Discussion
	Figure 36. The intrinsic ignition framework.
	Appendix

	1.  Spontaneous fluctuations and ignition in corti
	1.1.  Fluctuations in cortical activity: Ignition
	1.2.  Global neuronal workspace theory
	1.3.  Hierarchical information processing
	2.  The structural organization of the human conne
	2.1.  The connectome: a neural map of the human c
	2.2.  Network analysis of the structural organiza
	3.  Ignition in the whole-brain model of cortical 
	1.  Cortical connectome datasets
	1.1.  Cortico-cortical connections of the human c
	1.2.  Structural connectivity matrix
	2.  Network analysis
	2.1.  Local organization
	2.2.   Mesoscale organization
	2.3.  Global organization
	2.4.  Network toolbox
	3.  Structural surrogate models 
	3.1.  Unweighted surrogate connectome (uSCs) mode
	3.2.  Weighted surrogate connectome (wSCs) models
	4.1.  Mean-field model (MFM) of cortical activity
	4.2.  Computer simulations and fixed-point analys
	4.3.  Ignition in the whole-brain model: Bifurcat
	5.  Node ignition analysis
	5.1.  Thresholding of node activity
	5.2  Relationship between ignition and network or
	6.  The pruning of connectome’s connections based 
	1.  The ignition in the cortical activity of the i
	2.  The ignition in the cortical activity of the w
	2.1.  Detection of the network steady-state is op
	2.2.  Detection of the network steady-state is op
	1.  Cortical ignition and the network organization
	1.1.  Human connectome: modeling of ignition and 
	1.2.  Ignition in cortical activity is structural
	2.  Ignition in cortical activity is tightly linke
	2.1.  The ignition is triggered in the weighted c
	2.2.  The ignition recruitment is organized by th
	3.  Ignition in neural activity of other organisms
	3.1.  Organism’s connectomes: modeling of ignitio
	3.2.  The ignition is triggered in the weighted c
	3.3.  The ignition recruitment is related to the 
	1.  Pruning of the densely connected nodes
	2.  Random pruning
	3.  Pruning of the sparsely connected nodes
	Figure 36. The intrinsic ignition framework. Follo

	1.  Controls for the human dataset of Hagmann
	2.  The script of the dynamic simulation of the me

