DOCTORADO en CIENCIAS

Pannexin 1 restricts dendritic branching and formation of dendritic spines in hippocampal neurons: possible role of small Rho GTPases and F-actin.

Tesis entregada a LA UNIVERSIDAD DE VALPARAÍSO en Cumplimiento Parcial de los requisitos para optar al grado de Doctor en Ciencias con Mención en Neurociencia Facultad De Ciencias

Por

Carolina Andrea Flores Muñoz Dirigida por: Dr. Álvaro O. Ardiles Araya Co-Dirigida por: Dr. Agustín D. Martínez Carrasco

ACKNOWLEDGMENT	<i>iv</i>
FINANCIAL SUPPORT	v
INDEX	vi
LIST OF TABLES	ix
LIST OF FIGURES	<i>x</i>
ABBREVIATIONS OR NOMENCLATURE	<i>xii</i>
ABSTRACT	<u>xv</u>
INTRODUCTION	
An Overview of Pannexins	1
Activation of Panx1 Channels	
Panx1 Expression in the CNS	3
Physiological Roles of Panx1	4
Panx1 and Neuronal Cytoskeleton	5
Panx1 and Structural Plasticity	5
Structural Organization of Actin Filaments in the CNS	6
Small Rho GTPases and Regulation	7
Small Rho GTPases and Neuronal Cytoskeleton	9
1. Ras-related C3 botulinum toxin substrate 1 (Rac1)	
2. Cell division cycle 42 (Cdc42)	
3. Ras homologous member A (RhoA)	10
Regulation of Rho GTPase signaling pathways at synapses	10
HYPOTHESIS	13
GENERAL AIM	13
SPECIFIC AIMS	14
MATERIALS AND METHODS	15

INDEX

1.	Animals	15
2.	Primary Mouse Hippocampal Neuron Culture	15
3.	Reduction of Panx1 Expression by siRNA	15
4.	gly-LTP in Cultured Hippocampal Neurons	16
5.	Extracellular ATP Measurements	16
6.	Morphological and F-actin Analysis In Vitro	16
7.	Single-Neuron Cytosolic Calcium Measurements	18
8.	Slice Preparation for Biochemical Experiments	18
<i>9</i> .	Field Electrophysiological Recordings in Hippocampal Slices	19
10.	Determination of Relative Amount of Synaptic Proteins	19
11.	Rho GTPase Activity Assay	20
12.	F-actin Quantification In Vivo	21
<i>13</i> .	Golgi-Cox Staining	21
14.	Dendritic Morphological Analysis	21
15.	Dendritic Spines Morphological Analysis	22
16.	Statistical Analysis	22
RESU	LTS	24
	ckade or reduced expression of Panx1 channels enhanced dendritic arborization plexity of hippocampal neurons	24
	luction or blockage of Panx1 channels enhances dendritic spines density of pocampal neurons	30
	luction or blockade of Panx1 channels enhance the content of F-actin in dendrites l dendritic spines	_ 33
	ckade or reduced expression of Panx1 channels increases PSD-95 and its	
colo	ocalization with F-actin in dendritic spines of cultured hippocampal neurons	36
Par	nx1 channels deletion influences hippocampal neuronal morphology <i>in vivo</i>	43

Panx1 channels ablation or blockade enhance the spines density of hippocampal	
pyramidal neurons	
Blockade or lack of Panx1 channels increased levels of synaptic proteins in hippocan	n
neurons	_
Lack or blockade of Panx1 channels increases content of F-actin and expression of A	J
Panx1 channels may influence the steady-state activity levels of Rho GTPases	_
Blockade of Panx1 channels regulate dendritic branching and density of dendritic sp	oi
by activating Rac1 and RhoA Rho GTPases	
Panx1 channels could activate the Rho GTPase pathway via Ca ²⁺ /CaMKII-dependent	1
signaling	
ISCUSSION	
Summary of findings	
Panx1 channels regulate neuronal structural modifications	
Panx1 channels modulates the content of F-actin by ABPs	
Panx1 regulates morphological changes by crosstalk between RhoA and Rac1 GTPases	
Panx1 channels could activate the RhoA and Rac1 pathways via Ca ²⁺ ?	_
Panx1 channels a new modulator of astrocytes processes and dendritic arborization in t	1
hippocampus?	
It is necessary to study Panx1 channels in neuronal morphology?	
UPPLEMENTARY MATERIAL	_
IBLIOGRAPHY	

LIST OF TABLES

Table 1. Dendritic spine parameters in vitro resting conditions	30
Table 2. Dendritic spine classification parameters in vitro gly-LTP treated neurons	33
Table 3. Dendritic spine parameters in vitro gly-LTP treated neurons with DL-APV	42
Table 4. Dendritic spine classification parameters in vivo resting conditions	46
Table 5. Dendritic spine classification parameters in vivo gly-LTP treated neurons	49
Table 6. Dendritic spine classification parameters in vitro gly-LTP treated neurons with activa	tor or
inhibitor Rho GTPases	65

LIST OF FIGURES

Figure 1. Schematic illustration of the topological structure of Panxs 1
Figure 2. Mechanism of Panx1 channels activation 2
Figure 3. Cellular distribution of Panx1 channels in the brain 3
Figure 4. The neuronal actin cytoskeleton and its regulation by external factors7
Figure 5. Overview of Rho GTPase regulation8
Figure 6. The signaling pathway from Rho GTPases to the actin cytoskeleton 10
Figure 7. Regulation of Rho GTPase activity by synaptic activation 11
Figure 8. Control efficiency of Panx1 knockdown 25
Figure 9. ATP release depends on Panx1 channels activity in cultured hippocampal neurons25
Figure 10. Blockade or reduced expression of Panx1 channels increases dendritic length and
branching of resting hippocampal neurons 27
Figure 11. Blockade or reduced expression of Panx1 channels results in increased spine density
and F-actin content in resting conditions 29
Figure 12. Reduction or blockade of Panx1 channels results in increased spine density in vitro
after gly-LTP induction 31
Figure 13. Panx1 channels reduction and blockade promoted an additional increase in dendritic
spines density induced by gly-LTP 32
Figure 14. Reduction or blockade of Panx1 channels enhance F-actin content in dendrites and
dendritic spines after gly-LTP induction 34
Figure 15. Blockade or reduced expression of Panx1 channels increase content of F-actin in
dendrites and dendritic spines under resting or gly-LTP induction 35
Figure 16. Under resting conditions, reduction or blockade of Panx1 channels increase the PSD-
95 puncta and colocalization with F-actin in cultured hippocampal neurons 37
Figure 17. Blockade or reduction of Panx1 increases the colocalization between F-actin and PSD-
95 after gly-LTP induction 38
Figure 18. Reduction of Panx1 increases the colocalization between F-actin and PSD-95
independent of gly-LTP induction 39
Figure 19. DL-APV blocks dendrites and spines growth induced by the blockade of Panx1
channels in hippocampal neurons 41
Figure 20. Enhanced dendritic arborization in Panx1 KO neurons under resting conditions
44

Figure 21. Enhanced spine maturation in Panx1 KO neurons under restin	•
Figure 22. gly-LTP induced in hippocampal synapses of WT mice	
Figure 23. Panx1 channels ablation or blockade enhanced the spine density of	
pyramidal neurons after gly-LTP	
Figure 24. Panx1 KO demonstrates alterations in pre-and postsynaptic proteins	
Figure 25. Ablation or blockade of Panx1 channels changes synaptic protein con	
gly-LTP	-
Figure 26. Ablation or blockade of Panx1 channels increase F-actin content in p	
region	
Figure 27. The lack of Panx1 channels increases the protein levels of ABPs	
conditions	53
Figure 28. Lack or blockade of Panx1 channels increases the protein levels of ABPs	
induction	54
Figure 29. Ablation or blockade of Panx1 channels affect RhoA and Rac1 GTPase	
Figure 30. Blockade of Panx1 channels prevents the effect of the activation of R	
effects on dendritic complexity in hippocampal neurons	58
Figure 31. The changes in dendritic complexity by blockade of Panx1 channels are	e abolished by
the inactivation of Rac1 signaling in hippocampal neurons	60
Figure 32. Panx1 channels blockade restored dendritic spines density by RhoA sign	aling pathway
Figure 33. Blockade of Panx1 channels increase spines density and colocalization	
95 and F-actin by modulating RhoA and Rac1 signaling pathway	
Figure 34. Panx1 channels modulate the activation of Rac1 and RhoA GTPa	
	66
Figure 35. Blockade of Panx1 channels increases F-actin content in dendrites and	d dendritic by
RhoA and Rac1 activity	
Figure 36. Lack of Panx1 channels changes the expression of kinases involved in 1	
	69
Figure 37. Blockade of Panx1 channels exhibit decrease in cytosolic Ca ²⁺ induce	d by gly-LTP
	71
Figure 38. Proposed model for Panx1 channels under resting or gly-LTP conditions	

The morphological integrity and plastic properties of neurons depend on the dynamics of the neuronal cytoskeleton and involve changes in synaptic morphology and electrical signaling. Dendrites and dendritic spines are the major locus for excitatory synapses, and the actin cytoskeleton is their principal structural and regulatory component. Hence, actin reorganization places a central role in regulating of dendritic arborization and dendritic spines formation and maturation. In this regard, the family of small Rho GTPases, RhoA, Rac1, and Cdc42 play an essential role in regulating structural plasticity by controlling the assembly and stability of the actin cytoskeleton. However, the signals that control the activation or inhibition of the different small Rho GTPases in neuronal development and plasticity are relatively unknown.

Pannexin 1 (Panx1) is a membrane protein that forms non-selective channels implicated in actin-dependent processes in neurons such as cell migration and neurite extension, suggesting that Panx1 also be involved in other structural changes such as those associated with synaptic plasticity.

Here, we investigate if Panx1 channels modulate F-actin remodeling-dependent structural plasticity in hippocampal neurons through a mechanism that involves small Rho GTPases activity. We observed that the absence or blockade of Panx1 channels upon resting conditions increased the length and complexity of the dendritic arbor of hippocampal neurons. Similarly, under the induction of long-term chemical potentiation by glycine stimulation, hippocampal neurons exhibited a higher dendritic spines density than control neurons.

Interestingly, the absence or blockade of Panx1 channels stimulated the content of Factin and increased the expression and activity of Rac1 and Cdc42 Rho GTPases. Consistently, the inactivation of Rac1 prevents the effect of Panx1 channels inhibition on dendritic arborization and the density of dendritic spines.

Our results provide evidence that the role of Panx1 channels in neuronal morphology and structural synaptic plasticity relies on actin organization and dynamics by regulation of RhoA and Rac1 GTPase activity.