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Abstract—Osteoporosis and associated fragility fractures are
still a societal problem. Several quantitative ultrasound ap-
proaches have been proposed to overcome limitations of the
current gold standard DXA. Bi Directional Axial Transmission
(BDAT) is based on the measurement of waves guided by the
cortical bone shell. Cortical thickness (Ct.Th) and porosity
(Ct.Po) estimates correspond to the maxima of the objective
function Proj(Ct.Th,Ct.Po), initially defined as the projection of
a tested model in the singular vector basis (method 1). Each
model matrix has the same dimension, i.e., Nf=124 x Nk=256,
512, 1024 or 2048 pixels, of an ultrasonic guided wave spectrum
experimental image Norm(f, k). The total number of models
is equal to Nth=38 x Npo=25, i.e., the number of cortical
thickness and porosity taken into account, ranging respectively
from 0.8 to 4.5 mm and 1 to 25%. Finally, each pixel of the
alternative objective function (NthxNpo pixels) corresponds to
the pixel-wise image multiplication between one model and the
experimental guided wave spectrum image (method 2) or a sparse
matrix multiplication between experimental and model reshaped
vectors (method 3). The three methods were tested on data
obtained on 400 measurements. It was observed that methods
2 and 3 provided the same Ct.Th Ct.Po values while differences
with method 1 decreased with Nk. Acceptable differences, i.e.,
lower than the typical measurement resolution (0.2 mm for Ct.Th
and 1% for Ct.Po) were achieved for Nk=2048. Using Matlab
on a standard desktop, this calculation took 20, 4 and 0.3 s,
for the methods 1 to 3, respectively. Method 3 calculation was
achieved in 5 ms using C++. This last value opens perspective
toward guiding interface improvement using real time objective
function.

Index Terms—Ultrasonic guided waves, cortical bone, real time
guiding interface, pixel-wise image multiplication, sparse matrix
multiplication

I. INTRODUCTION

Osteoporosis is recognized as a skeletal disorder, caused by
an imbalance in bone remodeling, which is influenced by the
genetic code and several other factors, including the adequate
level of physical, hormonal, and nutritional activity [1], [2].
Osteoporotic bone has increased porosity and decreased thick-
ness that increases the risk of fracture. Worldwide, 1.6 million
hip fractures occur annually and are expected to increase to
6.3 million by 2050 [3]. In addition, 1 in 3 women and 1 in 5

men over 50 years are expected to suffer from an osteoporotic
fracture [2].

Currently, the gold standard for fracture risk assessment
is dual-energy X-ray absorptiometry (DXA) [4], [5]. This
technique generates a calibrated gray level image by applying
a small dose of X-rays. This image provides bone mineral
density by area as well as its normalized T-score counterpart.
In fact, osteoporosis in adults is diagnosed on the basis of a T-
score equal to or lower than -2.5. However, most people who
suffer fragility fractures are above this limit [6], [7]. On the
other hand, DXA has the disadvantage of its large volume and
cost, making it difficult to access a large part of the world’s
population such as in Latin America [8].

Within ultrasound techniques [9], alternatives such as vi-
broacoustic [10], imaging [11], back scattering [12] have been
recently proposed. The ultrasonic alternative used in this study
is the bidirectional axial transmission device (BDAT) [13],
measuring the propagation of guided waves at 1 MHz, with a
wavelength comparable to the cortical thickness [14]. In par-
ticular, the SVD-based method applied to multiple transmitters
and receiver provides a guided wave spectrum image (GWSI),
initially denoted Norm(f, k) [15]. This approach has been
generalized to an inverse problem scheme, denoted objective
function, which maxima position correspond to cortical poros-
ity (Ct.Po) and cortical thickness (Ct.Th) estimates. However,
this approach tends to fail for patients associated with either
poor guided mode information [16] or difficulties for in vivo
probe alignment [16]. Thus, the development of robust and fast
inverse problem is a key parameter to success of the device.

Several methods have been proposed for the assessment of
anisotropic plate properties [17], [18] using the dispersive [19]
and sparse [20] properties of guided waves. The objective
function used in this study is based on a 2D-transverse
isotropic free plate model [21], with the elasticity parametrized
with porosity considering a fixed bone matrix [22]. The
objective of the study is to proposed two alternatives methods
to the objective functions and to compare their results and
calculation times.
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II. MATERIALS AND METHODS

A. Method 1

The first method has proposed in Ref. [16] and will be
used as a reference in the following. It has been initially
introduced as a generalisation of the so-called Norm func-
tion obtained through a SVD-enhanced 2-D spatio-temporal
Fourier transform [15] and also called guided wave spectrum
image [23]. Each pixel corresponds to the projection of testing
vector into the reception singular basis [15]. The testing vector
spans all the waves measurable by the device, corresponding
to all frequencies f and wave numbers k within the device
bandwidth. Thus, each pixel (f, k) of the Norm function
reflects in a 0-1 scale the presence rate of the tested plane
wave in the measured signals.

In the case of the objective function, instead of spanning all
measurable waves, the testing vectors are limited to the guided
modes of the model [16], [24]. This approach takes advantage
of the sparsity of the (f, k) domain, i.e., for a considered
model, only a finite number M of guided mode wave numbers
km(f, Ct.Th,Ct.Po) are present at each frequency [25]. Each
pixel of the objective function reflects in a 0-1 scale the
presence rate of the tested model in the measured signals.
Thus, the optimal model parameters Ct.Th and Ct.Po can
be found by maximizing the objective function. An example
of objective function is shown in Fig. 1. This point of view can
be interpreted as a multimode Disperse Radon Transform [26].
However, this formulation prevented fast calculation for real
application. The reference time for method 1 is 20 s. In
the following, two alternative formulations of the objective
function are proposed.

Fig. 1. Method 1: A pixel of the objective function (NthxNpo pixels)
corresponds to the projection of of a tested model in the singular vector
basis [16].

B. Method 2

The waveguide models are stored as sparse matrices, i.e.,
containing few non zero values corresponding to the theoret-
ical guided mode positions in the frequency f , wavenumber
k plane. The value of the pixel is equal to 1 divided by the
number of theoretical modes at one frequency. Each model
matrix has the same dimension, i.e., Nf=124 x Nk=256, 512,
1024 or 2048 pixels, of an ultrasonic guided wave spectrum
experimental image Norm(f, k). The total number of models

is equal to Nth=38 x Npo=25, i.e., the number of cortical
thickness and porosity taken into account, ranging respectively
from 0.8 to 4.5 mm and 1 to 25%. Finally, each pixel of the
alternative objective function (NthxNpo pixels) corresponds
to the pixel-wise image multiplication between one model and
the experimental guided wave spectrum image (method 2).
Both images have indeed the same dimension: NfxNk. An
example of multiplication of a guided wave spectrum image
and a wave guided image is shown in Fig. 2.

Fig. 2. Method 2: A pixel of the alternative objective function (NthxNpo
pixels) corresponds to the pixel-wise image multiplication between one model
and the experimental guided wave spectrum image.

The main difference with method 1 is that the mth guided
mode wavenumber kthm (f) at frequency f is approximated
to the closed wavenumber value of the sampled k vector.
In method 1, exact guided mode wavenumber are taken into
account. That is why, difference resolution for the k vector
are considered: Nk=256, 512, 1024 and 2048. The number
of frequencies Nf remains equal to 124, for considered
frequencies ranging to 0.4 to 1.6 MHz.

C. Method 3

n the second method, a loop on the models is necessary
to achieve the complete alternative objective function. The
idea behind the third method is obtain the same results
using less computation. To this end, image dimensions and
reshaped matrices are taken into account following Orthogonal
Matching Pursuit approach [27]. Principle is described in
Fig. 3. First, both guided wave spectrum image and model
database are reshaped. The guided wave spectrum image is
reshaped from a 2D NfxNk matrix to a 1D 1x(Nf.Nk)
vector. Likewise, the model database is reshaped from a 4D
to a 2D matrix, which dimensions are (Nf.Nk)x(Nth.Npo).
Thus, the matrix product between two previous vector and
matrix is a 1x(Nth.Npo) vector, which can be reshaped into
a NthxNpo objective function. Two multiplications will be
considered: classical and sparse matrix multiplication [28].
The three methods were tested on data obtained on 400 in
vivo measurements.

III. RESULTS

It was observed that methods 2 and 3 provided the same
Ct.Th Ct.Po values while differences with method 1 decreased
with Nk. Acceptable differences, i.e., lower than the typi-
cal measurement resolution (0.2 mm for Ct.Th and 1% for
Ct.Po [24]) were achieved for Nk=2048.
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Fig. 3. Method 3: A pixel of the objective function (NthxNpo pixels)
corresponds to a sparse matrix multiplication between experimental and model
reshaped vectors.

Calculation times are provided in Fig. 4. As expected, it
can be observed that the times increase with Nk. Compared
to the reference time of method 1 (2O s), methods 2 and 3
are quicker. Using Matlab on a standard desktop, method 2,
based on image products, needs 4 s for Nk = 2048. Likewise,
method 3, based on a single matrix product and reshaped, is
8 times faster in the same condition. The same calculation
has been tested in C++ with a 5 time gain. Finally, the
smallest calculation time, i.e. 5 ms, was achieved in C++ using
the sparse matrix multiplication point of view. Compared to
method 1, the total time gain is about 5000.

Fig. 4. Comparison of the calculation times of the three methods using Matlab
and C++ in function of Nk

IV. CONCLUSIONS

The context of this study is the development of a clinical
BDAT prototype, based on the measurement of ultrasonic
guided waves in cortical bone. The aim is to achieve and
robust and easy to use measurement. The novel formulations
of the inverse problem objective function, allowing to obtain
estimates of cortical thickness and porosity, lead to typical
calculation time of 5 ms. This result opens perspective toward
guiding interface improvement using real time objective func-
tion. This approach will be soon integrated in the interface
device.
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