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Abstract

The unique capabilities of Type Ia Supernovae (SN Ia), with emission bright and uni-

form enough to serve as yardsticks on cosmological distance scales, has resulted in

them becoming some of the most important objects in the universe, and have led to

the discovery of its accelerating expansion and eventually to the award of the 2011

Nobel Prize in Physics. Although it is well established that SN Ia are related to the

thermonuclear ignition of a white dwarf (WD) that surpassed the Chandrasekhar

mass limit, there is not yet a general consensus on the pathways leading to the ex-

plosion. While it is clear that the progenitors of SN Ia are close binaries which contain

at least one WD, how these close binaries form and the detailed nature of the second

stellar component remain one of the largest unsolved problems in astronomy.

The two main progenitor channels that have been proposed are the single degener-

ate channel in which the WD accretes from a non-degenerate companion, and the

double degenerate channel, which explains SN Ia explosions as the merger of two

WDs. However, whether nature has a strong preference for one of these channels, or

whether a combination of several evolutionary channels contributes to the observed

SN Ia rate, remains an open question. The fact that we haven’t solved yet this impor-

tant issue has two main reasons. First, the evolution of initial main sequence binary

stars into close WD binary stars is a very complicated process and current theories

are unable to simulate it in detail. Binary population models therefore rely on rather

simple empirical relations with often completely unconstrained parameters, which

makes it virtually impossible to make reliable predictions on SN Ia rates produced by

any of the proposed channels. On top of that, it might even be that triple star dy-

namics produce significant numbers of close WD binaries, which is usually entirely

ignored. Second, despite some significant recent progress, we still haven’t been able

to provide decisive observational constraints on WD binary pathways towards SN Ia.

This is largely because the direct progenitors of SN Ia explosions are either short-lived

and potentially highly obscured super soft X-ray sources and/or faint and hard to de-

tect close double WD binaries.
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The difficulty of providing clear constraints from surveys of the direct progenitors

of SN Ia motivated us to go one step back in the evolution of the proposed progen-

itor systems. Before a double WD system is formed and before a WD accretes from

a non-degenerate companion, these systems must have been detached binary stars

consisting of a WD and an intermediate mass star (typically FGK spectral types) com-

panion, formed in most cases after a common envelope (CE) phase. Characterizing a

large sample of such detached WD plus main-sequence FGK star systems, that both

classic SN Ia progenitors originally descended from, can provide crucial constraints

on close WD binary evolution in general and the SN Ia progenitor problem in partic-

ular.

The compact binary star group at the University of Valparaiso runs a large scale ob-

servational project aiming at identifying a large number of detached WD+FGK binary

stars. Several close binaries have already been identified and some early results have

been published. Interestingly, about 33± 12% of the identified close binaries are in

eccentric orbits, which can not be explained by the main formation channel of close

WD+FGK systems, the CE phase.

Based on previous studies that involve hierarchical triple systems and the effect of

a distant extra component perturbing the binary, we propose that those observed

eccentric binaries are in fact triples systems, where the third star alters the orbital

properties like the eccentricity in the so called Kozai-lidov Mechanisms (KLMs), and

together with tidal forces can produce close binaries with eccentric orbits. As most

of the observed systems only have spectroscopic measurements of the main sequence

star component of the close binary, we have two possible configurations that locate

the WD either orbiting this sun-like star or being a distant companion to an inner bi-

nary consisting of the sun-like star and an unseen low-mass main sequence star.

In this thesis we estimate the amount of close WD+FGK binaries that evolved through

KLMs (i.e., the binary as part of the triple systems) instead of via the CE phase, and the

fraction of triple systems where the WD is either part of the binary or is the distant

companion itself. To do this, we use the statistical research of hierarchical multiple

stars of Tokovinin [2014b] to generate the initial conditions of a population of binary

and triple systems that will be evolved using the Binary Star Evolution code (BSE). As

the BSE algorithm only includes the evolution of single and binary stars, we evolve

the distant companion as an isolated stars. Four simulations (assuming different ec-

centricity distribution) show that on average 23% of binaries of the observed sample

could be potential hierarchical triple systems that evolved via KLMs , where about

79% correspond to systems where the WD is the distant companion, in agreement
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with the observations. Finally, we observationally study one of the binaries with ec-

centric orbit, and find the third component to be the white dwarf. We estimate that

most likely the KLMs were active before the WD formed.
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CHAPTER 1

Introduction

The undeniable capability of SNe Ia as standard candles on cosmological distance

scales, which allows to determine cosmological parameters, has made them some of

the most important events in the Universe. However, despite their importance, the

nature of the progenitors of SNe Ia is still uncertain. While it is clear that SNe Ia are

caused by the explosion of a white dwarf in a close binary star system, the evolution-

ary pathways that lead to the formation of these close binaries is poorly understood.

One possibility to improve this situation, is to investigate a crucial evolutionary phase

that all binaries that eventually evolve towards SN Ia must pass: close but detached

white dwarf+FGK spectral type binary stars.

With the aim to significantly contribute to solving the SN Ia progenitor problem, we

run a large scale observational project entirely dedicated to characterize a large sample

of WD+FGK binaries. In brief, our strategy is to 1) identify candidates from correlating

GALEX with optical surveys, 2) take spectra to look for radial velocity variations, and

3) to measure the orbital periods. We have measured about a dozen periods so far, and

much to our surprise, about one third of these systems have eccentric orbits. The most

likely explanation for this is that triple dynamics are involved. In this thesis we inves-

tigate this hypothesis using statistics of triple systems and binary population models.

As this final goal involves several different areas of stellar astrophysics, we provide

in this Chapter 1 the theoretical background of binary star evolution, supernovae Ia

progenitors, statistics of multiple stars, and the most important effect of triple interac-
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1.1. EVOLUTION OF LOW AND INTERMEDIATE MASS STARS

tions (the Kozai-Lidov oscillations). We need to introduce all these different topics as

they all play important roles in the presented research.

1.1 Evolution of low and intermediate mass stars

The evolution of a star is driven by the conservation of hydrostatic equilibrium, where

the force exerted by gravity on the gas is balanced by the force exerted by a pressure

gradient. This equilibrium can be disrupted by a change in the energy production

inside the star, which may lead to structural changes with the aim to conserve it.

Stars spend most of their lifetime (≈ 90%) in the main sequence stage, where the

energy source is hydrogen burning in the core (which contains ≈ 10% of the total

mass of the star). Once hydrogen in the core is significantly depleted, a hydrogen

shell surrounding the remaining helium core provides almost the total luminosity of

the star. During this shell burning phase the mass of the contracting core increases,

while the region outside the shell expands, reaching a stellar radius from 10 to 100

R� for stars with mass M . 8M�. When the density and temperature in the core

become high enough, helium burning starts causing the core to expand, while the

outer parts of the star contract until the stable helium burning phase (or HBP) is

reached (for intermediate mass stars) or helium ignites under degenerated conditions

(for low mass stars M . 2M�), which leads to a helium flash and a shorter helium

burning phase. While in the core helium is converted into carbon and oxygen, the

hydrogen shell burning still provides most of the total luminosity. The HBP ends

with an oxygen carbon core surrounded by a helium burning shell, which is itself

surrounded by the hydrogen burning shell. At this stage the star can expand even

more, reaching 100 to 500 R�. The final stage for stars with M . 7M� is a carbon

oxygen white dwarf, while for stars with masses in the range 7M� . M . 10M�
carbon ignites, which leads to more shell burning and an oxygen neon white dwarf as

the end product.

1.2 Stellar evolution in binary systems

As a significant number of stars are members of multiple systems, and in many of

these multiple systems, some close members may interact, understanding stellar evo-

lution is inherently linked to understanding binary star interactions. This is partic-
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1.2. STELLAR EVOLUTION IN BINARY SYSTEMS

ularly important as close interacting binary stars are supposed to be responsible for

some of the most luminous and most important explosions in the Universe, e.g. SNe

Ia or kilo-nova events. In what follows, we outline the basic concepts of binary star

interactions and how they impact stellar evolution.

1.2.1 The Roche-Lobe model

One of the most important ingredients to understand binary star interactions is Roche

geometry, which describes the effective gravitational potential exerted by the binary

system on a massless test particle (the so called restricted three-body problem). This

effective potential is defined in a co-rotating frame where the gravitational potential

of both stars (with mass M1 and M2) and the centrifugal potential acting on the test

particle are taken into account. Close to each star the equipotential surfaces are ap-

proximately concentric spheres, while at greater distances the equipotential surfaces

are distorted to tear drop-shapes, elongated parallel to the axis joining both stars. The

Roche lobe of a star in a close binary system correspond to the region in space where

the test particle is gravitationally bound to one of the system’s stars.

The following assumptions are commonly used to describe the Roche model:

• The binary orbit is circular.

• The rotation of stars is synchronized with the orbital rotation.

• Stellar radii are small compared to the distance between them.

• The Coriolis force is neglected.

The Roche potential has 5 Lagrangian points where its gradient is zero (i.e., the forces

that contribute to the potential cancel out each other). With respect to binary interac-

tions, specifically mass transfer, the Lagrangian point L1 (or inner Lagrangian point),

which is a saddle point of the effective potential (Fig.1.1), plays an important role: if a

star fills its Roche lobe, then matter can flow through L1 to the other star. This mass

transfer mechanism is called Roche-lobe overflow (RLOF).

Due to the complex geometry of the Roche lobe, approximations are used to model

the distance between the star and L1. The effective Roche lobe radius for the star ’1’

(the most massive) with mass M1 is defined as the radius of a sphere with the same
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1.2. STELLAR EVOLUTION IN BINARY SYSTEMS

volume of the Roche lobe, and is often approximated using a prescription provided

by Eggleton [1983]:

RL,1 =
0.49q−2/3a

0.6q−2/3 + ln(1 + q−1/3)
(1.1)

which is better than ≈ 1% in all cases. Here q = M2/M1 is the mas ratio and a the

semi-major axis.

Figure 1.1: Roche lobe geometry for a binary star with a mass ratio of 2 in the

co-rotating frame. The 3D surface plot (top) and a contour plot (bottom) show

equipotential surfaces and the Lagrangian points L1, L2 and L3. Figure taken from

http://hemel.waarnemen.com/Informatie/Sterren/hoofdstuk6.htmlh6.2
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1.2. STELLAR EVOLUTION IN BINARY SYSTEMS

With respect to the Roche lobe geometry, we can distinguish three types of binaries:

• Detached binaries: both stars fill an equipotential surface that lies within their

respective Roche-lobe. Interactions between stars are only carried out by means

of tides and stellar winds. The evolution of each star is usually not significantly

affected by its companion; therefore, both stars evolve approximately as single

stars.

• Semi-detached binaries: one of the stars fills its Roche-lobe. Hydrostatic equi-

librium is no longer possible near L1 and matter flows over from this point to

the companion. Mass transfer affects considerably the evolution of both stars.

• Contact binaries: If both stars fill an equipotential surface just or beyond their

Roche-lobes (i.e. beyond L1 but without reaching L2), they can exchange heat as

well as mass. The stars are gravitationally distorted and wrapped in a common

photosphere.

1.2.2 Mass transfer in binary systems

For the formation of close binary stars with at least one white dwarf component

(which could evolve into SN Ia), mass transfer from one component to the other in

a semi-detached system, matters.

When one of the stars fills its Roche-lobe and mass transfer begins, the evolution of

each component and the orbital properties of the system are affected. There are two

possible ways to fill the Roche-lobe: the first is due to stellar evolution, where in gen-

eral the more massive star evolves to a giant, and the second by orbital shrinking

owing to angular momentum loss. In the latter case, angular momentum loss occurs

due to tidal forces, gravitational waves or magnetic braking. Depending on the struc-

ture of the star that looses mass (the donor) and the response of both stars to mass

loss/gain, mass transfer can be stable or unstable. In general, the stability in the mass

transfer process depends mainly on two factors:

• The response of the donor’s radius to the mass loss.

• The response of the Roche-lobe radius to the mass loss of the donor.

If the donor star fills its Roche-lobe, and the accretor gains all or most of the trans-

ferred mass without filling its Roche-lobe, the mass transfer is stable. On the other
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1.2. STELLAR EVOLUTION IN BINARY SYSTEMS

hand, if the radius of the donor star becomes greater than the Roche radius (or the

Roche radius becomes smaller than the radius of the donor star), accelerating mass

transfer occurs. This case corresponds to the general scenario of unstable mass trans-

fer. The commonly used stability criterion comes from a simplified model of the binary

system, where we compare the variation of both the stellar radius (Rd) and the Roche-

lobe radius (RL) of the donor star (with mass Md) while loosing mass, assuming that

the accretor star is an inert mass point (which is a very good assumption if it is a com-

pact object). These variations in both radii are expressed by the so-called mass-radius

exponents, defined as:

ζd =
d log(Rd)

d log(Md)
(1.2)

ζL =
d log(RL)

d log(Md)
(1.3)

Then, if ζL ≤ ζs, the system is stable against mass transfer.

Once the donor starts loosing (transferring) mass, both its hydrostatic and thermal

equilibrium are disturbed. Since the hydrostatic readjustment occurs on a dynamic

time-scale Tdyn (which is much shorter than the thermal time-scale Tth), the first re-

sponse of the star can be assumed to be almost adiabatic. Thus, in this scenario mass

transfer will be stable if ζL ≤ ζad, where ζad is the variation of the radius due to mass

loss in the adiabatic regime. While mass transfer is stable during the adiabatic regime,

the donor is able to recover hydrostatic equilibrium and thermal readjustment be-

comes relevant. In the thermal regime mass transfer will be stable if ζL ≤ ζeq, where

ζeq is the variation of the radius due to mass loss on the thermal time-scale.

In addition, if simultaneously ζL ≤ ζeq and ζL ≤ ζad, the mass transfer is secularly

stable and occurs on the nuclear time-scale (i.e. mass transfer is driven by the nuclear

evolution of the donor star). However, it is worth mentioning that stable mass trans-

fer can also be achieved by orbital shrinkage due to angular momentum loss (AML) as

long as ζL,AML ≤ ζeq and ζL,AML ≤ ζad, where ζL,AML is the variation of the Roche-lobe

radius due to AML.

The response of the Roche-lobe radius to adiabatic mass loss depends mainly on the

binary mass ratio q, while the response of the donor depends critically on the con-

vective or radiative structure of its envelope. If the donor has a radiative envelope it

shrinks in response to mass loss (ζad � 0), and for deeply convective envelopes the
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1.2. STELLAR EVOLUTION IN BINARY SYSTEMS

donor tends to expand or keep a nearly constant radius (ζad ≤ 0).

1.2.3 Orbital evolution during mass transfer

Mass transfer also modifies the orbital properties of a given binary system. The total

orbital angular momentum and its time derivative for e = 0 are:

J =
(

M1a2
1 + M2a2

2
) G1/2(M1 + M2)1/2

a3/2 (1.4)

J̇ = J
(

ȧ
2a
− Ṁtot

2Mtot
+

Ṁ1

M1
+

Ṁ2

M2

)
, (1.5)

where a1 and a2 represent the distance of each stellar component from the center of

mass, a = a1 + a2 the major axis and Mtot = M1 + M2 is the total mass of the system.

In the simplest case mass transfer is conservative (i.e. all the mass lost by the donor

is accreted by its companion) and the orbital angular momentum is conserved. In this

scenario, mass transfer shifts the center of mass towards the accretor. The response of

the orbital major axis to mass loss can be described as follows:

ȧ
a
= 2

(
Md

Ma
− 1
)

Ṁd

Md
, (1.6)

where Ma and Md are the masses of the accretor and the donor respectively. Since

Ṁd < 0, the orbit shrinks as long as Md > Ma, reaching a minimum when Md = Ma.

On the other hand, if Md < Ma the orbits expand.

1.2.4 Common envelope phase

In Section 1.2.2 we have in rather general terms described under which conditions

mass transfer occurs and if it is stable or not. If mass transfer is dynamically unstable,

it proceeds on the very short dynamical time scale of the donor star (≈ 30 minutes for

the Sun). As a consequence, the mass transfer timescale becomes much shorter than

the thermal time scale of the accretor. Therefore, the transferred material accumulates

in the Roche lobe of the accretor until it also fills its Roche-lobe and a gaseous envelope

surrounding both stars is formed. This common envelope (CE) is not necessarily in
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1.2. STELLAR EVOLUTION IN BINARY SYSTEMS

hydrostatic equilibrium and it is generally assumed that it does not rotate at the same

rate as the binary. This has two important consequences:

• The CE is not constrained by the equipotential surface passing through the L1-L2

Lagrangian point.

• Drag forces inside the CE removes orbital energy from the stars, heating up and

expanding the envelope. This energy transfer causes the binary orbit to shrink

as the two stars spiral-in towards their common center of mass until the CE is

expelled. This either leads to the formation of a very close binary star or the

coalescence of the two stars.

The general description given above is the most accepted scenario to describe the

CE phase. However, the main uncertainty is how efficient orbital energy is used to

eject the envelope. In this context, the most commonly used model is the so called

α-formalism (Tutukov & Yungelson [1979]) where:

α =
∆Egr

∆Eorb
(1.7)

is defined as the fraction of the change in orbital energy ∆Eorb = Eorb,i − Eorb, f (sub-

scripts i and f respresent the initial and final stages respectively) available to ex-

pand and eject the envelope, which experiments a change of gravitational energy

∆Egr = Egr,i − Egr, f (complete ejection corresponds to Egr, f = 0). Different prescrip-

tions have been used to model the final and initial values of orbital and gravitational

energy. According to the PRH (Podsiadlowski-Rappaport-Han) prescription (Zoro-

tovic et al. [2010]) the final orbital energy is calculated as the orbital energy between

the core of the donor (Md,c) and the accretor (Macc) at the final separation (a f ):

Eorb, f =
1
2

GMd,c Macc

a f
, (1.8)

while the initial orbital energy is calculated as the orbital energy between the donor

and the accretor at the initial separation (ai):

Eorb,i =
1
2

GMd Macc

ai
. (1.9)
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1.3. SUPERNOVA TYPE IA

The initial gravitational energy of the envelope is calculated as being between the

envelope mass (Md,e) and the mass of the donor (Md):

Egr,i =
1
λ

GMd Md,e

R
, (1.10)

where R is the donor star radius and λ depends on the internal structure of the donor

star.

A second prescription called ILY (Iben-Livio-Yungelson, Zorotovic et al. [2010] ) takes

the gravitational energy of the envelope as being between the envelope mass and the

combined mass of the cores of the donor and accretor stars:

Egr,i =
G(Md,c + Macc,c)Md,e

2ai
(1.11)

and the initial orbital energy as the orbital energy between the core of the donor and

the accretor at the initial binary separation

Eorb,i =
1
2

GMd,c Macc

ai
. (1.12)

The main difference between the two prescription is the presence of λ, which can

lead to high values of gravitational energy for PRH compared to IYL (Zorotovic et al.

[2010]). Hydrodynamic simulations of common envelope evolution that follow the

entire process are currently not available because of the complexity of the process.

Therefore the common envelope efficiency is usually constrained by observations and,

at least for systems with low-mass secondary stars, evidence is growing that α is rela-

tively small (Zorotovic et al. [2010]).

1.3 Supernova type Ia

Speaking in general terms, a supernova is the explosion of a star. This event is

extremely energetic and its light curve can show peaks of luminosities of about

1043ergs/s which declines on time-scales of weeks or months. There are two main

mechanism that can cause a supernova explosion. Core collapse supernovae corre-

spond to the rapid collapse during the final stage in the evolutionary path of massive

9
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stars while supernovae type Ia (hereafter SNe Ia) are caused by the thermonuclear ex-

plosion of a white dwarf approaching the Chandrasekhar limit due to mass accretion.

SNe Ia have been very useful as standard distance candles to map out the extragalactic

distance scale, providing evidence for the accelerating expansion of the Universe. The

use of SNe Ia as standard candles relies on the facts that: (1) its light curves seem to

result from the same physical process and (2) there is an empirical relation between

the peak luminosity and the shape of the supernova light curve.

Despite their importance, the mechanisms and progenitors that trigger SNe Ia are still

controversial. The general consensus is that SNe Ia are thermonuclear explosions of

carbon-oxygen white dwarfs with masses near the Chandrasekhar mass limit. This

causes the ignition of carbon in the degenerated core, which completely destroys the

white dwarf.

The two classical channels involving a white dwarf near the Chandrasekhar mass

limit are the so called single degenerated-channel (SD) and double degenerated chan-

nel (DD). In the SD channel, the white dwarf accretes mass from a non-degenerate

companion star until it reaches a mass of 1.44M� and explodes (the exact mass at

which the white dwarf explodes depends on its rotational speed). The DD channel

involves two carbon white dwarfs that merge due to loss of angular momentum by

emission of gravitational waves. In order to reach the mass limit, the combined mass

of both white dwarfs must be equal or greater to 1.44M�.

In the following we will summarize the most relevant pros and cons for both the SD

and DD channels.

• SD pros

– There are observed systems where the mass transfer rate is high enough to

allow that the overflowing material causes stable hydrogen burning on the

surface of the WD. These systems are called Supersoft X-ray Sources (SSSs)

and represent a direct path to produce SN Ia if matter can be retained until

the Chandrasekhar mass limit is achieved.

– It can explain the presence of calcium, sodium, and other absorption lines

possibly associated with a non-degenerate donor star (Patat et al. [2007];

Simon et al. [2009]; Sternberg et al. [2011]; Dilday et al. [2012]).

• SD cons

10
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– The accretion rate on the WD must be in a narrow range with the aim to

avoid nova events (low accretion rate) and red-giant-like expansions (high

accretion rate), which produce mass loss.

– The predicted delay time distribution (SN Ia rate versus the time that would

follow a brief burst of star formation; Maoz & Mannucci [2012]), or DTD,

drops drastically after a few Gyr. This can be understood as follow: as

we move towards low mass WD progenitors, the mass transfer required to

reach the Chandrasekhar mass must be greater. Low-mass donors do not

meet the required quantities of mass and transfer rates, so only relatively

massive short-lived stars can provide the necessary conditions.

• DD pros

– The absence of hydrogen and helium in observed SN Ia spectra emerges as

a natural consequence in a C-O WD merger.

– It explains the presence of systems with short and long time delays, which

come from the timescales required to form WDs and mergers (taking into

account only gravitational radiation effects), respectively.

• DD cons

– It is uncertain whether the WD merge can lead to a SN Ia or rather an

accretion-induced collapse that ends with a neutron star (Nomoto & Kondo

[1991]).

– Despite the large amount of confirmed WD binaries (e.g., Saffer et al.

[1998]), the discovery of a system with a total mass M> 1.4M� has re-

mained elusive.

1.4 Stellar multiplicity

For any population study of potential SNe Ia progenitor systems, it is required to ob-

servationally constrain the properties and frequency of multiple star systems. As the

most popular channels towards SN Ia are related to binary star interactions, tradition-

ally only binary stars have been considered. In this work however, we will test how

important triple interactions might be in the context of SNe Ia, so we need to take a de-

tailed look at stellar multiplicity beyond the binary star fraction. Several large efforts
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have been made in the last 40 years to measure stellar multiplicity (Abt & Levy [1976];

Duquennoy & Mayor [1991]; Tokovinin [1997]; Raghavan et al. [2010]; Tokovinin

[2014a]), improving considerably our knowledge for the case of main sequence stars

of spectral type F and G. However, for main sequence stars with intermediate-high

mass, the multiplicity fraction is less well known, mainly for two reasons:

• Massive stars are less numerous than low mass stars.

• The very high luminosity of massive stars produces extreme brightness contrasts

to potential low mass companions.

However, through the information obtained in previous surveys, taking into account

the observational biases and comparing the data with simulations of multiple sys-

tems populations, a general picture of the statistical properties of multiple systems

emerged. In what follows we summarize the main properties of multiple systems

based on the review given by [Duchêne & Kraus, 2013] (hereafter DK13) for three

different mass bins: (1) Solar-type stars (0.7M� . M . 1.3M�), (2) intermediate-mass

stars (1.5M� . M . 5M�) and (3) high mass stars (8M� .M). Table 1.1 compiles the

main results found in DK13.

12
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Mass Range Mult./Comp. Mass Ratio Orbital Period

Frequency Distribution Distribution

0.7 M� . M? . 1.3 M�
MF = 44± 2 %

β = 0.3± 0.1
Unimodal (log-normal)

CF = 62± 3 % a ≈ 45 AU, σlog P ≈ 2.3

1.5 M� . M? . 5 M�
MF ≥ 50%

β = −0.5± 0.2
Bimodal

CF = 100± 10 % P ≈ 10d & a ≈ 350 AU

8 M� . M? . 16 M�
MF ≥ 60%

. . . . . .
CF = 100± 20 %

Table 1.1: Multiplicity properties for Population I MS stars, taking into account three different

mass ranges (first column). MF and CF correspond to the multiplicity fraction and companion

fraction respectively (second column), while β is the exponent of the power law used to model

the mass ratio distribution (third column). The fourth column shows the best fit models for

the observed orbital period distribution. Dots indicate that none of the analytical models fits

well the data. Table adopted from DK13.

1.4.1 Definitions

With the aim of providing an unambiguous nomenclature of multiple stellar systems

we summarize some important concepts:

• Hierarchical system : stellar systems with three or more components are hi-

erarchical if the motion of the close inner binary is not strongly perturbed by

the outer companion(s). Components of the hierarchical system are nearly on

Keplerian orbits.

• Primary star : Corresponds to the assignment that is given to the most massive

star in a (inner) binary system. Following this logic, the primary star’s compan-

ion is called secondary star.

• Multiplicity fraction ( fM) : corresponds to the fraction of non-single stellar

systems

• Hierarchical level : Hierarchical systems with three or more components can be

present a configuration degeneracy for the same number of components. Hereafter

we will use the Hierarchical nomenclature used in the Multiple Star Catalogue

(MSC, Tokovinin [1997]). Figure 1.2 represents a scheme or binary tree for two
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different configurations of a hierarchical system with five components. The po-

sition of each pair in the tree is called level, where the widest pair (level L1) is

the root of the tree. Level L11 corresponds to an inner binary associated with

the primary star, while Levels 12, 13, etc. are inner binaries associated with the

secondary stars.

• Companion fraction ( fC) : is the number of systems at all levels divided by the

total sample size.

• Component mass ratio (q) : corresponds to the mass ratio of primary stars of

two consecutive levels and ranges from 0 to 1. As an example, in a triple system

with level 12 (i.e. a close binary B,C with the primary star A as a distant tertiary

companion), the component mass ratio at level L1 is q = MB/MA , where MA

and MB are the masses of the primary stars at levels L1 and L12 respectively.

For the level L12, q = MC/MB, where this time MB is the mass of the primary

star, while MC is the mass of the secondary star. In some cases we will use the

system mass ratio for triple stars, which corresponds to qsys = (MB + MC)/MA

for the previous example; for triple systems with level L11 (close binary A,B with

tertiary companion C ) qsys = MC/(MA + MB). Because the definition of qsys is

ambiguous and may result in qsys > 1, in the followings chapters we will only

refer to the component mass ratio, unless otherwise stated.
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Figure 1.2: Tree diagram for two quintuple systems with different configurations. The upper

diagram shows an inner triple system orbiting an inner binary, while the bottom diagram

shows two binary systems orbiting the primary star.

1.4.2 Multiplicity fraction

Among solar-type stars, the survey performed by Duquennoy & Mayor [1991] (here-

after DM91), studied 164 primary main sequence stars out to 22 pc. They derived a

companion fraction of fC = 62± 3% which agrees with the value obtained by Ragha-

van et al. [2010] (hereafter R10). In addition R10, using a larger sample (454 primary

stars out of 25 pc) found that the multiplicity and companion fractions for stars with

1M� ≤ M ≤ 1.3M� are fM = 50± 4% and fC = 75± 5% respectively, while for stars

with 0.7M� ≤ M ≤ 1M� they find fM = 41± 3% and fC = 56± 4%. Additionally

T14b, using the largest modern solar-type stars survey (4847 primary stars out of 67

pc with 0.9M� ≤ M ≤ 1.5M�) found values for multiplicity and companion fractions

of fM = 46± 1% and fC = 57± 1% respectively.

The observed ratios of single:double:triple:quadruple systems for DM91, R10 and

T14b are 57:38:4:1, 56:33:8:3 and 54:32:7:5 respectively. For R10 and T14b the quadru-

ple systems also take into account systems with more than four components.

For intermediate mass stars, the frequency of spectroscopy binaries (SBs) according

to Abt [1983] can range from 30 − 45%, and is at least 30% for the Sco-Cen OB as-
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sociation. In this association Kouwenhoven et al. [2005] found a frequency of visual

binaries (VBs) of 37%, while Kouwenhoven et al. [2007] (K07) found in the Sco-OB2

association an intrinsic binary fraction larger than 70%. Finally, DK13 estimate that the

multiplicity fraction for intermediate mass stars on the main sequence is fM ≥ 50%.

For massive mass stars the frequency of SBs is estimated at 70± 9% for periods out to

3000 days and down to q ≈ 0.1 (Sana et al. [2012]) while for VBs the fraction is≈ 45± 5

(Peter et al. [2012], Turner et al. [2008]). The companion and multiplicity fractions for

stars with 8M� < M < 16M� are estimated as 100± 20% and 60% respectively. It

is important to point out that due to the small sample size of massive stars, selec-

tion biases, and incompleteness, the values previously given are only relatively rough

estimates and may undergo changes in the future.

1.4.3 Period distribution

Solar-type binaries span a wide range of periods, which can go from some hours to

thousands of years. One of the most frequently used models to describe the observed

period distribution is the log-normal description, which shows a peak for all pairs

(that is, regardless of its hierarchical level) at log P ≈ 5 and a dispersion σlog P ≈ 2.3 for

DM91 and R10 (P in days), while T14b shows a median at log P ≈ 4.54 and dispersion

σlog P ≈ 2.4.

The period distribution of intermediate mass stars is less well constrained. Carquillat

& Prieur [2007] found a bimodal distribution for A type stars, peaking around 5 days

and 1000 days for SBs and VBs respectively. K07 tried to fit the observed distribution

for the Sco-OB2 association with both power-law and log-normal models but none of

them can reproduced well the data.

For massive stars the observed period distribution shows a peak for 4d <P< 8d, which

might be the effect of a strong selection biases (Abt et al. [1990]; Garmany et al. [1980];

Sana et al. [2012]). DK13 suggest that by combining two independent distributions it

is possible to match the complete sample: for binaries with log P ≤ 1d a power law

p(P) ∝ Pα (α ' 0.5), and an Opik law (α = −1) for 1 ≤ log P ≤ 4.

1.4.4 Component mass ratio distribution

The model commonly used to fit the observed mass ratio distribution in the three stel-

lar groups is a power law f (q) ∝ qβ. For solar type stars DM91 found a peak around

q ≈ 0.3 that decreases for higher values of q, while R10 establishes a constant distri-
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bution above q ≈ 0.1 with a strong peak at q ≈ 1. Meanwhile, DK13 fitted the power

law to the overall sample of R10, finding for solar-type stars with 0.7M� ≤ M ≤ 1M�
a value of β = 0.28± 0.05, while splitting the same sample in short (logP ≤ 5) and

long (logP > 5) periods values of β = 1.16± 0.16 and β = −0.01± 0.03 respectively

are obtained. Finally, T14b plotted a mass ratio histogram for 766 wide binaries with

5 ≤ logP ≤ 8, showing a nearly flat distribution.

The q distribution for SBs with intermediate mass stars is relatively flat according to

Carquillat & Prieur [2007] (β = −0.3± 0.2), while for visual companions the VAST

survey shows a distribution with β ≈ −0.6. For the Sco-Cen OB association K07

derived the value β = −0.45± 0.15, including both SBs and VBs.

For high-mass SBs Kiminki & Kobulnicky [2012] and Sana et al. [2012] found a flat

distribution for q, with a peak around q ' 0.8, while for VBs Peter et al. [2012]

concluded that a flat distribution and a broad Gaussian distribution centred on

q ≈ 0.45 fits well the observations of high mass stars in the Carina region.

As we will see in Chapter two, the work presented in this thesis is based on a

multiple star population synthesis algorithm developed for solar-type stars, ex-

trapolating their properties, like multiplicity fraction and period and mass ratio

distribution to more massive stars. One direct consequence of this, as we saw in

section 1.4.2 is that we are likely under estimating the true value of multiple systems

on intermediate and high mass stars, while according to section 1.4.3 we are under

estimating the number of binaries with orbital periods less than 10 days, where such

increment of close binaries could be, however, the effect of observational biases. For

the mass ratio distribution, each one of the three mass range used show a nearly

flat distribution. Although this approximation might under estimate the number of

multiple systems that we are trying to identified (mainly due to the extrapolation in

the multiplicity fraction), our final results confirms in a fist instance the presence of a

non negligible fraction of triple systems in our sample..

1.5 The Kozai-Lidov and eccentric Kozai-Lidov

Mechanisms

Detached binaries with wide (say P≈ 100 days) orbits can evolve into close binaries

(P.16 days) mainly by means of tidal interactions. However, such a close configura-
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tion can also be achieved with a third companion perturbing the orbital properties of

the binary (see e.g. Eggleton & Kisseleva-Eggleton [2006]). In what follows we present

the effect of such perturbations, the so called Kozai-Lidov oscillations, introducing its

physical formalism and variants.

1.5.1 Standard Kozai Mechanism (SKM)

The secular stability of triple-star systems is generally achieved if the system is hierar-

chical, that is, the semi major axis of the inner binary ain is much smaller than the semi

mayor axis aout of the distant companion that orbits the center of mass of the inner

pair, with a low or moderate eccentricity. The effect of a third companion on the inner

binary can produce some important long-term effects on this, like precession of the

orbital plane. In 1962 Kozai [1962] and Lidov [1962] independently discovered from

the secular perturbation theory unexpected behaviours in the orbital evolution of as-

teroids and artificial satellites perturbed by Jupiter and the Moon respectively. In their

model, called Test Particle Quadrupole or “TPQ” (Lithwick & Naoz [2011]), where the

outer orbit (Jupiter/Moon orbit) is assumed to be circular and the asteroid/satellite

a massless test particle, the Hamiltonian for the system can be written as the sum of

two Keplerian Hamiltonians plus a term representing the interaction between the two

orbits (Hp):

H =
G2M1M2

2ain
+

G2M3(M1 + M2)

2aout
+ Hp, (1.13)

where G is the gravitational constant, M1,M2 the masses of the inner binary and

M3 the mass of the outer companion. Since the triple system is hierarchical (α ≡
ain/aout � 0) the perturbative term can be expanded in orders of α using Legendre

polynomials as follows:

Hp =
∞

∑
n=2

(
ain

aout

)n ( rin

aout

)n ( aout

rout

)n+1

MnPn(cosΦ). (1.14)

In this expression Pn are the Legendre polynomials, rin the relative position vector

from M1 to M2, rout the relative position vector of M3 from the centre of mass of the

inner binary, Φ the angle between rin and rout (Fig.1.3 ), and
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Mn = M1M2M3
Mn−1

1 − (−M2)n−1

(M1 + M2)n . (1.15)

Since the outer orbit is circular (eout = 0), high order terms (n > 2) in the perturbative

expansion become zero. This approximation is called quadrupolar expansion. Be-

sides, the z-component of the particle angular momentum Jz

(
Jz ∝ cos(i)

√
(1− e2

in)
)

,

is conserved. This implies the possibility of an exchange between inclination and ec-

centricity, allowing highly eccentric orbits for low values of i, and vice versa.

The evolution of such an angular momentum exchange depends strongly on the initial

values of i and e. For the case of very small initial eccentricities and an initial inclina-

tion between 39.2◦ and 140.77◦ (the so called Kozai angles) the maximum eccentricity

occurs simultaneously with the minimum inclination (39.2◦) following the relation:

emax =
√

1− 5/3cos2(i0), (1.16)

allowing the extreme case of collision for i0 = 90◦. The timescale of the eccentricity

(inclination) oscillations according to (Li et al. [2015]) is given by:

tSKM =
2πa3

out(1− e2
out)

3/2
√
(M1 + M2)(1− e2

in)

G1/2a3/2
in M3

. (1.17)

For very small initial eccentricities and initial inclinations below 39.2◦ (or above

140.77◦), the solutions of equations of motion are quasi-periodic with small fluctua-

tions on eccentricity and inclination.
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Figure 1.3: Left: Schematic description of the used coordinate system. The term “c.m” corre-

spond to the center of mass between M1 and M2. Right: Schematic description of the invari-

able plane. Here Gtot corresponds to the total angular momentum vector, which is the sum of

the angular momentum vector of the inner and outer orbits, G1(with angle i1 respect to Gtot)

and G2(with angle i2 respect to Gtot) respectively. Figure adopted from Naoz [2016].

1.5.2 Eccentric Kozai Mechanism

Although the TPQ describes new behaviours for the hierarchical three body problem,

the assumption of circular outer orbits and massless inner binary components does

not necessarily represent a good description of the whole population of triple systems

and may overlook some interesting effects. For instance, if the test particle mass is not

negligible or the outer orbit is eccentric, orbital flips (i passing through 90◦) and large

values of the eccentricity can be achieved for initial inclinations that are outside the

classic Kozai-Lidov range 39.2◦-140.77◦. In such case, the next level of approximation,

called test particle octupole (TPO), expands the term Hp in the Hamiltonian until n=3,

leaving the Hamiltonian of the system as:

F = Fq + εoctFoct, (1.18)

20



1.5. THE KOZAI-LIDOV AND ECCENTRIC KOZAI-LIDOV MECHANISMS

where Fq represents the Hamiltonian in the quadrupole approximation, Foc the new

contribution to the Hamiltonian due to the octupole approximation and

εoct =

(
M1 −M2

M1 + M2

)(
a1

a2

)
eout

1− e2
out

(1.19)

measures the importance of the octupole term relative to the quadrupole term. Since

eout > 0, the z component of the angular momentum of the inner binary is no longer

conserved, allowing quasi-periodic cycles in i through 90◦ while ein can be excited to

values very close to unity (1− ein ∼ 10−5, Shappee & Thompson [2013]).

The general case for eccentric outer orbits is called eccentric Kozai mechanism (EKM)

and can have an important effect when |εoct| & 0.01 (Naoz et al. [2011]; Shappee

& Thompson [2013]). Figure 1.4 shows two configurations for a triple system with

εoct,1 = 0.0299 (left panels) and εoct,2 = 0.06 (right panels) illustrating that the TPQ

approximation is not capable of capturing the flip and the extremely high values of

eccentricity that even occur for an initial inclination of 1◦. Another interesting effect in

the octuple approximation is that beyond the Kozai angles the flips occur on a much

shorter timescale.

According to (Li et al. [2015]), the timescale for extremely high inclinations and orbital

flips is

tEKM =
tSKM

εoct
(1.20)
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Figure 1.4: Comparison of the time evolution of inclination (top panels) and eccentricity (bot-

tom panels) for the TPQ (blue line) and TPO (red line) approximations. The example con-

siders a test particle at 135 AU around a 104M� black hole located 0.03 pc from a 106M�
massive black hole. The initial configuration for the left panels is ein = 0.01, eout = 0.7,

i = 60◦, Ωin = 60◦ and ωin = 0◦. In the right panels the system is initially set with ein = 0.85,

eout = 0.85, i = 1◦, Ωin = 180◦ and ωin = 0◦. Figure adopted from Naoz [2016]

1.5.3 Mass loss induced eccentric Kozai mechanism

According to equation (1.19), the dominant Kozai mechanism during the evolution of

a given system depends on the mass ratio of the inner binary. For M1 ' M2 , ε ≈ 0

and Foct can be neglected, i.e. the standard Kozai mechanism drives the dynamical be-

haviour of the system. Conversely, if M1 � M2 the octupole term may take relevance

and the EKM is the dominant mechanism. This fact implies that mass transfer and

mass loss due to stellar evolution can indeed affect the long-term evolution of the sys-

tem, changing the predominant Kozai mechanism from SKM to EKM and vice versa.

The former is of particular interest when one of the stars in the inner binary becomes

a white dwarf, in such a case the switch between SKM to EKM can drive mass trans-

fer close to the periastron that combined with tidal forces can produce a close inner

binary with mass transfer towards the white dwarf, i.e., a possible supernova type Ia
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progenitor.

1.5.4 Kozai Mechanism with tidal friction

An interesting effect triggered by SKM and EKM is observed in binary systems with

an outer companion. When the separation of the binary components at periastron

becomes comparable to the stellar radii due Kozai mechanisms, tidal friction absorbs

the orbital energy and its period can be shortened by 1 or 2 orders of magnitude af-

ter formation. Harrington [1968] first suggested that Kozai cycles with tidal friction

(KCTF) play an important role in the secular evolution of triple stars. Eggleton &

Kisseleva-Eggleton [2006] explicitly suggested that KCTF might produce many close

or contact binaries. They also show that the effect of the apsidal motion due to ei-

ther general relativity (GR) or the quadrupolar distortion of the components due to

rotation may reduce the initial inclination and the maximum eccentricity predicted by

equation 1.16. For instance, for a hierarchical triple with equal (solar) masses, Pin = 10

days, Pout = 10 yr, initial ein = eout = 0 and i = 80◦ the effect of GR, spin (Prot = 1d)

and mutual distortion reduce the peak eccentricity from 0.975 to 0.78 while the inclina-

tion reduced to 74◦ (Fig.1.5). However, despite this reduction, the Kozai cycle allows

tidal forces to operate on a relatively short timescale.

Fabrycky & Tremaine [2007] simulated a population of triple systems and by integrat-

ing the equation of motion under the effect of Kozai oscillations and tidal friction they

found that binary stars with orbital periods of 0.1-10 days are produced from bina-

ries with initial periods of 10 to 105 days (top of Fig.1.6). Similarly, Naoz & Fabrycky

[2014] simulated a population of triple systems but considering the EKM case, for

which they got the same final bimodal period distribution as in Fabrycky & Tremaine

[2007], which is also reproducing the period distribution of inner binaries in triples

observed by Tokovinin [2008] (bottom of Fig.1.6). According to these results, the final

population of close binaries and mergers seems to come from two distinct popula-

tions. The main contribution of the close binary population comes from systems with

inner binaries with periods of 4-16 days (blue line in bottom panel of Fig.1.6), and

∼ 41% comes from periods larger than 16 days. This shows that 8.6% of all triples

simulated with initial periods & 16 days have become close binaries, representing an

efficiency of 2.4 times larger than predicted by the SKM. The merger population is,

however, more likely to originate from initially wider inner binaries (solid red line in

bottom panel of Fig.1.6).
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Figure 1.5: Effect of KCTF on time evolution of eccentricity (left) and inclination (right) for a

triple system composed of sun-mass stars, inner and outer periods of 10 days and 10 years

respectively, itot = 80◦, and initially circular orbits. According to equation 1.16 the eccentricity

peak is at 0.975. However, when they include GR effects and the quadrupolar distortion the

value of emax is reduced to 0.74. The final long-term result (after about 50 Myr) is a circularized

inner orbit at a period of 2.5 days. Figure adopted from Eggleton & Kisseleva-Eggleton [2006].
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Figure 1.6: Top: initial and final period distribution of the inner binaries in the triples simu-

lated by Fabrycky & Tremaine [2007]. Gray scale colors in the final stage represent the initial

period of the system. A log normal period distribution is assumed as initial. Bottom: initial

and final period distribution of the inner binaries in the triples simulated by Naoz & Fab-

rycky [2014].To be able to compare the period distribution oberved by Tokovinin (2008) (black

dashed line), gray lines in the bottom panel represent the total inner binaries simulated with

final eccentricity ein, f < 0.5 . Figures adopted from Fabrycky & Tremaine [2007] and Naoz &

Fabrycky [2014]
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1.6 Motivation

SNe Ia are one of the most energetic events produced by stars, and due to their almost

uniform luminosities, they have been used as distance indicators, providing a tool for

obtaining cosmological parameters. However, the exact nature of their progenitors is

still unknown.

The White Dwarf Binary Pathways Survey I (Parsons et al. [2016], hereafter P16), initi-

ated by researchers from the University of Valparaiso has the aim to progress with

our understanding about the evolution of binary stars towards SN Ia. As all po-

tential SN Ia progenitor systems must pass through a stage of detached WD+FGK

binary stars, these systems are ideal to constrain binary evolution towards SN Ia.

Therefore, if a large sample of WD+FGK binary stars can be observationally char-

acterized, crucial constraints can be derived for binary evolution theories. The tar-

gets selected in the survey include FGK stars from the Radial Velocity Experiment

( RAVE, Kordopatis et al. [2013]) and the Large Sky Area Multi-Object Fiber Spec-

troscopic Telescope (LAMOST, Cui et al. [2012]; Luo et al. [2012]; Yuan et al. [2015])

survey, which present measurements from GALEX in both far and near ultraviolet

(UV) wavelengths. Then, if the FGK stars show an excess flux at UV wavelengths,

we interpret this as a potential WD companion. The effectiveness of the survey was

confirmed by taking the UV spectra of nine targets with the Hubble Space Telescope,

which showed that for eight cases the UV excess was indeed caused by a WD, while

the remaining one was a hot subdwarf or pre-helium white dwarf. Until now, we have

15 systems with orbital properties measured and, interestingly, 5 binaries have eccen-

tric orbits that can not be explained by CE evolution. Since the orbital solutions of such

systems are based on radial velocities measured from the absorption lines of the FGK-

type component, there are two possible general configurations. Either, these objects

are indeed close FGK+WD binaries formed through the SKL/EKM/MIEK mechanism

and may therefore provide the first observational evidence for a new channel towards

SN Ia or the WD is the third distant object that triggered the eccentric Kozai-Lidov

mechanism, which led to the formation of the inner binary star consisting of the FGK-

type star plus an unseen late M dwarf.

The main aim of this thesis is to provide a rough estimate whether triple statistics and

KL can explain the large number of eccentric orbits and whether nature favors the

first (close binary with WD component plus third object) or the second (close main

sequence binary plus distant white dwarf companion) scenario. Combining statistical
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analysis of stellar multiplicity with analytical expressions for the importance of KL

effects, we will estimate the fraction of both configurations.
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CHAPTER 2

Triple star population synthesis

The first key ingredient to evaluate how frequent triple dynamics may lead to close

binaries with one white dwarf component are observational constraints on the mul-

tiplicity fractions, mass ratios, periods and eccentricities of triple systems. Despite

the difficulties to observe close or wide faint companions (Section 1.4), the latest in-

strumental improvements have allowed a more robust analysis, and algorithms that

reproduce the observed population of multiple star systems have been developed.

In this Chapter we describe the perhaps most complete of these algorithms, presented

by Tokovinin [2014b] (T14b). This algorithm is based on observations of 4847 F and G

type stars within 67 pc of the Sun and takes into account selection effects and observa-

tional biases. As we base our initial population of multiple systems on this prescrip-

tion, we provide a detailed description of the algorithm in what follows.

2.1 The FG-67 sample: Multiplicity of F and G stars

inside 67 pc

Tokovinin [2014a] (hereafter T14a) presented the currently most complete sample of

multiple stellar systems with Sun-like primary stars. Those stars correspond to spec-

tral types from F5V to G6V and masses that range from 0.85 to 1.5M�. The total num-

ber of stellar pairs is 2196 and of those 361 belong to hierarchical systems from triples
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to quintuples, giving a observed value of fM = 0.36. Since only systems with non-

evolved components are considered in the analysis of T14b, systems with white dwarf

components were removed from the sample, leaving 2162 systems and subsystems to

consider, of which 355 have missing information (unknown periods and separations).

2.2 Statistics of hierarchical systems

In this section we summarize the statistical analysis made in T14b, emphasizing the

final results and the analytical distributions used to mimic the observed periods, mass

ratios and multiplicity fractions at all hierarchical levels.

2.2.1 Statistical formalism

The goal of T14b is to model the intrinsic distribution of periods and mass ratios

through the joint probability density function f (x, q|θ) (with θ the parameter array),

by using the available data and taking into account that some binaries have missing

data (unknown periods and mass ratios). The detection probability of a binary with

logarithmic period x and mass ratio q is given by the Poisson distribution

p =
µm

m!
e−µ, (2.1)

where µ = f (x, q|θ)d(x, q) is the probability of a detectable companion given the de-

tection probability d(x, q). For single stars m = 0, while for binaries m = 1. If the

binary has unknown mass ratio, then µ is averaged over the range where the detec-

tion techniques are unable to measure the mass ratio. For binaries with both unknown

period and mass ratio, µ is averaged over the parameter space where detection tech-

niques are unable to measure x and q. In this way systems with missing data are

included in the statistical analysis, which is important since although they have un-

known periods and mass ratios, they are actually discovered.

The best fit parameters are achieved by minimizing S = −2 ln L, where L is the like-

lihood function. As the targets are observed independently of each other, L is the

product of pi, where i is referred to the ith target.
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2.2.2 Period and mass ratio distributions

Figure 2.1 shows the observed and corrected distribution of periods for all pairs and

level L11 in the sample. The corrected distribution takes into account the incomplete-

ness by detection limits that depends on the values of P and q. The detection proba-

bility d(x, q) (where x=log(P/1day) ) is averaged over an uniform q distribution (see

below) and applied in each period bin. The periods of L11 are shorter than the periods

of all binaries, which can be explained by dynamical stability restrictions and show a

depletion at x∼ 2 and excess at x < 1 probably due to missing data or migration of

inner subsystems towards short periods owing to tidal interactions combined with

Kozai mechanisms.

Regarding the distribution of q, assuming that it is distributed as a power law like qβ,

T14b studied the possible dependence with period, finding that at both short and long

periods the mass ratio between the main target and its companion (regardless the hier-

archical level) distribute uniformly (β ∼ 0). Figure 2.2 shows this dependence, where

the high value of β observed close to x = 4 is because of the binaries with missing

data, while for x > 5 (where there is no missing data) there is a weak dependence of

β on period.

Figure 2.1: Histogram of periods with ∆x = 1 bins. The solid line represent the systems

with known period, the dashed line adds fictitious periods chosen (only used to generate this

histograms), the thick dashed line adds the correction effects and the dotted line is the log-

normal distribution with the parameters found in the ML method. Left: only level L11. Right:

all pairs. Figure adopted from T14b.
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Figure 2.2: Dependence of β on period. The bin size is ∆x = 1. The crosses and dotted lines

are generated by adding fictitious values to unknown mass ratios and periods. It is important

to emphasize that the fictitious values only have the aim of quantifying how much the de-

pendence of β on period changes if we assume that they come from arbitrary but reasonable

period and mass ratio distributions. Figure adopted from T14b.

2.2.3 Dynamical stability

Since the condition of hierarchy for a multiple system implies that it must be secularly

stable, the next question to solve is how to define a general criterion that separates

those systems where the inner pair is strongly perturbed by an outer companion from

those with a stable hierarchical configuration. Mardling & Aarseth [2001] derived a

long term stability criterion that describes the capability of triple systems to suffer

exchange of a component between the inner and outer binary. In terms of the ratio

between the inner and outer orbital periods PS and PL this can be written as:

PL

PS
> 4.7(1− eL)

−1.8(1 + eL)
0.6(1 + qout)

0.1 f , (2.2)

where eL is the eccentricity of the outer orbit, qout the mass ratio of the distant com-

panion to the combined mass of the inner binary and
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f = 1− 0.3i
180

(2.3)

is a factor obtained from numerical experiments that accounts for the increased stabil-

ity of inclined and retrograde motion (with i in degrees).

Figure 2.3 compares the values of PS at inner hierarchical levels L11 and L12 with the

outer period PL of the T14b sample. Two remarkable features are observed here: all

the points are above the constant period ratio PL/PS = 4.7 with no typical or preferred

values, and the absence of outer periods shorter than x < 3 which is not caused by

observational selection but is an intrinsic property of the population.

Figure 2.3: Outer orbital period at level L1 compared with inner periods at levels L11 and L12.

The solid and dotted line represent the ratio PL/PS = 4.7 and 47 respectively. Figure adopted

from T14b
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2.2.4 Analytical distributions for q and P

Based on the work done by DM91, the distribution chosen by T14b to fit the observed

periods is a log-normal law. The disadvantage of this choice are its wings that produce

either extremely short and long periods compared to the observed one, therefore the

distribution must be truncated at x < −0.3 and x > 10 according to observation of the

tightest and widest binaries with main sequence stars. For the mass ratio distribution

a power law with β > −1 and truncated at q < 0.05 to avoid brown dwarf companions

is used (Section 1.4.4). Making use of the non-dependence of the mass ratio on period,

the analytical model used to fit the sample is:

f (x, q) = Cεqβexp
(
−(x− x0)2

2σ2

)
, (2.4)

where ε is the multiplicity fraction, x0 the median period, σ the period dispersion and

C is a constant of normalization.

The model (2.4) was fitted to various sub samples using the maximum likelihood

method (ML) taking into account the detections limits and missing data. Table

2.1 summarizes the results obtained with this method for all pairs, regardless of

their hierarchies, and the sub samples at levels L1, L11 and L12. The given errors

correspond to 68% confidence intervals but they should only be considered as a lower

limit of the true errors. The multiplicity fraction ε obtained for level L1, that equals

the intrinsic fM of the T14b sample (all multiples systems start with L1) is 0.46± 0.01,

in agreement with R10. At levels L11 and L12 the values of ε refer to the frequency

of subsystems in the sample of L1 systems only, therefore the intrinsic fraction of

hierarchies L11 and L12 are 0.1 (≈ 0.46 x 0.214) and 0.073 (≈ 0.46 x 0.157) respectively.

The results for β show a nearly flat distribution for almost all sub samples. Subsys-

tems at L12 seem to show a tendency towards equal mass components (β = 1.32)

that maybe reflects an observational bias towards large q. If we suppose the latter

is true, and that T14b observed a lower unbiased value for β, a higher number of

L12 subsystems will be non-detected, which means that actually the number of

subsystems L12 is equaling or even exceeding the number of secondary subsystems

with respect to L11.
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Case N ε x0 σ β

All pairs 2162 0.571 4.54 2.40 0.094

±0.012 ±0.06 ±0.06 ±0.020

L1 1747 0.464 4.93 2.34 0.051

±0.011 ±0.06 ±0.06 ±0.011

L11 296 0.214 3.25 1.80 0.121

±0.012 ±0.12 ±0.09 ±0.026

L12 95 0.157 2.67 1.68 1.32

±0.016 ±0.17 ±0.10 ±0.28

Table 2.1: Fitted distribution parameters (taken from T14b).

2.3 Multiple star population synthesis

Once the free parameters of equation (2.4) have been fitted, the next step is to generate

a population of multiple systems using these prescriptions. The algorithm developed

by T14b starts generating a population of single and binary stars by random selection

of a value l uniformly distributed over the range [0, 1], followed by xL1 and qL1 drawn

from the distribution (2.4) with parameters (x0, σ, β) = (5.0, 2.3, 0). If l < ε (criterion

i) and −0.3 < xL1 < 10 (criterion ii), then the system is a binary star, otherwise a sin-

gle star is created. When a binary system is created, the algorithm now must decide

if it stays as such or each star is converted into a new (inner) binary, and the whole

systems becomes a triple, quadruple, etc.. For instance, for each star in the binary the

algorithm draws again values for l xj and qj, where j = L11, L12. If the main criteria

i and ii plus certain conditions related to the dynamical stability are met, the star is

transformed into a new inner binary with mass ratio qj and period xj. This procedure

is repeated recursively for each star created, but for our purpose we only produce sys-

tems until quadruple configurations.

T14b used the absence of inner periods at xL1 < 3 (Fig.2.3) as first criterion for a po-

tential bifurcation towards levels L11 and L12: if the binary has xL1 > 3 (criterion iii),

each component is a candidate to transform into an inner binary, otherwise the system

remains as binary. A fourth criterion is related to dynamical stability conditions de-

scribed in Section 2.2.3 and makes use of the period ratio cutoff observed in systems

with levels L11 and L12.

Tokovinin [2004] studied de dependence of the period ratio on eL and suggests an
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empirical stability limit similar to 2.2:

PL

PS
> 5(1− eL)

−3. (2.5)

Figure 2.4 shows the cumulative distribution of (2.2) and (2.5) for a cosine distribution

of eL between 0 and 0.8, that is, assuming moderate values of eL for multiple stars

(Shatsky [2001]). From this figure T14b proposes a crude model:

T(∆x) =


0 ∆x ≤ 0.7

∆x + 0.7 0.7 ≤ ∆x ≤ 1.7

1 1.7 ≤ ∆x

(2.6)

which allows to separate dynamically stable systems from those that are unstable.

Here ∆x is the difference between the logarithm of the outer and inner binary periods,

where the latter is drawn from the same distribution defined for the outer binary. If

T(∆x) > T(∆xrand) (criterion iv), where ∆xrand is uniformly distributed in [0, 1], the

whole system is stable and retained.

To decide whether the generated inner binary is at level L11, L12 or both components

of the outer binary are bifurcated (i.e, quadruple systems called 2+2), T14b used a cor-

relation between levels L11 and L12, which was noted from an excess of 2+2 systems

in the observed sample that can not be explained assuming a mutually independent

occurrence. To account for this excess, the value of ε is increased by a factor of ε+ = 1.2

for the secondary subsystem at L12, if the primary subsystem at L11 is already present

without subsystems. Otherwise, the frequency of L12 is multiplied by ε− = 0.5. This

implies that it is mandatory to first evaluate the presence of L11 (and its possibles

subsystems) before producing a possible level L12 with high-order hierarchies. In ad-

dition, T14b adopted β = 1.0 for L12.

If a triple system with level L11 fulfilled the four aforementioned criteria for the pri-

mary component of the inner binary, the system becomes a quadruple star with level

L111. For the purpose of this thesis we only need to generate a star population with

at most three components, so bifurcations until level L111 allow us to discard those

systems that continue bifurcating after reaching the triple configuration. Once the

generation of subsystems at L11 has finished, we decide whether the components at

level L12 become inner binaries or not. The occurrence of levels L121 (inner binary in

the primary component at L12 ) and L122 (inner binary in the secondary component
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at L12 ) is calculated in the same way as the subsystems at L11.

This procedure is repeated for each system and the final result only depends on five

parameters: ε, ε+, ε−, x0 and β. However, the simulation with a fixed ε overproduces

binaries and under-produces triples, while the multiplicity fraction is correct. To solve

this issue, the final population consists of three equally large groups, each one with a

specific value for ε. When ε is high, many hierarchical multiples are produced, and

when it is low, we get mostly single stars and simple binaries. This reflects the idea

that the observed sample is a mixture of ”multiple-rich” and ”multiple-poor” popu-

lations. The values adopted by T14b for the three groups are εi=[0.05,0.6,0.75] and

its mean matches the multiplicity fraction of 0.466. The fraction of binaries, triples,

quadruples, etc. is proportional to εi,ε2,ε3 and so on. Compared to the case with con-

stant ε, the multiplicity fraction of triples is increased by
〈
ε2〉 / 〈ε〉2 = 1.41.

The final result of the simulation a is population composed by:

1. single star

2. binary system

3. triple system with level L11 (triple L11)

4. triple system with level L12 (triple L12)

5. quadruple system with level L111 (quadruple L111)

6. quadruple system with level L121 (quadruple L121)

7. quadruple system with levels L11 and L12 (2+2 systems)
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Figure 2.4: Comparison between the cumulative distributions of (2.2) (solid line) and (2.5)

(dashed line) with the model (2.6). Figure adopted from T14b.

2.4 Simluation

Following the methodology presented in Section 2.3, a population of N=3× 107 sys-

tems composed by single, binary, triple and quadruple stars was simulated. Because

this simulator only returns the periods and mass ratios of the systems, it is necessary

to add the inclination between orbits, eccentricities, masses and ages to estimate po-

tential effects of the Kozai mechanisms on triple system.

DM91 found an eccentricity distribution that depends on the period and is divided

into three segments: e = 0 for P< 11.6 days, a ”bell shaped” distribution for

11.6d <P< 1000d and f (e) = 2e (Hadjidemetriou [1963]) for P< 1000d. Tokovinin

[1997] and Tokovinin & Kiyaeva [2016] support the idea of a linear distribution for

wide binaries from observations, while Sterzik et al. [2003] get a bell-shaped distribu-

tion for the outer binary in triple stars after removing systems with high eccentricities

that do not meet Eq.(2.2). Based on these previous works, the eccentricity distribution

used here is:
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f (e) =


f1(e) = 0 x ≤ 1

f2(e) = Kexp(−e2/2σ2) 1 < x ≤ 3

f3(e) = 2e or f3(e) = 1 3 < x

(2.7)

where a Rayleigh distribution was chosen for f2(e) (Fabrycky & Tremaine [2007]).

Here we used two values for σ: 0.239 and 0.398, each one with 〈e〉 = 0.3 and 〈e〉 = 0.5

respectively. f3(e) follows the aforementioned linear distribution, but we also experi-

ment with a more conservative uniform distribution. Figure 2.5 shows the eccentricity

distribution for inner and outer orbits for triple systems, where according to criterion

iii the two first segments ( f1(e) and f2(e)) correspond only to the distribution for inner

orbits, while the third is a combination of eccentricities of inner and outer orbits.

The mass of the primary component at level L1 is distributed according to the initial

mass function (IMF) of Kroupa [2001]

f (Mp) =



0 M/M� < 0.01

1.987M−0.3 0.01 ≤ M/M� ≤ 0.08

0.159M−1.3 0.08 < M/M� ≤ 0.5

0.079M−2.3 0.5 < M/M� ≤ 100

(2.8)

where masses of inner binary components are calculated by using the mass ratio.

Finally, a uniform birth rate is used in the range 0-10 Gyr (where 10 Gyr is today),

while the inclination is drawn from an isotropic distribution i.e., uniform in cos(i).

We synthesized in total four different populations (combination of different configu-

rations for σ and the last segment of equation (2.7)), which follow the nomenclature

given below:

• SL03: Simulation with Linear f3(e) and 〈e〉 =0.3 for f2(e). Here σ = 0.239.

• SL05: Simulation with Linear f3(e) and 〈e〉 =0.5 for f2(e). Here σ = 0.398.

• SU03: Simulation with Uniform f3(e) and 〈e〉 =0.3 for f2(e). Here σ = 0.239.

• SU05: Simulation with Uniform f3(e) and 〈e〉 =0.5 for f2(e). Here σ = 0.398.

In all populations about 24% failed to fulfill the condition (2.2) after including
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eccentricities and inclinations. Since the periods had already been chosen, we choose

randomly the eccentricities, mass ratios and inclinations until the stability criterion

was fulfilled. This readjustment only partially affects the distribution of eccentricity,

shifting f (e) to moderated values for x> 3 (Figure 2.5).

39



2.4. SIMLUATION

(a) σ = 0.239, linear (b) σ = 0.398, linear

(c) σ = 0.239, uniform (d) σ = 0.398, uniform

Figure 2.5: initial eccentricity distributions of inner and outer orbits of triple systems for the

four simulations. The light blue, red and green histograms represent the three segments of

f (e) while the blue histogram is the combination of all of them.
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2.4.1 Limitations

The multiplicity generator of T14b is certainly the best currently available tool to re-

produce the observed multiplicity distributions. However, there are still serious limi-

tations we have to be aware of:

• The method described above is subject to errors not only because of the missing

information in observed samples, but also by the limited knowledge of the de-

tection probabilities, uncertain data, subjective decisions, biases against multiple

stars, uncertain number of white dwarf components, and approximations made

in the data analysis. However T14b estimate that the fraction of hierarchical

systems should be correct within 2%.

• The probability distributions and multiplicity fractions used here represent the

final properties of multiple star populations, and not necessarily correspond to

the primordial stage.

• Although we have used the simulator for a wide range of stellar masses, the

original model of T14b only applies for sun-like stars. Despite this fact, accord-

ing to table 2.1 the parameter β and the period distribution f (P) for intermediate

and high mass stars do not differ significantly from those used by T14b, while

the multiplicity fraction fM(or ε) estimated for more massive stars can be sig-

nificantly higher than for Sun-like stars (at least 50%), increasing the fraction of

triple systems to ∼ 50% for B type stars (Toonen et al. [2016]).
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CHAPTER 3

Evolution of binary and triple

systems

Our observational survey is based on spectra of FGK stars plus UV excess that

clearly indicates the presence of a WD. We also took radial velocity measure-

ments in order to evaluate whether the FGK star is member of a close binary. If

the latter is true, we then measured the periods and eccentricities of the close

binaries. We expect the identified eccentric systems to be triples with the WD

component either being part of the inner binary or the distant companion. To

test this hypothesis we simulate both the evolution of binary and triple systems

into systems with at least one WD, one close (P . 100 days) binary, and an FGK

star. Each system is evolved using the BSE code, which in addition to simulating

single star evolution, includes models of binary processes such as mass transfer,

mass accretion, tidal interactions, common envelope evolution, and angular mo-

mentum loss mechanisms. In this chapter we introduce the main assumptions

used in the Binary Stellar Evolution (BSE) code for the evolution of triple sys-

tems, the effect of mass loss on the final stability of triple systems, and how to

measure the potential effects of the Kozai mechanisms.
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3.1 Binary and triple evolution

The systems found in P16 (i.e. WD+FGK and the latter in a close binary setting)

can have mainly two origins:

– Common envelope evolution.

– Triple interactions.

In this section we show the main assumptions in BSE to follow the common en-

velope evolution and how to combine the BSE algorithm with the adiabatic mass

loss model in order to model the orbital evolution in triple systems.

Once the initial conditions for each system have been generated using the mul-

tiplicity statistics described in the previous chapter, the evolution of each binary

(being part of a triple or just a simple binary) before the RLOF is described by a

detached binary model considering stellar winds, tides and angular momentum

loss mechanisms like gravitational radiation and magnetic braking. Both stars

begin on the ZAMS with metallicity Z = 0.02. If one of the binary components

fills its Roche Lobe and mass transfer begins, the stability of the process is de-

termined by the mass radius exponent ζ discussed in Section 1.2.2. The common

envelope stage is described by a mixture between the PRH and IYL prescrip-

tions, where the gravitational energy of the envelope is taken in the same way

as in the PRH formulation (Eq. 1.9) and the initial orbital energy as in the ILY

formulation (Eq. 1.10). The orbital energy efficiency is α = 0.25 (Zorotovic et al.

[2010]) for all runs and the structural parameter λ is calculated at each time step.

Since the BSE code only allows us to evolve single and binary stars, as a first ap-

proximation we will use the definition of hierarchical system to treat triples as

binaries, composed by the inner binary (star 1, with mass Mbin = M1 + M2) and

the farthest companion (star 2, with mass M2,out = M3), where the latter will be

evolved as single star. Thus, the evolution of the outer orbit is not determined

by BSE and must be approximated in an alternative way. Here we will use the

adiabatic mass loss model, i.e. the expelled mass moves away from the inner binary

isotropically without interacting with the distant companion and the outer orbit

directly, while the outer eccentricity (eout) remains constant. This approximation

(eout = constant) is valid only if the mass loss timescale is longer than the orbital

period. In this case, the amount of angular momentum taken away by the lost
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mass can be written as

J̇ = Ṁbina2
binω, (3.1)

where abin is the distance of the binary to the center of mass of the triple and

ω =
G(Mbin + M2,out)

a3 (3.2)

the angular velocity. Replacing Eq. (3.1) in (1.5) (recalling that Ṁ2,out = 0 and

Mtot = Mbin) and solving the equation, the relation between initial and final

semi-major axes can be written as:

a2, f

a1,i
=

(M1,i + M2,i) + M3,i

(M1,i + M2,i) + M3,i − ∆m
, (3.3)

where the subscript i and f represent the initial and final stages, M3 is the mass

of the furthest companion and

∆m = (M1, f + M2, f )− (M1,i + M2,i) (3.4)

is the total amount of mass lost by the inner binary during the evolution. If the

inner binary does not evolve through stages of mass loss but the third object

does (this happens if the third object is the initially most massive one), Eq. (3.4)

must be rewritten as ∆m = M3, f −M3,i.

In the adiabatic mass loss model all the mass lost by the binary has left the triple

system. This assumes that it has enough kinetic energy to escape not only from

the inner binary but also from the entire triple system including the distant com-

panion, which might not necessarily be true. To test this assumption in our sim-

ulations we express the escape velocity vesc required to leave the inner and outer

binaries as follows:

vesc,in =

(
2G(M1 + M2)

ain(1 + ein)

)1/2

, (3.5)
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vesc,out =

(
2G(M1 + M2 + M3)

aout(1 + eout)

)1/2

. (3.6)

If vesc,in > vesc,out the mass lost by the donor is able to escape from the triple

system. The criterion can be written as a function of inner (Pin) and outer (Pout)

orbital period:

vin

vout
=

(
1 + eout

1 + ein

)1/2 ( M1 + M2

M1 + M2 + M3

)2/3 (Pout

Pin

)1/3

> 1. (3.7)

The ratio between the velocities depends mainly on the ratio between the mass

of the inner binary and the total mass of the triple as well as the eccentricity. In

our simulations we find that 99, 9% of triple systems that end with a inner binary

composed of non-degenerate stars plus a distant WD companion fulfill the crite-

rion given by Eq. (3.7), while for triples that end with an inner binary composed

by a WD plus a non-degenerate companion and another non-degenerate star the

fraction is ∼ 95%. The small fractions of systems in which the third companion

might accrete a small fraction of the expelled mass is clearly negligible.

In addition to the above outlined change in separation of the outer binary, the

adiabatic mass loss model assumes that the eccentricity of the outer orbit, eout

remains constant. This approximation is only valid if the mass loss timescale is

larger than the orbital period. For systems where mass loss is only due to sin-

gle star evolution (mainly mass loss on the asymptotic giant branch), the mass

loss time scale ranges from 105yr for a 10M� star to ≈ 107yr for a solar type

star (M ≈ 1M�). These long time scales justify the use of the adiabatic mass

loss model. However, this approximation must be revised if mass loss is gen-

erated during a CE phase which is believed (from numerical simulations) to be

very short (. 103yr, Zorotovic et al. [2010]). What might happen in this case is

described in the next section.

3.2 Dynamical instability after mass loss

One of the possible consequences of mass loss in a binary system is the ejection

of one of its components. Hadjidemetriou [1963] showed that the sum of the
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isotropic mass variation of both bodies is equivalent to a perturbative force with

acceleration

aML = −1
2

d
tML

(log m)vML (3.8)

where vML is the magnitude of the velocity at the time tML when the mass vari-

ation begins. Here we use a crude approximation to evaluate the occurrence of

ejection in the outer binary and the subsequent dissolution of the triple system,

by assuming that the mass loss is instantaneous. To decide whether a body is

ejected or not, we suppose that at tML a fraction (1− β) (0 ≤ β ≤ 1 is the re-

maining mass) of the total initial mass Mtot,0 = (M1,0 + M2,0) + M3,0 is removed

from the system. With the subscripts ’0’ and ’f’ representing the stages before

and after mass loss, the kinetic energy per unit mass at tML is

Ek(t = tML) =
1
2

v2
ML =

1
2

GMtot,0

(
2

rML
− 1

aout

)
, (3.9)

where rML is the distance between the inner binary and the furthest companion.

This energy must be greater than the gravitational energy per unit mass just after

mass loss

EG(t = tML) = G
Mtot, f

rML
. (3.10)

With Ek(t = tML) > EG(t = tML) and using the polar equation of the ellipse for

the outer orbit

rML =
aout(1− e2

out)

1 + eout cos f
(3.11)

where f is the eccentric anomaly, the ejection occurs if

1− e2
out

2(1 + eout cos f )
> 1− β (3.12)

This is the Impulse regime evolution (Veras et al. [2011]), and for the case of circular
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3.2. DYNAMICAL INSTABILITY AFTER MASS LOSS

orbits the minimum amount of mass loss required for ejection is (1− β) = 1/2

(Fig. 3.2). For eccentric orbits this mass depends on the eccentric anomaly with

ejection being more likely near the periastron ( f ≈ 0◦).

In order to estimate the occurrences of ejection in eccentric systems we model

the probability to find the outer object at certain f according to the time spent to

pass a distance d f . From second Kepler’s law the distant companion sweeps an

area dA in a time

dt =
2(dA)µ

L
, (3.13)

where L = µ[Gaout(M1 + M2 + M3)(1− e2
out)]

1/2 is the total angular momentum

of the outer binary and

µ =
(M1 + M2)M3

M1 + M2 + M3
(3.14)

is the reduced mass of the triple system. Using dA = r2
outd f /2 and normalizing

Eq.(3.13) with the orbital period

Pout =

(
4a3

outπ
2

G(M1 + M2 + M3)

)1/2

(3.15)

the probability density function of f can be write as:

p( f ) =
(1− e2

out)
3/2

2π(1 + eout cos f )2 . (3.16)

Figure 3.1 shows p( f ) for five eccentricities. As expected, there is a large

probability to find the outer companion near the apastron.
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Figure 3.1: Probability density function of f (Eq. 3.16) for 5 eccentricity values. For e = 0 f

is uniformly distributed, while for higher eccentricities it is more likely to find the object near

f ≈ 180◦.

Figure 3.2: Ejection criteria (Eq. 3.12) for 5 eccentricity values. The star remains bound in the

region below each curve, while it is ejected if it is located above them.
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3.3 Measuring the influence of Kozai mecha-

nisms

Due to the complex behavior of Kozai cycles during the evolution of triple sys-

tems, its strong dependence on initial conditions, and because performing de-

tailed N-body simulations for each system is beyond the scope of this thesis, we

only will be able to determine whether a system is potentially be affected by

SKM, EKM or MIEK. To that end, we use the following criteria:

1. Initial inclination between inner and outer orbits in the range of Kozai an-

gles (39.2◦-140.77◦) implies SKM.

2. Initial εoct,0 ≥ 0.01 implies EKM.

3. Initial εoct,0 ≤ 0.01 and final εoct, f ≥ 0.01 implies MIEK.

For the test particle approximation we have that if εoct ≥ 0.001 the EKM is im-

portant (Shappee & Thompson [2013]). This implies that if we use this condition

in criterion 2 and 3 we will have more systems with EKM and less systems with

MIEK. This is because the first condition in criterion 3 is that the system ini-

tially does not experience EKM. However, as the simulated systems have non

negligible mass components we make use of the condition εoct = 0.01 based on

previous simulations (see section1.5.2).

The SKM, unlike the EKM, does not have a parameter that allows us to measure

its influence on the triple evolution. For this reason we use the Kozai angles as

a way to estimate the amount of systems that might be affected by the standard

Kozai mechanism. Although this criterion is less restrictive than the other two

and can overestimate the real fraction of systems where the SKM has some sig-

nificant effect, this effect is to some degree compensated by the large eccentricity

excitations that can take place for inclinations beyond the Kozai angles if we

relax the test particle condition (M2 6=0, Naoz [2016]).

3.4 Classifications and Nomenclatures

The presence of WD+FGK systems with the latter in a close eccentric binary in

the survey of P16 can be explained if the whole system is triple. In what follows
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we will explain the criteria to classify triples that may be confused as binaries,

based on the properties of the unseen companion and the impact of different

Kozai-Livov mechanisms on the formation of the inner close binary.

3.4.1 Spectral type assignation

As discussed in Section 1.6, we are interested in two particular configurations

of triple systems, which can be confused with PCEBs in the spectroscopy data

obtained in our observational project. Each of these configurations involve main

sequence stars of spectral type F,G,K, and M. Here we will use the relation be-

tween mass and spectral type to extract from the BSE output the desired systems:

– stars with final mass in the range 0.45M� ≤ M ≤ 1.4M� are classified as

stars with spectral type F,G, or K (hereafter FGK).

– stars with final mass in the range 0.08M� ≤ M < 0.45M� are classified as

stars with spectral type M.

3.4.2 PCEBs and contaminants

Aiming to organize all the final configurations and secular effects in binary and

triple systems in each simulation, we identify two main groups and its respective

sub-groups,which are described as follow:

– PCEBs: systems were the (inner) binary passed through a common enve-

lope phase. They are the main target in the study of P16 and can be present

in two configurations:

* WD/FGK: intrinsic close binary systems composed of a WD plus a

FGK main sequence companion. This configuration correspond to the

population of interest in the survey of P16.

* WD/FGK + M: triple systems composed of a WD/FGK (PCEB) inner

binary plus a faint companion of spectral type M. These systems may

be affected by the Kozai mechanism, which together with the tight na-

ture of the inner binary can lead to mergers.
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– Contaminants: Triple systems where one of the components is a WD and

the effect of Kozai mechanisms promotes the formation of close inner bina-

ries. Here again we have two possible configurations:

* WD/FGK + M: Triple systems where one of the components of the in-

ner binary is a WD formed by stellar evolution or stable mass transfer

(and is therefore not a PCEBs). If the system experienced SKM or EKM

since its primordial configuration, it is classified as SKM0 or EKM0 re-

spectively, being a potential candidate to end as a triple system with

a tight inner binary. The EKM0 classification includes systems that ex-

periences EKM during all the evolution and those where the EKM acts

until the WD forms (εoct,0 > 0.01, εoct, f < 0.01). Finally, if the Kozai

mechanism is triggered by the mass loss, the system is classified as

MIEK. Systems with general classification WD/FGK + M are named

contaminants of class 1 or C1

* FGK/M + WD: Triple systems where the inner binary is composed by

an FGK main sequence star and a faint (unseen) M type star, while the

WD is the distant companion. The classification for systems that ex-

periences SKM or EKL since its primordial configuration is the same

used for systems WD/FGK + M. In this case the systems do not suf-

fer MIEK since the FGK and M stars do not change significantly their

mass during the evolution, which together with the increase of Pout (or

aout, Eq. 3.3) makes it impossible for the system to have EKM after

the WD formation if it did not experience it before. In this configura-

tion we also have systems that are not affected by Kozai mechanisms,

but the primordial configuration of the system is a close FGK/M bi-

nary with inner period Pin,0 < 100 days that remains unchanged (or

slightly decreases) during the evolution. These systems are labeled as

Pin,0 < 100d.

We define systems with general classification FGK/M + WD as con-

taminants of class 2 or C2.
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3.5 Ejection and timescale filters

To measure the effect of mass loss on the short-term stability of triple systems

we use Eq. (3.12), extracting f from the distribution (3.16). This ejection filter was

applied 300 times to each simulation, to take into account the statistical effect of

f in the final results. At the same time, if the system has SKM or EKM we com-

pare the corresponding timescales TSKM and TEKM with the evolutionary time

assigned to the system Tevol . If TSKM ≤ Tevol or TEKM ≤ Tevol then the Kozai

mechanisms have enough time to alter the inner orbit eccentricity, otherwise the

system is discarded as SKM or EKM. As the general relativity (GR) precession

may suppress the Kozai mechanisms, a second timescale filter is applied by com-

paring its timescale

tGRP = 2π
a5/2

in c2(1− e2
1)

3G3/2(M1 + M2)3/2 (3.17)

with the Kozai timescales, where c is the speed of light. If TSKM ≤ TGRP or

TEKM ≤ TGRP then the GR precession is insufficient to prevent the Kozai mech-

anisms from acting. For systems WD/FGK + M with MIEK, we must consider

that this process only acts after the mass loss (or WD birth), so that we must

replace Tevol by Tcool and TGRP by TGRP, f , the WD cooling time and the GR pre-

cession timescale after the WD birth respectively.

Panel (b) in tables A.1 to A.4 shows the final results of each simulation after the

filters are applied. Subgroups marked with (*) were not affected by the Kozai

mechanism and we thus only applied the ejection filter.
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CHAPTER 4

Results

In what follows we will describe and explain the main characteristics of contam-

inants for the four simulation and the effect of the filters on its total fraction.

4.1 Number of contaminants

We will describe the most relevant results concerning the fraction and nature of

contaminants obtained in our simulations.

1. The average fraction of contaminant is 23 %: From Panel (a) in tables A.1

to A.4 the fraction of contaminants defined as

fc =
Contaminants

Contaminants + PCEBs
(4.1)

is 19.5%, 24.3%, 22.7% and 25.8% for simulations SL03, SL05, SU03 and

SU05, respectively. Our estimated average fraction of contaminants is

concordant with the observed fraction of WD/FGK binaries with eccentric

fraction (≈ 33), taking into account that we do not consider observational

biases.
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2. PCEB production is the responsible of variations in fc : the differences

among the fractions of contaminants for each simulation are mainly due to

variations in the total amount of intrinsic binaries that end up as PCEBs

instead of the number of contaminants itself, since the number of PCEBs is

higher than the latter by a factor of ≈ 3 for all simulations (Fig. 4.1).

It is to be expected that differences among the values of fc obtained for

each simulation depend only on the chosen eccentricity distribution. The

increase of 3.1% and 4.8% observed between simulations with equal f3(e)

(SU03 with SU05 and SL03 with SL05 respectively) arises mainly from the

fact that when σ = 0.398 (SU05, SL05) the fraction of inner binaries with

xin,0 ≤ 3 and higher eccentricity values (e > 0.4) increases, promoting

the formation of contact binaries (CBs) or mergers instead of PCEBs. For

simulations with same σ in f2(e) the increase between 1.5 − 3.2% (SL05

with SU05 and SL03 with SU03) is due to the absence of wide binaries

(3.5 ≤ xin,0) with very high eccentricity values. In this context values of

0.8 ≤ e ≤ 0.95 allow tidal interactions that can not be possible for lower

values of e. Figures 4.2 (a) and (b) show the wide binary population afore-

mentioned with high eccentricities that evolve into PCEBs while figures 4.2

(a) and (c) show the fraction of binaries with xin,0 ≤ 3 that become PCEBs

instead CBs or mergers. Furthermore, note that only binaries with e . 0.95

(upper limit of figure 4.2) are present, since all binaries beyond this value

end up in mergers or collisions.

3. The main contribution to fc comes from contaminants type 2: This oc-

curs for all simulations and can be understood as an effect of the following

assumptions:

– Due to the mass range used to define the spectral types FGK and M

(∆mFGK = 0.95 and ∆mM = 0.37 respectively) and the uniform distri-

bution (β = 0) used to randomly select the mass ratio at level L1, it

is more likely to find the WD progenitor with an FGK type than an M

type companion. This means that, previous to deciding whether the

system becomes a triple with level L11 or L12, the algorithm favors the

presence of contaminants C2.

– The ratio of systems WD/FGK + M that end up with an inner PCEB

and those that end up as contaminants C1 ranges from ≈ 1 : 1 (SL03)
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to ≈ 2 : 3 (SU05). This decrease of systems with PCEB in SU05 is a

consequence of the second result given above.

4. A small fraction of systems FGK/M + WD (about 1.3% of the total of con-

taminants C2 for all simulations ) are Pin,0 . 100d.

Figure 4.1: Difference between the number of PCEBs (blue) and contaminants (red) with re-

spect its mean values (green lines), taking into account the four simulations. The number of

PCEBs in each simulation varies more drastically with respect to the number of contaminants.

Left: simulations with same σ (L03/U03 or L05/U05). Right: simulations with same distribu-

tion in f3(e).
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(a) SL03 (b) SL05

(c) SU03 (d) SU05

Figure 4.2: Initial distribution of periods and eccentricities for intrinsic binaries that become

PCEBs.
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4.2 WD mass-type and period distributions of

contaminants

Table 4.1 resumes the number of WD types (He, CO and ONe) found in all sim-

ulations for each contaminant type, while Fig. 4.3 shows its mass distribution.

The most relevant results are described below:

1. ≈ 99% of WDs in contaminants are CO WD: This is because of the def-

inition that we have used for contaminants, where almost all of the WD

progenitors that have masses in the range 1M� . Mprog . 6M� evolve

within a binary configuration but without significant interactions with its

nearest companion (i.e, the WD progenitor evolves as a single star).

2. Only contaminants C1 present He WDs: A small fraction of inner binaries

in contaminants C1 experiences stable mass transfer, allowing the forma-

tion of He WDs.

3. The fraction of ONe WDs among C2 contaminants is ≈ 1%: As WDs

progenitors in contaminants C2 evolve as single stars, the more massive

progenitors (6 . Mprog . 8) end up as ONe WDs. Although ONe WDs are

present in just 1% of contaminants C2, this type of WDs is the second most

frequent. .

Figures 4.4 and 4.5 show the initial inner and outer periods of contaminants C1

and C2 with classification EKM0. The main feature is the absence of contami-

nants C1 with log(Pin,0) . 3, which is due to the fact that inner binaries with

periods below this value end up as PCEBs, as seen in Fig. 4.6.
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He CO O/Ne He CO O/Ne

C1 29 12389 11 C1 24 12697 6

C2 0 43505 567 C2 0 53277 624

(a) SL03 (b) SL05

He CO O/Ne He CO O/Ne

C1 22 14158 8 C1 28 14053 7

C2 0 47711 566 C2 0 50066 614

(c) SU03 (d) SU05

Table 4.1: WD type distribution for contaminants C1 and C2 for each simulation.
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(a) SL03 (b) SL05

(c) SU03 (d) SU05

Figure 4.3: WD mass distribution for the different simulations. Blue and red histograms rep-

resent the WDs that belong to contaminants C1 and C2 respectively.
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(a) C1 EKM0 contaminants of SL03 (b) C2 EKM0 contaminants of SL03

(c) C1 EKM0 contaminants of SL05 (d) C2 EKM0 contaminants of SL05

Figure 4.4: Inner and outer initial period distribution of contaminants C1 (left panels) and C2

(right panels) with classification EKM0. Top panels: simulation SL03. Bottom panels: simula-

tion SL05.
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(a) C1 EKM0 contaminants of SU03 (b) C2 EKM0 contaminants of SU03

(c) C1 EKM0 contaminants of SU05 (d) C2 EKM0 contaminants of SU03

Figure 4.5: Inner and outer initial period distribution of contaminants C1 (left panels) and

C2 (right panels) with classification EKM0. Top panels: simulation SU03. Bottom panels:

simulation SU05.
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(a) WD/FGK + M triples of SU03 (b) WD/FGK + M triples of SU03

(c) WD/FGK + M triples of SU05 (d) WD/FGK + M triples of SU03

Figure 4.6: Inner and outer initial period distribution of triples with PCEBs (WD/FGK + M

classification) for each simulation.
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4.3 Number of contaminants with filters

As we discussed in section 3.1, the ejection filter used here is valid only if the

mass loss time-scale is greater than the outer orbital period (Pout). This is true

for WD/FGK + M triples (i.e., triples with an inner PCEB), where we assume that

the mass loss by CE evolution occurs on time-scales of . 103 yr (≈ 105.5 days).

In our simulations, about 57 per cent of the WD/FGK + M triples match that 103

yr<Pout,0. Taking into account this consideration and applying the ejection filter

only to WD/FGK + M triples (time-scale filters remains over all contaminants)

the fraction of contaminants for SL03, SL05, SU03 and SU05 is 15%, 19.5%, 17.8%

and 20.6% respectively, giving a mean contaminant fraction of 18.2%, which is

still concordant with the observed fraction of WD/FGK binaries with eccentric

orbits (recalling that we do not take into account observational biases).

In what follows we describe how the filters act on each type of contaminant.

The effect of the filter by evolutionary time on contaminants C1 and C2 is shown

in the upper and bottom panels of figure 4.7 respectively. The main observed fea-

ture is that the combined population of contaminants C1 with SKM0 and EKM0

shows longer Kozai-Lidov(KL) time-scales (with peak at ≈ 107.7 yr) compared

to contaminants C2 (peak at≈ 105.7 yr). This tendency towards shorter KL time-

scales for the latter can be explained by three factors:

1. According to equations 1.17 and 1.20 tSKM < tEKM for a given triple, since

εoct < 1 (Eq. 1.19)

2. Since tSKM ∝ M−1
3 , where M3 is the mass of the distant companion, con-

taminants C2 tend to have shorter SKM time-scales than contaminants C1.

3. The ratio between systems with standard (SKM0) and eccentric (EKM0)

Kozai-Lidov mechanisms before applying any filter for contaminants C2

ranges from 2.8 to 4.4, while for contaminants C1 it is between 0.9 and 1.9.

This tendency of contaminants C2 to have more systems with SKM0 than

with EKM0 remains after applying the evolutionary time filter.

Then, since we have more SKM0 than EKM0 systems, and these have shorter

time-scales, the upper histogram in figure 4.7 (bottom panel) also moves to

shorter time-scales.

On the other hand, the distribution of evolutionary time (right histogram) is con-

strained by the time required to form the WD. As most of the WD progenitors
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had masses close to 1M�, their lifetimes are ≈ 1010 yr, which is reflected in the

peak observed at ≈ 1010 yr.

Following the same analysis, the effect of the time-scale filter by general rela-

tivity (GR) precession on contaminants C1 and C2 is shown in the upper and

bottom panels of figure 4.8 respectively. Here we can observe the same feature

related with shorter KL time-scales for contaminants C2, which in turn shift the

distribution of the GR precession time-scale (tGRP) to lower values. Another in-

teresting feature in Fig. 4.8 is the cut at ≈ 108 yr on tGRP, which is due by its

strong dependence with the inner semi-major axis (tGRP ∝ a5/2
in ∝ P5/3

in , Eq. 3.17)

and the fact that for contaminants C1 Pin & 103 days (see panels (a) and (c) of

figures 4.4 and 4.5), setting the observed lower limit for tGRP. However, three

systems are clearly beyond this lower limit. Unlike the rest of contaminants C1,

the formation of its WDs at shorter periods (avoiding the CE evolution) was pos-

sible by stable mass transfer.

Contaminants C1 with MIEK the follow approximately the same behaviour than

contaminants with SKM and EKM, taking into account that for this type of sys-

tems, we must replace the evolutionary time by the cooling time of the WD, since

the oscillations begin after the formation of the WD.

Regarding the filter by ejection, figures 4.10, 4.11 (contaminants C1) and figures

4.12, 4.13 (contaminants C2) show that as expected, systems with high eccen-

tricities can avoid ejection events even for high amount of mass lost, since it is

more likely to find the distant companion (or the inner binary) near the apastron,

which in turn increase the tolerance to ejection (see Eq. 3.12). We also observe

that contaminants C2 experience more mass loss than contaminants C1, since for

the former we assume that all the mass lost by the WD progenitor is completely

removed from the triple, while for the later some of the mass lost by the WD

progenitor can be transferred (e.g. by stellar wind) to its companion.
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Figure 4.7: Comparison between the Kozai-Lidov mechanisms time-scales (X axis) vs the evo-

lutionary time (Y axis) for contaminants C1 (upper panel) and C2 (bottom panel) that have

passed the filter by evolutionary time. For the case of MIEK system the Y axis corresponds to

the WD cooling time. Here we only show the results for the simulation SU05, since it reflects

in a good way the general behaviour for the rest of simulations.
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Figure 4.8: Comparison between the Kozai-Lidov mechanisms time-scales (X axis) vs the GR

precession time-scale (Y axis) for contaminants C1 (upper panel) and C2 (bottom panel) that

have passed the filter by GR precession. Here we only show the results for the simulation

SU05, since it reflects in a good way the general behaviour for the rest of simulations.
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Figure 4.9: MIEK systems that have passed the time-scale filters. Upper panel: Comparison

between the Kozai-Lidov mechanisms time-scales (X axis) vs the cooling time (Y axis) for con-

taminants that have passed the filter by cooling time. Bottom panel: Comparison between

the Kozai-Lidov mechanisms time-scales (X axis) vs the GR precession time-scale (Y axis) that

have passed the filter by GR precession. Here we only show the results for the simulation

SU05, since it reflects in a good way the general behaviour for the rest of simulations.
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Figure 4.10: Distribution of outer eccentricities (X axis, upper histograms) and the amount of

mass lost (Y axis, right histograms) of contaminants C1 that have passed the ejection filter. The

bottom and upper panel correspond to the simulations SL05 and SL03 respectively.
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Figure 4.11: Distribution of outer eccentricities (X axis, upper histograms) and the amount of

mass lost (Y axis, right histograms) of contaminants C1 that have passed the ejection filter. The

bottom and upper panel correspond to the simulations SU05 and SU03 respectively.
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Figure 4.12: Distribution of outer eccentricities (X axis, upper histograms) and the amount of

mass lost (Y axis, right histograms) of contaminants C2 that have passed the ejection filter. The

bottom and upper panel correspond to the simulations SL05 and SL03 respectively.
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Figure 4.13: Distribution of outer eccentricities (X axis, upper histograms) and the amount of

mass lost (Y axis, right histograms) of contaminants C1 that have passed the ejection filter. The

bottom and upper panel correspond to the simulations SU05 and SU03 respectively.
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4.4 Conclusion

We found that, on average, 23% of PCEBs composed by a main sequence star of

type F,G or K plus a white dwarf could be indeed triple systems. About 79% of

these triples have the WD outside the inner binary, which is composed by a main

sequence FGK star plus a M type star hidden due the high contrast with its clos-

est companion, while the remaining 21% correspond to triples where the WD

belongs to the inner binary and the distant companion is a M type star. When

we apply the ejection and time-scale filters, the fraction of contaminants is re-

duced to ≈ 18 percent, keeping almost the same ratio between contaminants C1

and C2 without filters.

It is worth recalling that all these fractions are subject to errors associated to the

different assumption that we made along this work, and need to be improved

implementing a binary and triple population synthesis that covers both low and

intermediate-high mass stars, and a more accurate algorithm to describe the sec-

ular orbital dynamics of hierarchical triples. Nevertheless, our estimated frac-

tions of contaminants (obtained without considering observational biases) are

in the same order of magnitude as the observed number of eccentric systems,

which in turn, could therefore be triple systems.
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CHAPTER 5

TYC 7218-934-1

One of the first targets in our survey of WD/FGK binaries showing radial veloc-

ities variations and where we measured the orbital period was TYC 7218-934-1.

Interestingly, this object clearly has an eccentric orbit with a period 13.6 days.

The estimated mass of the G-type star is m0 = 1.04M�, while the calculated min-

imum mass for its companion is m1 = 0.2M�. The eccentric orbit implies that

this close binary system cannot be a post common envelope binary as friction

inside the common envelope would quickly circularize the orbit. Thus, the close

binary nature of TYC 7218-934-1 has been most likely generated by triple star

interactions, where either an unseen distant companion perturbs the FGK/WD

orbit or the WD itself is the outer component. We observed the system with

SPHERE looking for the third object.

In what follows we describe the observations of TYC 7218-934-1 and then ex-

plore the possible influence of Kozai-Lidov mechanisms during its evolution.

5.1 Target selection and HST observations

The targets selected in our survey come from the Radial Velocity Experiment

(RAVE) survey data release 4 (Kordopatis et al. [2013]) in the Southern Hemi-

sphere, and the Large Sky Area Multi-Object Fiber Spectroscopic Telescope
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5.1. TARGET SELECTION AND HST OBSERVATIONS

(LAMOST) survey in the Northern Hemisphere (Cui et al. [2012]; Luo et al.

[2012]; Yuan et al. [2015]). In order to identify stars with UV data, stars classified

as F, G or K from the RAVE/LAMOST surveys were cross correlated with the

UV database of the GALEX survey (Martin et al. [2005]), selecting all the sources

with both far-UV (FUV) and near-UV(NUV) measurements. The final sample

was obtained by comparing the observed UV colours with those calculated for

main sequence stars from the PHOENIX stellar synthetic spectra (Husser, T.-O.

et al. [2013]). Targets with FUV-NUV colour at least 1.5 magnitudes bluer than

the bluest main-sequence star models are flagged with UV excess, denoting the

likely presence of a white dwarf companion. In this way we obtained 430 stars

from RAVE and 504 stars from LAMOST with UV-excess.

From our final 934 surveyed UV-excess objects, nine of them (among which is

TYC 7218-934-1) were spectroscopically observed with HST in order to confirm

that the excess is due to a white dwarf companion. For the observations of our

system of interest we used the Cosmic Origins Spectrograph (COS), with the

G130M grating centred on 1291Å, during one spacecraft orbit. The data were

processed using CALSTIS V3.4 and CALCOS V3.1.

We fitted TLUSTY/SYNSPEC (Hubeny & Lanz [1995]) white dwarf model spec-

tra to the HST observation. Since it is not possible to obtain simultaneously the

surface gravity, temperature and distance of the white dwarf from the UV data

only, we fix the mass of the white dwarf at 0.6M� and fitted the spectrum to get

an estimate of the temperature and distance for the white dwarf. We also esti-

mated the distance to the corresponding main-sequence stars in these systems

by fitting their spectral energy distributions (SEDs) using the virtual observa-

tory SED analyzer (Bayo, A. et al. [2008]). We used archival optical data from

the TYCHO and NOMAD catalogues and infrared data from the 2MASS and

WISE databases. We fitted the SED with BTSettl models (Allard et al. [2012]) and

kept the physical parameters of the stars (effective temperature, surface gravity

and metallicity) fixed at the values from the RAVE and LAMOST databases and

scaled the models to best fit the SED, then used the resulting scale factor to de-

termine the distance to the star.

Figure 5.1 shows the UV to infrared SED of TYC 7218-934-1 observed with HST

and the best fit of the white dwarf and main-sequence star models.
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5.2. RADIAL VELOCITIES AND ORBITAL PARAMETERS

Figure 5.1: Spectral energy distribution (SED) of TYC 7218-934-1. The red points show archival

photometry of the system and the black line represent the HST spectrum. The grey and blue

line show the best fit of the main sequence star and white dwarf models. The HST data clearly

shows that the UV excess is caused by the presence of a white dwarf.

5.2 Radial velocities and orbital parameters

High resolution spectroscopy of TYC 7218-934-1 was obtained with the echelle

spectrograph (R∼40,000) on the 2.5-m Du Pont telescope located at Las Cam-

panas Observatory, Chile, and with FEROS (R∼48,000) on the 2.2-m Telescope

at La Silla, Chile. FEROS covers the wavelength range from ∼3500Å to ∼9200Å,

while the Du Pont echelle covers ∼3700Å to ∼7000Å. In addition, a medium

resolution spectrum (R∼5,000) of TYC 7218-934-1 was obtained with X-shooter

D’Odorico et al. [2006] mounted at the Cassegrain focus of VLT-UT2 at Paranal

on the 11th of May 2015. X-shooter is comprised of three detectors that enable

one to obtain simultaneous data from the UV cutoff at 0.3µm to the K-band at

2.4µm.

The stellar parameters for the main-sequence star in TYC 7218-934-1 were esti-

mated by comparing the observed spectra against a synthetic grid of stellar spec-

tra (Coelho et al. [2005]). The synthetic spectra were degraded to the resolution

of the Du Pont echelle and FEROS by convolving them with a Gaussian. The op-

timal fit for each spectrum was found by chi-square minimization, we then com-
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5.3. SPHERE OBSERVATIONS CONFIRM THE WHITE DWARF TO BE THE THIRD
OBJECT

bined the results from each spectral fit and used the average values, yielding:

Teff = 5790± 50 K, log g = 4.51± 0.05 (in cgs units), [Fe/H]=0.00± 0.05. Using

the Torres relation Torres et al. [2010] implies a mass and radius of 1.04± 0.02M�
and 1.06± 0.06R� for the G2V star in TYC 7218-934-1.

The orbital parameters of TYC 7218-934-1 were measured using EXOFAST East-

man et al. [2013]. The best fit orbit is shown in Figure 5.2 and has a period of

13.6 days with an eccentricity of e = 0.46. The minimum mass of the unseen

companion to the G star is 0.2M�.

Figure 5.2: Phase-folded radial velocity plot for the main-sequence star in TYC 7218-934-1. The

lower panel shows the residuals to the best fit. Data from the Du Pont echelle are shown in

grey and from FEROS in black. The G-star clearly moves in an eccentric orbit around a low

mass object.

5.3 SPHERE observations confirm the white

dwarf to be the third object

To distinguish whether the white dwarf is orbiting the G star or being the dis-

tant companion, we observed TYC 7218-934-1 with SPHERE to search for the

third object. We used the combined IRDIS/IFS mode as the IFS spectrum allows

to distinguish between a WD (blue spectrum) and a low mass main sequence
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5.3. SPHERE OBSERVATIONS CONFIRM THE WHITE DWARF TO BE THE THIRD
OBJECT

(red spectrum) companion.

The IRDIS data were first preprocessed (sky background subtraction, flat-

fielding, bad-pixels correction). The frames were recentered using the initial star

center exposure with the four satellite spots. The IFS preprocessing consists of

background subtraction and flat-field calibration. Then, each frame is calibrated

with the integral field unit (IFU) flat. For wavelength calibration, the IFU is illu-

minated with four monochromatic lasers of known wavelength. We ended with

a 39 monochromatic frames datacube. After pre-processing, IRDIS and IFS data

have been reduced with ad hoc IDL routines to perform the Angular Differential

Imaging

Figure 5.3 shows the SPHERE detection of the third star in the system. We find

magnitude differences to the central star of 8.22± 0.03 in H2 and 8.30± 0.03 in

H3. The position of the third object is given by a separation of 0.32′′ (about 54.7

AU from the G star) and a position angle of 179.75± 0.07 degrees.

Figure 5.3: SPHERE image of TYC 7218-934-1 clearly confirming the existence of a wide com-

panion in the system

The detection of the third object with IRDIS clearly shows that our interpretation

of the eccentric orbit has been correct. However, to test if the third object is the

WD or a low mass main sequence star, we need to check the IFS spectrum of

TYC 7218-934-1. As shown in Fig. 5.4, the distant companion is the white dwarf

as the IFS spectrum is clearly blue. This means that the third object has been

the most massive star in the initial triple system and that this star might have
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brought the inner binary consisting of the G star plus an unseen M dwarf com-

panion closer together through the Kozai mechamism. We discuss this scenario

in more detail in the next sections.

Figure 5.4: Spectral fit for the HST and SHPERE data (black line at ∼1000Å) of TYC 7218-934-

1. the analysis was made assuming an extinction of E(B-V)=0.02 for the HST spectrum. The

green line is the best fit for both HST and SPHERE data, giving a distance of 175 pc, which

differs ≈ 10% with the distance estimated by the GAIA mission (172.14 pc).

5.4 Kozai mechanisms at current stage

First, we study whether the system is currently under the effect of the SKM. Since

we do not have information about the mutual inclination between the inner and

outer orbits we use the GR precession and SKM timescales ( equations (3.17)

and 1.17 respectively) as references to measure its effect. Figure 5.5 shows that at

eout ≈ 0.92 the SKM is able to affect the evolution of the system. However at such

eccentricities the system is close to the stability limit (see Fig. 5.7).Therefore, it is

very unlikely that there is currently SKM occurring in the system.
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Figure 5.5: Comparison between the standard (blue line) and eccentric (green line) Kozai

mechanisms against the GR precession timescale (red line). Both Kozai mechanisms depend

on the outer eccentricity eout, while the GR precession timescale does not (it only depends on

the masses and orbital properties of the inner binary). Below the red line the Kozai mecha-

nisms are not suppressed by GR precession.

Secondly, we will look for some indication of EKM using the criterion 2 of section

3.3, which states that the eccentric Kozai-Livod mechanism is important when

εoct ≥ 0.01. In terms of the periods, εoct (Eq. 1.19) can be written as

εoct =

∣∣∣∣∣m1 −m0

m1 + m0

∣∣∣∣∣
(

m1 + m0

Mtot

)1/3 ( Pin

Pout

)2/3 ( eout

1− e2
out

)
.(5.1)

The fixed parameters will be the masses of the three components (M0 = 1.04M�
and M1 = 0.2, M�, MWD = 0.95) and both the inner and outer periods

(Pin = 13.6 and Pout = 104.7 days respectively), while we kept as a free parame-

ter the outer eccentricity. For the (unseen) companion of the primary G-type we

use the lower limit while we use the upper limit for the WD mass. Both choices

do not affect the general conclusions that will be drawn in this section as the

uncertainty related to the possible mass ranges are small compared to other un-

certainties.

The estimated outer period of 104.7 days was obtained supposing that the pro-
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jected separation between the WD and the G-type star is the true separation (i.e.

assuming that we see the outer orbital plane perpendicular to the line of sight )

at apastron , giving us a lower limit of the real value of Pout, f as

P =

[
4π2

G(M1 + M2 + MWD)

(
(1 + e cos( f ))r

(1− e2)

)3
]1/2

, (5.2)

where we have used Eq. (3.11) and the third Kepler’s law. Here r is the projected

separation and f the eccentric anomaly. For f = 180◦ Eq. (5.2) can be rewrited as

P =

[
4π2

G(M1 + M2 + MWD)

(
r

(1 + e)

)3
]1/2

. (5.3)

As shown in Fig. 5.6, the system is affected by the EKM only at eccentricities

higher than ≈ 0.92 (using the εoct criterion). However, by comparing the GR

precession and EKM timescales (Fig. 5.5) we found that the minimum eccen-

tricity required to overcome the GR precession is eout ≈ 0.98. Finally, according

the Mardling-Aarseth’s stability criterion, the system is unstable at eccentricities

higher than ≈ 0.96 (Fig. 5.7). Therefore we can conclude that, at present, the

system is unaffected by the EKM.
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Figure 5.6: log εoct as function of the outer eccentricity (blue line). Here we can see that only

for extremely high eccentricity values (eout & 0.95) the eccentric Kozai mechanism is important

(log εoct ≥ −2, red line). The fixed values for the calculation of log εoct are m0 = 1.04M�,

m1 = 0.2, M�, MWD = 0.95, Pin = 13.6 days, Pout = 104.7 days)
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Figure 5.7: log(Pout/Pin) vs outer eccentricity. Comparison between the Mardling-Aarseth’s

stability criterion (Eq. 2.2, blue line) and the ratio between the outer and inner period of

TYC 7218-934-1 (red line), which marks the transition between dynamically stable (area below

the red line) and unstable (area above the red line) configurations. the interception between the

red and blue lines at eout ≈ 0.96 shows that for higher eccentricity values the system becomes

unstable.
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5.5 Kozai-Lidov mechanisms in the early stages

of TYC 7218-934-1

To determine whether the system experienced the Kozai-Lidov mechanisms be-

fore the WD was formed, we compare the timescales of the standard (TSKM)

and eccentric (TEKM) Kozai mechanisms (Eqs. 1.17 and 1.20) with the evolution-

ary (TMS) and GR precession (TGRP) timescales. If the Kozai-Lidov mechanisms

timescales are less than TMS and TGRP, then the system is able to experience ec-

centricity oscillations. To estimate if this was potentially the case, we need to

estimate the initial outer orbital period Pout,0 using the adiabatic mass loss model

(appropriate for this type of systems, as discussed in Section 3.1). Thus:

Pout,0 = Pout, f

(
Mtot, f

Mtot,0

)2

. (5.4)

This resulting outer period represents a lower limit of the true values if we as-

sume the observed projected separation to be the real separation. For the mass of

the WD progenitor (Mprog) we use the initial to final mass ratio (IFMR) derived

in Catalán et al. [2008]

MWD = (0.177± 0.004)Mprog + (0.384± 0.011), (5.5)

that gives a mass range for the progenitor between 3.04M� and 4.83M�. The

initial masses of the G type star and its companion will be set at their current

values (m0 = 1.04M� and m1 = 0.2, that is, we assume that their masses did not

change significantly during the evolution of the system). Under this assump-

tions, the initial outer period ranges from 103.66 to 104.35 days. For the evolution-

ary timescale we assume that the main sequence lifetime of a star depends on

mass following a power law as

TMS = 1010
(

M�
M

)η

, (5.6)

where η = −2.5, and TMS is in years. Thus, the time before the massive primary

becomes a WD is ≈ 3.1× 108 yr.
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In order to compare the aforementioned timescales, it is crucial for the case of the

Kozai-Lidov mechanisms to know the ratio between the outer and inner periods,

since they depend strongly on it. Thus, in what follows, we combined our previ-

ously obtained lower limit for Pout,0 with the multiple star population synthesis

of T14b to get the probability that the Kozai-Lidov mechanisms were present in

the early stages of the system, taking into account all possible combinations of

Pin,0, ein,0 and eout,0 for each Pout,0.

5.5.1 Modelling the probability to experience Kozai-Lidov

oscillations by Montecarlo simulations

Supposing that TYC 7218-934-1 follows the statistical model proposed by T14b

(i.e. masses and periods are independent variables) and our eccentricity dis-

tributions used in Chapter 2, we will try to quantify, assuming an initial outer

period equal or greater than 104 days (this is our lower limit for Pout,0), whether

the system experience Kozai-Lidov mechanisms as follows:

– We first determine the probability that the initial inner period was greater

than 13.6 days ( i.e., assuming that Pin,0 was reduced during the evolution

of the system, mainly by tidal interactions).

– We then estimate how many of the systems with Pout,0 ≥ 104 days and

Pin,0 ≥ 13.6 days are susceptible to suffer Kozai-Lidov oscillations (taking

into account the GR precession and evolutionary time of the WD progeni-

tor).

Figure 5.8 shows how we determine which configurations are susceptible to

suffer Kozai-Lidov oscillations for the particular case where Pout,0 = 104 days,

eout,0 = 0.5 and ein,0 = 0, leaving Pin,0 as free parameter. The minimum inner

period required to overcome the GR precession by the eccentric Kozai-Lidov

mechanism is xEKM
in,0 = 1.61 (≈ 41 days, given by the intersection of the green

line and the dashed blue line), while for the standard Kozai mechanism there

are no restrictions on period either by GR precession or the WD progenitor’s

lifetime.
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We found that, on average, 83% of the configurations with Pout,0 ≥ 104 have in-

ner periods greater than 13.6 days, and of those about 68% are susceptible to suf-

fer Kozai-Lidov oscillations, which give us a probability of ≈ 56% (0.83× 0.68)

that the observed eccentric orbit in TYC 7218-934-1 was due to Kozai-Lidov

mechanism. This shows that a reasonable scenario for the evolution of the sys-

tem is that close orbit of the inner binary has been generated by eccentricity

variations that caused orbital energy to be lost through tidal effects. While the

system is currently not affected by Kozai-Lidov effects, tidal effects are most

likely still acting in the system and are supposed to further reduce the orbital

period.
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Figure 5.8: SKM and EKM timescales (dashed-dotted magenta line and dashed blue line re-

spectively) at different initial inner periods compared with the estimate main sequence lifetime

of the WD progenitor (solid red line) and the GR precession timescale (solir green line). The

fixed orbital parameters used are Pout,0 = 104 days, eout,0 = 0.5 and ein,0 = 0.
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5.6 Conclusions

In order to explain the inner eccentric orbit observed in the hierarchical triple

system TYC 7218-934-1, we propose that its distant component (i.e. the white

dwarf) perturbs the inner binary producing the so called Kozai-Lidov oscilla-

tions. By using its observed orbital characteristics and the estimated masses of

its components we conclude that currently the system is unaffected by the ec-

centric Kozai oscillations, and only for outer eccentricity values close to 0.92 the

systems is able to experience standard Kozai-oscillations. However, since at such

eccentricities the system is also close to the stability limit, it is unlikely that the

standard Kozai mechanism currently exists.

Once we conclude that currently the system is unaffected by the Kozai-Lidov

mechanisms, we explore its likely presence on the initial stages of the system

(that is, before the white dwarf formed). By assuming that TYC 7218-934-1 fol-

lows the statistical model of Tokovinin [2014b] and the eccentricity distributions

used in Chapter 2, we estimate that is highly likely that the initial inner period

was greater than the observed one, favoring in turn the Kozai-Lidov oscillations

in the early stages of the system.
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CHAPTER 6

Summary

The study of close binaries composed by a main sequence star of spectral type

F,G or K (FGK type) plus a white dwarf (WD) as potential Supernovae Ia pro-

genitors is extremely important to constrain and refine the several pathways that

have been proposed to describe this type of events. With this goal in mind, the

The White Dwarf Binary Pathways Survey I (Parsons et al. [2016]) developed an ef-

fective method to identify unresolved Post Common Envelope Binaries (PCEBs)

composed by a FGK stars with WD companions (FGK+WD systems), which is

based on two main criteria :

– Confirmation of the binary system: Radial velocities measurements of the

FGK star show the presence of a companion.

– Confirmation of a WD companion: The FGK spectrum shows excess flux

at ultraviolet (UV) wavelengths, which is interpreted as a potential WD

companion.

It is well established that the main formation channel of close FGK+WD binaries

involves the Common Envelope (CE) phase. However, from the total of systems

identified as FGK+WD with orbital properties measured, about 33%± 12 have

eccentric orbits that can not be explained by CE evolution. Since the orbital so-

lutions of such systems are based on radial velocities measured from the absorp-
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tion lines of the FGK-type component, there are two possible general configura-

tions. Either these objects are indeed close FGK+WD binaries formed through

the Kozai-Lidov mechanisms by means of a unseen M-type star (FGK/WD+M

configuration), providing the first observational evidence for a new channel to-

wards SN Ia, or the WD is the third distant object that triggered the Kozai-Lidov

mechanisms, which led to the formation of the eccentric inner binary star con-

sisting of the FGK-type star plus an unseen late M dwarf (FGK/M+WD config-

uration).

To test the hypothesis that the identified eccentric systems are triples, we gener-

ate and evolve a population of binaries and triples to compare the final amount

of triple systems with FGK/WD+M and FGK/M+WD configurations with the

number of binaries FGK+WD that passed through the common envelope phase.

The steps involved in our work can be summarized as follow:

– Population synthesis of binary and triple systems: We reproduce the multiple

star population synthesis algorithm developed by Tokovinin [2014b] to ob-

tain initial mass ratios and orbital periods. Initial masses, eccentricities,

time of evolution, and inclination between orbits (for the case of triple sys-

tems) were included based on observational distributions found in the lit-

erature.

– Evolution of binary and triple systems: The initial population of binary and

triple systems were evolved with the Binary Stellar Evolution (BSE) code,

which is able to reproduce the evolution of single and binary stars in a

fast way. Since BSE is not to capable to evolve triple systems, as a first

approximation we evolve the inner binary and its distant companion in-

dependently, and by using the adiabatic mass loss model we obtain the final

period of the latter.

– Selection of PCEBs binaries and FGK/WD+M - FGK/M+WD triples: From the

BSE output we select the PCEBs (the main target in the survey) and the

triple systems with both FGK/WD+M and FGK/M+WD configurations.

– Identify FGK/WD+M and FGK/M+WD systems with Kozai mechanisms: Based

on a list of criteria obtained from numerical simulations made in previous

works, we select the FGK/WD+M and FGK/M+WD systems that would

potentially be affected by the Kozai-Lidov mechanisms and compare the

total numbers of these triples and PCEBs.
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– Apply the ejection and time-scale filters: Due to mass loss either in the inner

binary or the distant component in a triple, the system may be fragmented

into a binary and single stars by ejecting one of them. To determine which

systems suffer ejections we use as a first approximation the Impulse regime

evolution, i.e assuming instant mass loss. This prescription most likely over-

estimates the number of fragmented systems. In addition, we compare the

Kozai mechanisms time-scales with the general relativity (GR) precession

time-scale and evolutionary time of the triple in order to select only those

systems where the Kozai mechanisms can act freely.

We found that, without filters ≈ 23% of the observationally identified FGK+WD

systems would indeed be triple systems, where the ratio between FGK/WD+M

and FGK/M+WD systems is ≈ 0.25. When the the ejection filters are applied,

the fraction of triples is reduced to a 18 per cent. Thus, although we have

used many (reasonable) approximations, and taking into account the estimated

uncertainty of 12% in the observed fraction of systems with eccentric orbits,

our fraction of triple systems with Kozai-Lidov oscillations agrees well with the

observed fraction of systems with eccentric orbits, showing that the majority,

if not all of the observed WD/FGK candidates with eccentric orbits would be

triples.

In the last part of this work we studied the system TYC 7218-934-1, which cor-

responds to one of the observed FGK+WD systems with eccentric orbits. It is

the first object confirmed as a FGK/M+WD triple, supporting our hypothesis

of the presence of triple dynamics. Furthermore, this system supports the re-

sult obtained in our simulations that about 79% of the intrinsic population of

triples that might be confused as close FGK+WD binaries in the survey, have

the WD as the third companion. Of course further characterizations of a larger

number of eccentric systems is required before firm conclusions can be drawn.

Finally, assuming that TYC 7218-934-1 follows the statistical model proposed

by Tokovinin [2014b], we calculated that, given an initial outer period equal or

greater than 104 days, there is a probability of ≈ 56% that the observed eccen-

tric orbit in TYC 7218-934-1 was caused by the Kozai-Lidov mechanisms in the

early stages of the system. This rough estimate shows that the scenario outlined

for TYC 7218-934-1, i.e. Kozai-Lidov triggering large eccentricities when all stars
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6.1. STATEMENT

were on the main sequence, is a reasonable one.

6.1 Statement

The acquisition, reduction and models fitted to SPHERE’s data of TYC 7218-934-

1 was not part of this work, and I only used its calculated stellar and orbital

parameter in the analysis of Chapter five. In the same way, the radial veloci-

ties measurements, and observed fraction of FGK+WD systems were taken from

Parsons et al. [2016].
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