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Abstract: A low-profile frequency reconfigurable monopole antenna operating in the microwave
frequency band is presented in this paper. The proposed structure is printed on Flame Retardant-4
(FR-4) substrate having relative permittivity of 4.3 and tangent loss of 0.025. Four pin diode switches
are inserted between radiating patches for switching the various operating modes of an antenna.
The proposed antenna operates in five modes, covering nine different bands by operating at single
bands of 5 and 3.5 GHz in Mode 1 and Mode 2, dual bands (i.e., 2.6 and 6.5 GHz, 2.1 and 5.6 GHz) in
Mode 3 and 4 and triple bands in Mode 5 (i.e., 1.8, 4.8, and 6.4 GHz). The Voltage Standing Waves
Ratio (VSWR) of the presented antenna is less than 1.5 for all the operating bands. The efficiency
of the designed antenna is 84 % and gain ranges from 1.2 to 3.6 dBi, respectively, at corresponding
resonant frequencies. The achieve bandwidths at respective frequencies ranges from 10.5 to 28%.
The proposed structure is modeled in Computer Simulation Technology microwave studio (CST
MWS) and the simulated results are experimentally validated. Due to its reasonably small size and
support for multiple wireless standards, the proposed antenna can be used in modern handheld fifth
generation (5G) devices as well as Internet of Things (IoT) enabled systems in smart cities.

Keywords: reconfigurable antenna; Sub-6 GHz; 5G; IoT; smart cities

1. Introduction

The fifth generation (5G) of mobile communication operating in the sub-6 GHz fre-
quency band is aimed for faster and reliable communication services with an enhanced net-
work capacity. With the advancement of wireless communication technology requirement
of multiple wireless services in a single device has increased significantly, so conventional
antenna fails to meet this new requirement of wireless communication systems. To meet the
demands, an antenna is designed which has an ability to switch its characteristics according
to the requirements. Such an antenna is called a reconfigurable antenna [1]. Reconfig-
urable antennas are used for different wireless applications that operate in a wide range of
frequency as they have proved to be very useful in completing new requirements of the
system. Reconfigurable antennas can alter their behavior according to the requirements.
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They have ability to deliver the same performance as that of multiple antennas without
increasing the size which would have occurred in case of using multiple antennas [2].
There are three basic types of reconfigurable antennas which include Frequency, Pattern,
and polarization reconfigurable antennas. Frequency reconfigurable antennas provide
frequency tuning over desired frequency bands and efficient utilization of spectrum [3].
Pattern reconfigurable antennas direct their radiation pattern towards a desired direction
and are a fundamental concept for beam steering in the future mobile networks. Pattern
reconfigurable antennas with beam reconfigurability can also be employed in Multiple-
Input Multiple-Output (MIMO) services [4]. Polarization reconfigurable antennas reduce
multipath fading, improve the effectiveness in receiving communication signal, and reduce
co-channel interference [5].

The antenna can be made reconfigurable by using different types of switching tech-
niques [6]. In [7], a liquid metal is used to obtain reconfigurability in a frequency-
reconfigurable patch antenna for Industrial, Scientific, and Medical (ISM)/Global Po-
sitioning System (GPS) band. Radio frequency (RF) pin diodes are used in [8] to obtain
reconfigurability for nine different frequency bands. Eight Varactor diodes are used for
reconfigurability, which operates in the range of 1.64 GHz to 2.12 GHz in [9]. In [10], Radio
Frequency Microelectromechanical Systems (RF-MEMS) switches are used for switching
purposes at a faster rate with dual frequency reconfigurable bands (4.57 and 4.88 GHz)
by integrating the antenna with a bias network. Electrically tuned plasma is used to
achieve reconfigurability in low profile broad band plasma antenna for VHF and UHF
applications [11]. In [12], a set of optical (photo conductive) switches are used for frequency
and radiation reconfiguration with application of millimeter-wave (mmW) 28 GHz and
38 GHz frequency range. For beam steerable planer antenna, four PIN diodes is used
as a switching device [13] to achieve reconfigurability for Worldwide Interoperability for
Microwave Access (WiMAX) and Wireless Local Area Network (WLAN) applications.
A reconfigurable MIMO antenna for cognitive radio applications is made with PIN and
Varactor diodes reconfiguration mechanism in [14].

A CPW Fed Sub 6 GHz Frequency Reconfigurable Antenna for 5G and UWB Appli-
cations is presented in [15] where a single pin diode is used for reconfigurability. In [16]
a Differentially-Fed Frequency Reconfigurable antenna is presented for WLAN and Sub-
6GHz 5G Applications. These antennas can operate in either single or dual band modes
depending on the state of switch. Lumped element switch is used to attain reconfiguration.
In [17], author has presented an E-shaped frequency reconfigurable antenna in which Pin
diodes, Varactor diodes and RF MEMS have been used to achieve reconfigurability. Circu-
lar and linear polarization occurs in the range of 2.4 to 3.6 GHz. A monopole frequency
reconfigurable antenna is introduced in [18]. Three pin diodes are used for reconfigurability.
There are four modes of operation. Each mode has different applications. Mode 1 for The
Global System for Mobile Communications (GSM). Mode 2 for 3G advanced/Long Term
Evolution (LTE). Mode 3 for WIFI/WLAN/ISM and Mode 4 is for Airport Surveillance
Radar band/WLAN applications. In [19], a compact hexa-band frequency-reconfigurable
antenna is presented. The proposed antenna operates at six different bands such as Wire-
less Fidelity (WI-FI), WI-MAX, Universal Mobile Telecommunications System (UMTS),
and WLAN.

In [20] Multiband frequency reconfigurable antenna is presented for 5G and Ultra-
wideband (UWB) applications. A PIN Diode is employed to achieve frequency reconfigu-
ration in the proposed antenna. A multi-band frequency reconfigurable Inverted F antenna
for wireless applications is presented in [21]. An F-shaped frequency reconfigurable an-
tenna is presented in [22] which covers different bands which include the WLAN, Wi-MAX,
Wi-Fi, and GSM band. In [23] a tri-band frequency reconfigurable antenna is presented for
LTE/WiFi)/ITS applications. Switching is done by two PIN diodes loaded on the ground
plane. A multi band reconfigurable antenna for future wireless applications is presented
in [24] in which total eight frequency bands between 1.46 and 6.15 GHz have been achieved
using two pin diodes. A compact multiband frequency reconfigurable planar inverted-F
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antenna (PIFA) is presented in [25]. Seven different bands have been achieved by using a
single RF switch for switching mechanism. The antenna is designed for GPS, LTE, UWB
and satellite applications. In [26] a multi-band frequency reconfigurable antenna for 5G
communication is reported. Two pin diodes have been inserted in the triangular-shaped
radiator for switching the modes. Antenna has two operational modes covering five reso-
nant bands. In [27], a dipole-based frequency reconfigurable antenna is presented, having
four pin diodes for switching. Depending upon switching states of pin diodes antenna has
two resonant modes, covering three different bands for sub-6GHz and WLAN applications.
In [28], a composite right/left-handed (CRLH) unit cell loaded frequency reconfigurable
antenna is reported. Antenna has two varactor diodes with varying the capacitance provid-
ing ten different LTE bands. In [29] a compact CPW fed frequency reconfigurable antenna
is presented. Two pin diodes have been used for switching, providing dual and tri-band
operational modes. Similarly, a CPW fed multi-mode frequency reconfigurable antenna
for Sub-6GHz and other wireless applications is reported in [30]. Three pin diodes have
been loaded between stubs to achieve reconfigurability. Antenna has a wide band and four
reconfigurable bands.

A novel shaped frequency reconfigurable multi band antenna designed on an FR-
4 substrate is presented in this paper. The proposed antenna is reconfigurable using
pin-diode switches and radiates on nine different bands with promising gain, radiation
efficiency and compact size. The proposed antenna contains four pin diode switches.

This paper is organized as follows: Section 2 explains the design methodology and
geometry of the proposed switchable multiband antenna. The analysis of simulation and
measured results is discussed in Sections 3 and 4 concludes this research work.

2. Methodology

This section presents basic geometry and design theory of the proposed multi band
frequency reconfigurable antenna. Frequency reconfigurability is achieved in simulation
through the lumped element RLC equivalent circuit of the pin diodes. The designed
antenna can be operated in different frequencies by using the ON/OFF condition of the
diodes. Better efficiency and satisfactory far field results have been obtained using a partial
ground plane.

2.1. Design Theory and Structural Geometry

The geometrical structure of the proposed antenna is depicted in Figure 1. The
presented antenna of dimension 40 × 32 × 1.6 mm3 which is based on a 1.6 mm thick FR-4
substrate. The substrate has relative permittivity εr of 4.3 and loss tangent δ of 0.025, backed
by truncated metallic ground plane to obtain better gain, good efficiency, and directivity.
For insertion of the pin diode switches, a gap of 1 mm was kept between the patches. A
microstrip line of width 3 mm having 50 Ω impedance is used to excite the antenna.

Pin diode (SMP1345-079LF) is used for switching in the simulations. The biasing circuit
for operating the pin diode switch is designed on FR4 substrate. The configuration to
connect the biasing circuit to control the pin diode, implanted on the fabricated prototype,
is portrayed in Figure 2. For the proof of concept, only a single switch (pin diode) is
operated through the biasing circuit. The remaining three switches were turned ON by
soldering copper strips across the switch position, for a particular frequency mode (i.e.,
mode 3, 4, and 5).

A detailed summary of the dimensions of the proposed antenna is presented in Table 1.
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The effective resonant lengths for intended frequencies are calculated using trans-
mission line model theory [31]. The effective length of the antenna corresponding to the
respective resonant bands are one quarter of the guided wavelength (i.e., Lf = λf/4).

2.2. Reconfigurability

In proposed antenna frequency reconfigurability is achieved by changing the ON
and OFF states of each PIN diode that offers an open and short circuit behavior between
radiating patches. The presented antenna has five operating modes, each have unique
scheme of resonant frequencies. In Mode 1 (SW1 to SW4 = OFF), antenna operates at 5 GHz.
For Mode 2 (SW1 = ON, SW2 to SW4 = OFF), the proposed antenna resonates at 3.5 GHz.
The antenna shows dual band behavior and covers 2.6 and 6.5 GHz at Mode 3 (SW1 and
SW2 = ON, SW3 and SW4 = OFF). The same antenna covers two different bands of 2.1 and
5.6 GHz when operating at Mode 4 (SW1 to SW3 = ON, SW4 = OFF). The three unique
bands of 1.8, 4.8, and 6.4 GHz are covered when antenna operates in Mode 5 (SW1 to
SW4 = ON). The conditions of the PIN diodes at each mode and respective resonant bands
are detailed in Table 2.

Table 2. Conditions of the PIN diodes for various resonant bands.

MODES SW1 SW2 SW3 SW4 Resonant Bands (GHz)

1 OFF OFF OFF OFF 5
2 ON OFF OFF OFF 3.5
3 ON ON OFF OFF 2.6 and 6.5
4 ON ON ON OFF 2.1 and 5.6
5 ON ON ON ON 1.8, 4.8 and 6.4

2.3. Switching Technique

For switching purpose four pin diodes (SMP1345-079LF) are used, as they behave
like a variable resistor in the radio frequency (RF) range. These pin diodes provide open
and the short circuit behavior at their respective insertion positions, thus vary the effective
resonant length of the antenna and hence result in reconfiguration of antenna’s operating
frequency. The equivalent circuits for both ON and OFF states of a pin diode switches are
shown in the Figure 3. For ON state it is simply an RL series circuit, having a low value
resistor “RL” and an inductor “L”. In OFF state it is equivalent to an RLC circuit, having
inductor “L” in parallel with a high value resistor “RH” and a capacitor “C”. Pin diode of
model Skyworks SMP1345-079LF are used in this work. According to its datasheet it has
been modeled in CST as RL = 1.5 Ω, L = 0.7 nH and C = 0.15 pF.
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3. Results and Discussion

The proposed structure is designed and analyzed using CST microwave studio. To
excite the radiating structure, a waveguide port of standard dimensions is assigned. The
performance parameters i.e., return loss, gain, surface current plots are obtained by using
the standard boundary conditions in CST microwave studio. The simulated results are
experimentally validated in the antenna measurement facility located at National Univer-
sity of Science and Technology (NUST) Islamabad. The experimental setup to measure the
radiation pattern of the proposed antenna in mode 1 is depicted in Figure 4.
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3.1. Return Loss and Bandwidth

The simulated return loss of all modes of the proposed antenna are depicted
in Figure 5. When all switches (SW1 to SW4) are OFF, the proposed antenna operates
in MODE 1, resonating at 5 GHz with return loss of −29.33 dB and simulated bandwidth
of 1400 MHz (4.21–5.61 GHz). In MODE 2 (When SW 1 is ON), the presented antenna
resonates at 3.5 GHz with return loss of −15.17 dB and bandwidth of 1370 MHz (3.03–
4.42 GHz). In MODE 3 when two switches (SW1, SW2) are ON and other two switches
(SW3, SW4) are OFF, the proposed antenna operates at two different bands, i.e., 2.6 and
6.5 GHz with −50 dB and −23.65 dB return loss and bandwidth of 500 MHz (2.40–2.90 GHz)
and 670 MHz (6.27–6.94 GHz), respectively. The same antenna covers two different bands
of 2.1 and 5.6 GHz when SWI, SW2 and SW3 are ON and SW4 is OFF, with return loss
of −18 dB and −16.36 dB and bandwidth of 300 MHz (1.95–2.25 GHz) and 450 MHz
(5.41–5.86 GHz), respectively at the operating frequencies. When all switches (SW1 to SW4)
are ON, the antenna switch to its MODE 5 and operates at 1.8, 4.8, and 6.4 GHz with return
loss of −13.76 dB, −18.67 dB, and −13.6 dB and bandwidth of 190 MHz (1.71–1.90 GHz),
580 MHz (4.55–5.13 GHz), and 450 MHz (6.18–6.63 GHz), respectively.
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The simulated and measured return loss of each mode is compared in Figure 6. The
comparison shows a good agreement between measured and simulated results. The Voltage
Standing Waves Ratio (VSWR) of less than 1.5 is observed for all resonant bands, which
indicates optimum driving-point impedance matching of the antenna. The VSWR is less
than 2 for all the operating frequency bands, as depicted in Figure 7.
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3.2. Far Field Radiation Pattern

In MODE 1, proposed antenna operates at 5 GHz with a simulated peak gain and
radiation efficiency of 1.25 dBi and 81%, respectively. In MODE 2, a central frequency of
3.5 GHz has been achieved with peak gain and radiation efficiency of 2.17 dBi and 82%,
respectively. A dual band is achieved in MODE 3 with gain of 1.76 and 1.9 dBi and radiation
efficiencies of 84% and 71% at 2.6 and 6.5 GHz, respectively. The antenna operates at 2.1
and 5.6 GHz in MODE 4, with peak gains of 1.4 and 2.15 dBi and radiation efficiencies
of 83% and 70%, respectively. In MODE 5 the proposed structure operates at 1.8, 4.8 and
6.4 GHz, with peak gains of 1.2, 2.37, and 3.6 dBi and radiation efficiencies of 82%, 75%,
and 74%, respectively.

The comparison of simulated and measured gain of proposed antenna is depicted
in Figure 8 showing that the measured gains are in a good agreement with the simulated
ones. It is worth mentioning that the antenna gives optimum values of average gain, i.e.,
1.1 dBi in mode 1, 1.98 dBi in mode 2, 1.69–1.8 dBi in mode 3, 1.28–2 dBi in mode 4, and
1.12–3.45 dBi in mode 5.

The simulated and measured radiation pattern of the antenna in both E- and H- plane
at the operating frequency bands, are compared in Figure 9. The shape of the radiation
pattern in the E-plane, resembles the figure-of-eight at frequencies of 1.8, 2.1, 2.6, 3.5,
and 6.4 GHz. The radiation properties of the antenna in the H-plane are predominantly
Omni-directional in nature in most of the frequency bands. The half power beamwidth
(HPBW) and main lobe direction (MLD) were deduced from the E-plane radiation pattern
of the antenna in all resonant modes, and the same are summarized in Table 3.
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Mode No Operating Frequency HPBW (in Degrees) MLD (in Degrees)

1 5 121 −155
2 3.5 99.2 −165
3 2.6/6.5 90.8/60 −170/145
4 2.1/5.6 90/69 −175/140
5 1.8/4.8/6.4 90/106/51 −175/160/5
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The simulated co- and cross-polar radiation patterns for both E-plane (y-z) and
H-plane (x-z) are presented in Figure 10. It is evident from the results that in the co-
polarization state, the antenna radiates adequately in both E- and H-planes. While, in
cross-polarization state, the antenna gain is predominately negative and hence the radiation
is extremely poor in both principal planes. For further clarity about the radiation properties
of the antenna, the three-dimensional gain plots are portrayed at the resonant frequencies
in Figure 11.
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3.3. Surface Currents

The surface current distribution on the radiating structure of the antenna at different
frequency bands is shown in Figure 12. For Mode 1, antenna operates at 5 GHz frequency,
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the density of the surface currents is higher on the main radiator which is contributing in
radiation at 5 GHz. In Mode 2, the surface currents indicate an increase in the contributing
resonant length, thus operation shifts to 3.5 GHz. In Mode 3 and 4, dual band operations
(i.e., 2.6 and 3.5 GHz, 2.1 and 5.6 GHz) are achieved, the surface currents indicate the
dominant contribution of larger portion of radiator for lower bands and smaller portion of
radiator for the upper bands. In Mode 5, triple band (i.e., 1.8, 4.8, and 6.4 GHz) operation is
achieved, the higher surface current density along the entire length of the radiator indicate
that the whole metallic radiator is contributing in radiation in the lower frequency band
(i.e., 1.8 GHz). It is worth mentioning that relatively smaller segments of the radiator are
contributing in radiation at the upper bands (4.8 and 6.4 GHz). These surface currents
indicate that the contributing resonant length for respective frequency decreases as res-
onant frequency increases, thus proves the inverse relation of frequency with resonant
length. Performance matrices of proposed antenna are summarized in Table 4. The power
consumption by the parasitic resistance of the pin diodes and as well as the power loss in
the dielectric substrate were analyzed for each operating frequency. The average power
consumption or loss contributed by the pin diodes and dielectric substrate is 0.023 w and
0.031 w, respectively.
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Table 4. Summary of the antenna’s performance.

Mode No Conditions Operating Freq
(GHz) −10 dB BW (MHz) Gain (dBi) Return Loss

(dB)
Radiation

Efficiency (%)

1
When all

switches are
OFF

5 4.21–5.61 (1400) 1.25 −29.33 81

2 When S1 is ON 3.5 3.05–4.42 (1370) 2.17 −15.17 82

3 When S1 and S2
are ON 2.6/6.5 2.40–2.90

(500)/6.27–6.94 (670) 1.76/1.9 −50/−23.65 84/71

4 When S1, S2 an
S3 are ON 2.1/5.6 1.95–2.25

(300)/5.41–5.86 (450) 1.4/2.15 −18/−16.36 83/70

5 When S1, S2, S3
and S4 are ON 1.8/4.8/6.4

1.71–1.90
(190)/4.55–5.13

(580)/6.18–6.63 (450)
1.2/2.37/3.6 −13.76/−18.6/

−13.6 82/75/74
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In terms of size, the proposed antenna is more compact than other antennas reported
in [32–38]. The proposed antenna has impedance bandwidth ranges 190–1400 MHz which
offers larger bandwidth than antennas designed in [32,33,35–39] and has better gain than
the work reported in [32–34,36,37,39]. The most prominent distinction, as compared to
other candidate antennas, is the ability of proposed antenna to operate on nine different
frequency bands, which are more than the number of bands achieved in all reported works.
The comparison is given in Table 5.

Table 5. Proposed antenna’s comparison with other reported works.

Ref. Dimensions
(mm3)

Total No of
Operating Bands

Operating Frequencies
(GHz)

Bandwidth
(MHz)

Peak Gains
(dBi)

Radiation
Efficiency (%)

[32] 40 × 35 × 1.6 3 2.45, 3.5, 5.4 490–1360 1.92–3.02 76.4–86.5
[33] 60 × 60 × 1.6 5 2.4, 4.26, 4.32, 4.58, 5.76 60–170 1.31–2.77 -
[34] 53 × 35 × 1.6 3 2.45, 3.50, 5.20 147–1820 1.7–3.4 85–90
[39] 40 × 22 × 1.6 4 2.45, 5.13, 3.49, 5.81 750–1260 1.72–2.96 76.4–92
[35] 39 × 37 × 1.6 3 2.4, 5.4, 3 550–1220 1.27–3.8 >90
[36] 37 × 35 × 1.6 4 2, 3.4, 2.4, 3.1 200–960 1.76–1.98 >85
[37] 40 × 35× 1.6 3 2.45, 3.5, 5.2 330–1250 1.48–3.26 84–93.5

[38] 40 × 35 × 1.6 6 2.10, 2.40, 3.35, 3.50, 5.28,
5.97 335–1220 1.92–3.8 92.5–97

This work 40 × 32 × 1.6 9 1.8, 2.1, 2.6, 3.5, 4.8, 5.0,
5.6, 6.4, 6.5 190–1400 1.25–3.6 70–84

4. Conclusions

A frequency reconfigurable antenna has been designed, simulated, and experimentally
validated in this paper. The proposed antenna is reconfigured depending on the ON and
OFF states of the pin diode switches. When all the switches are OFF, the presented antenna
covers a single band (5 GHz). Antenna operates at 3.5 GHz when only SW1 is ON. Dual
bands i.e., 2.6 GHz and 6.5 GHz are achieved when SW1 and SW2 are ON. The prototype
works in dual band mode (2.1 GHz and 5.6 GHz) when SW1 to SW3 are ON. When all
switches are ON, the designed antenna operates in triple band (1.8, 4.8, and 6.4 GHz).
The proposed antenna has many advantages like compact size, low cost, light weight and
easy of fabrication and supports sub-6GHz 5G bands (2.1, 2.6, 3.5, and 4.8 GHz) with
an extended application for GSM, UMTS, 4G-LTE, WiMAX, WLAN Wireless networks,
Internet of Things (IoT) enabled wireless systems in smart cities as well as the 6 GHz Fixed
Satellite Services.
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