A multi-objective linear threshold influence spread model solved by swarm intelligence-based methods

dc.contributor.authorOlivares, Rodrigo
dc.contributor.authorMuñoz, Francisco
dc.contributor.authorRiquelme, Fabián
dc.date.accessioned2022-11-30T02:46:44Z
dc.date.available2022-11-30T02:46:44Z
dc.date.issued2021
dc.description.abstractThe influence maximization problem (IMP) is one of the most important topics in social network analysis. It consists of finding the smallest seed of users that maximizes the influence spread in a social network. The main influence spread models are the linear threshold model (LT-model) and the independent cascade model (IC-model). These models have mainly been treated by using the single-objective paradigm which covers just one perspective: maximize the influence spread starting by given seed size, or minimize the seed set to reach a given number of influenced nodes. Sometimes, this minimization problem has been called the least cost influence problem (LCI). In this work, we propose a new optimization model for both perspectives under conflict, through the LT-model, by applying a binary multi-objective approach. Swarm intelligence methods are implemented to solve our proposal on real networks. Results are promising and suggest that the new multi-objective solution proposed can be properly solved in harder instances.en_ES
dc.facultadFacultad de Ingenieríaen_ES
dc.file.nameOlivares_Mul2021.pdf
dc.identifier.doihttps://doi.org/10.1016/j.knosys.2020.106623
dc.identifier.urihttp://repositoriobibliotecas.uv.cl/handle/uvscl/7477
dc.languageen
dc.publisherElsevier
dc.sourceKnowledge-Based Systems
dc.subjectSOCIAL NETWORKen_ES
dc.subjectINFLUENCE MAXIMIZATIONen_ES
dc.subjectINFLUENCE SPREAD MODELen_ES
dc.subjectMULTI-OBJECTIVE OPTIMIZATIONen_ES
dc.subjectSWARM INTELLIGENCEen_ES
dc.titleA multi-objective linear threshold influence spread model solved by swarm intelligence-based methods
dc.typeArticulo
uv.departamentoEscuela de Ingenieria Informatica
uv.notageneralNo disponible para descarga

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Olivares_Mul2021_noaccesible_.pdf
Tamaño:
822.83 KB
Formato:
Adobe Portable Document Format
Descripción: