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1 Introduction

The main components of air are nitrogen (approximately 78%), oxygen (21%) and
argon, carbon dioxide, helium, hydrogen, neon, and water vapor (together ~1%).
Atmospheric pollution is the lasting presence in the air of these and other chemicals
at concentrations above their natural levels, which could potentially lead to adverse
health effects. It derives mainly from anthropogenic activities that use combustion.
Effects of air contamination are important if climatological and geographical factors
reduce its dissipation, especially in areas with huge anthropogenic activity. Due to
this, many people breathe contaminated air, and the World Health Organization
(WHO) has estimated that 4.2 million deaths every year are a result of poor air
quality, with 91% of the world’s population being exposed to air pollutants by living
in places where air quality exceeds WHO safety guidelines (https://www.who.int/
airpollution/en/).

It is a fact that meteorological and climatic variables play an important role in the
determination of air pollution patterns and the global climate change is foreseen to
cause an increase in the concentration of some pollutants (Kinney 2008). Santiago, the
capital city of Chile, is among the cities with higher air pollution levels in the world. Its
location and weather, when combined with high anthropological emissions, create
critical air pollution conditions. A recent model explained elevated particulate matter
(PM) concentrations during high pollution events in Santiago, as a function of weather
conditions in central Chile and in Argentina, which at the local level generate a
depression at the base of the inversion layer, an increase in the vertical thermal
stability, lower humidity and low-wind conditions. Pollutant dispersion is thus
decreased leading to poor ventilation of contaminated air (Toro et al. 2019).

Due to its geography, people in the city of Santiago experience dry and hot
summers and damp winters, which contribute to the air pollution episodes that put
younger and older people at risk of respiratory and cardiovascular diseases.
Henríquez and Urrea (2017) showed a rise in daily emergency visits in winter
compared to summer (odds ratio of 2.2646), which were associated with higher
daily concentrations of PM, carbon monoxide, and sulfur and nitrogen oxide during
winter. Noteworthy, the press has recently covered the news that Chile has nine of
the ten more air-contaminated cities in South America (https://bit.ly/2ovYLiu).

The effects on health of air pollution vary according to type of pollutants, their
concentration, and duration of exposure. It is generally accepted that air contamina-
tion causes cardiovascular and pulmonary morbidity in addition to increased mor-
tality after exposure, but other epidemiological associations have also been
described, including cancer as well as reproductive and immunological toxicity
(https://www.who.int/airpollution/en/). Due to the multicomponent aspect of con-
taminated air, it is hard to establish what component of the contaminant mixture
produces a specific health problem. However, there is a growing amount of evidence
that indicates that PM plays a key role in the induction of cardiovascular and
respiratory diseases (Kim et al. 2015).
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Data analytics may be employed to generate information of air quality within the
context of data-driven decision-making (DDDM), a process associated with big data
and data science (Baesen 2014; Dietrich 2015; Aykroyd et al. 2019). DDDM allows
us to study the impact of atmospheric contaminants on human health and the urban
environment. In epidemiological studies, average air contaminant concentrations are
employed as indicators of air pollutant levels. However, since concentrations of air
pollutants vary with geographical and meteorological conditions, they are treated as
random variables taking values greater than zero. Then, these random variables are
described by a statistical distribution, which is frequently asymmetrical with a
positive skewness (Marchant et al. 2013). Note that pollutant concentrations are
expressed as number of units of mass of a certain substance (or agent) per a defined
unit of mass in the set, so it can never take negative values (Ott 1990). Thus, the
popular normal or Gaussian distribution is not applicable and authors resort to data
transformation which has limitations. Alternatively, one can avoid data transforma-
tion by modeling with a suitable distribution (Leiva et al. 2015; Marchant et al. 2019)
such as Birnbaum-Saunders.

The Birnbaum-Saunders distribution has positive skewness (asymmetry). It has
been defined over a range of continuous values greater than zero, allowing its use to
describe random variables with positive support such as atmospheric pollutant
concentrations. This distribution was derived from physical considerations of mate-
rial failure due to fatigue (Leiva 2016) and has been successfully applied to describe
air pollutant concentrations (Leiva et al. 2008, 2015; Vilca et al. 2010; Ferreira et al.
2012; Marchant et al. 2018, 2019). Leiva et al. (2015) provided a mathematical
formulation based on the proportionate-effect law (also known as the Gibrat law) to
justify the use of the Birnbaum-Saunders model as environmental contaminant
statistical distribution, justification which was previously associated also with the
lognormal distribution (Ott 1990). According to Leiva et al. (2015), a contaminant
concentration follows the proportionate-effect law if the growth in the concentration
at any step of the contamination process is a random proportion of the previous value
of the concentration. The Birnbaum-Saunders distribution has properties that are
similar to those of the lognormal distribution (Aitchison and Brown 1973; Leiva
2016), including the relationship with the proportionate-effect law and contamina-
tion processes (Aitchison and Brown 1973, p. 22; Ott 1990; Leiva et al. 2015). In
addition, in both Birnbaum-Saunders and lognormal distributions, their parameter
estimation is sensitive to atypical (extreme or outliers) data; a situation frequently
found when one analyzes air contaminant concentrations. Díaz-García and Leiva
(2005) derived an extension of the Birnbaum-Saunders distribution which is known
as the generalized Birnbaum-Saunders distribution. These distributions are a flexible
general family based on the Birnbaum-Saunders distribution, which contains several
particular cases. One of these cases is the Birnbaum-Saunders-Student-t distribution,
from now on Birnbaum-Saunders-t distribution (Athayde et al. 2019), whose esti-
mation of its parameters is not sensitive (robust) to the presence of atypical obser-
vations, which are common in environmental contamination data. It is important to
mention this issue of robustness to be kept in mind when using the Birnbaum-
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Saunders-t distribution, due to the relevant role that the Birnbaum-Saunders distri-
bution and its extensions are taking in environmental modeling.

Air chemical pollutants can be broadly grouped into four classes: gaseous
compounds; heavy metals; persistent organic pollutants; and suspended particles
or PM. Given the importance of PM in air pollution toxicity and that the Birnbaum-
Saunders and Birnbaum-Saunders-t models are adequate to statistically describe
pollutant distributions, the objectives of this article are (1) to provide a notion of
the serious threat of PM10 and PM2.5 for human health; (2) to describe the air
contamination problem in Santiago, Chile; and (3) to propose a data science meth-
odology that can be applied for modeling air quality. We exemplify this methodol-
ogy using air contamination real data from the city of Santiago, Chile.

2 Particulate Matter and Contamination in Santiago
of Chile

2.1 Adverse Effects of Particulate Matter

PM is a complex mixture of particles and liquid droplets that get into the air (Adams
et al. 2015; Hime et al. 2018). It is classified according to its diameter, which is
important for risk evaluation, as particle size determines site of deposition within the
respiratory tract. Thus, particles with a diameter over 10 μm do not penetrate into
airways. Hence, these particles are usually considered to be of low risk, as they are
deposited in the upper respiratory tract (on the nose and throat epithelium, above the
larynx) and are cleared by mucociliary function. On the contrary, particles with a
diameter smaller than 10 μm (PM10) are considered to be inhalable, that is, they get
past the larynx, and, according to their size, they are deposited either on lower
airways (particles between 2.5 and 10 μm) or on the alveoli of the lungs (particles
smaller than 2.5 μm, PM2.5). Particles smaller than 0.1 μm are called ultrafine
particles (UFPs) and easily reach the lung, where they are absorbed into the blood
(WHO 2000, 2013).

PM is very complex as it varies greatly in source and composition. Coarser
particles (those between 2.5 and 10 μm) are formed by the breakup of larger particles
and usually contain minerals as well as carbon. Finer particles (<2.5 μm and
including UFPs) derive mainly from combustion and may be either a carbon core
with adsorbed hydrocarbons, such as polycyclic aromatic hydrocarbons and metals
or secondary particles formed from sulfur and nitrogen oxides. Coarser particles may
also include biological material such as mold, pollen, endotoxins, and bacteria
(WHO 2000; Adams et al. 2015; Falcon-Rodriguez et al. 2016; Thompson 2018).

Anthropogenic activities, such as public transportation and industrial combustion,
are the main contributors to the pollution of air in urban environments. The health
effects of inhalable PM, after both acute and chronic exposure, have been described
in the scientific literature. For instance, a 1953 article describes how the London Fog
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Incident in December 1952 led to the death of at least 4000 people mainly from
respiratory and cardiovascular conditions (Logan 1953). Nowadays, it is greatly
accepted that toxicity from exposure to air pollution results in great part from the
action of airborne PM. In addition, these health effects generally include not only
respiratory and cardiovascular diseases but also cancer (WHO 2013). Furthermore,
there is some evidence that PM may also cause or contribute to neurotoxicity and
developmental toxicity (Thompson 2018). Animal and human studies have reported
that PM causes systemic inflammation increasing respiratory and cardiovascular
morbidity, as well as mortality from respiratory and cardiovascular diseases and
cancer (WHO 2013; Wu et al. 2018). In fact, outdoor air pollution and PM in outdoor
air pollution are both classified by the International Agency for Research on Cancer
(IARC) as carcinogenic to humans (Group 1). The IARC concluded that PM not
only is associated with an increase in genetic damage predictive of cancer but that it
also may promote cancer progression by inducing oxidative stress and sustained
inflammation (IARC 2016).

2.2 Geography, Topography, and Location of Santiago
and Its Air Monitoring Stations

Santiago, the capital of Chile, is the largest city in the country, with an area of
867.75 km2 and a population of about 7.1 million people, which is approximately
40.5% of the Chilean population (according to the information obtained from the
Population and Housing Census 2017 conducted by the Chilean government). Santi-
ago city is located in subtropical South America (33�270S, 70�400W), between a
coastal mountain range to the West (with an altitude close to 1000 m above sea
level) and the Andes mountain range to the East (with an altitude of around 3000 m
above sea level). Santiago has been facing air pollution problems for more than three
decades, becoming one of the cities with the highest levels of air pollution in the world
(Ostro 2003). Its poor air quality is believed to be the result of the growing industrial
sector, fast-growing population, and increased number of motor vehicles, worsened by
geophysical constraints for pollutant dispersion in Santiago’s basin (Préndez et al.
2011; Mendoza et al. 2019). In fall and winter seasons, subsidence conditions induce
thermal inversion layers that increase levels of pollutant concentrations, creating a
characteristic seasonality of air quality in the city (Villalobos et al. 2015).

Santiago has eleven (11) monitoring stations (which make the air quality assess-
ment network for the Metropolitan Region of Santiago, denominated MACAM),
located at different zones in the Metropolitan region of Chile. Figure 1 shows these
stations which are named as (MS1) Independencia; (MS2) La Florida; (MS3) Las
Condes; (MS4) Santiago city; (MS5) Pudahuel; (MS6) Cerrillos; (MS7) El Bosque;
(MS8) Cerro Navia; (MS9) Puente Alto; (MS10) Talagante; and (MS11) Quilicura.
The monitoring stations are geographically located with their respective numbers on
the map of Fig. 1.
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2.3 Local Air Quality Guidelines

The current official methodology used by the Chilean authority in Santiago to predict
PM10 concentrations is based on a multiple regression model (Morales et al. 2012).
It helps to forecast the maximum value of the 24 h average concentration of PM10 in
μg/normalized cubic meters (Nm3) for the period from 00:00 to 24:00 h of the next
day. In 2015, through Supreme Decree number 15/2015 and resolution number
9664/2015, it was instructed by the Chilean Ministry of Health to declare sanitary
alert based on PM2.5 concentrations. Chilean guidelines for PM2.5 and PM10
concentrations are established at maximum values of 50 and 150 (in μg/Nm3), during
24 h, respectively (CONAMA 1998; MMA 2011).

Fig. 1 Map of MACAM network of Santiago (Source: Metropolitan Regional Secretariat of the
Chilean Ministry of Health)
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2.4 Health Effects of PM in Santiago

Several studies indicate that people living in Santiago are at risk due to the poor air
quality of the city (Préndez et al. 2011; Romieu et al. 2012; Requia et al. 2018;
Perez-Padilla and Menezes 2019). Ilabaca et al. (1999) evaluated the impact of daily
variation of PM2.5 and other pollutants on the number of daily respiratory emer-
gency visits to an important pediatric hospital of Santiago. The authors
concluded that atmospheric air pollutant mixtures, especially fine PM, adversely
affected the respiratory health of children residing in Santiago, evidenced by an
increase in the number of daily respiratory emergency visits. Cifuentes et al. (2000)
studied the effect of concentrations of inhalable PM, as well as of other gaseous
pollutants, finding an association with increased daily mortality. Traffic combustion-
related particles were found to be associated with emergency visits in Santiago
(Cakmak et al. 2009). Franck et al. (2014, 2015) provided evidence for increased
hospital admissions related to respiratory and cardiovascular diseases, after critical
air pollution events in Santiago, showing the influence of combined exposure to
airborne pollutants. Recently, Matus and Oyarzún (2019) indicated that an increase
of 10 μg/m3 of PM2.5 with 1 and 2 days of lag was associated with an increase of
near 2% in children’s hospitalizations due to respiratory diseases. This percentage
increased to 5% when the exposure was with 8 days of lag, reflecting synergism
between PM and respiratory viruses.

3 Data Science Methodology for Monitoring Urban
Environmental Contamination

3.1 Birnbaum-Saunders np Control Charts

An np-chart is an adaptation of the control chart for nonconforming fraction when
samples of equal size (n) are taken from the process (Leiva et al. 2015; Aykroyd et al.
2019). The np-chart is based on the binomial distribution as detailed below. In
quality monitoring processes, one could be concerned about a random variable
corresponding to the number (D) of times that the quality variable (X) exceeds a
fixed value (x) established for the process, given an exceedance probability ( p).
Here, p can be computed by means of a continuous statistical distribution of the
quality variable X as p ¼ P(X > x) ¼ 1 � FX(x), where FX is the cumulative
distribution function of X. Thus, D follows a binomial distribution with parameters
n and p. Based on this distribution, an np-chart is proposed with lower control limit
(LCL), central line (CL), and upper control limit (UCL) given by
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LCL ¼ max 0, np0 � k np0 1� p0ð Þð Þ1=2
n o

, CL ¼ np0, UCL

¼ np0 þ k np0 1� p0ð Þð Þ1=2,

where k is a control coefficient such that k ¼ 2 indicates a warning level and k ¼ 3 a
dangerous level; p0 is the nonconforming fraction corresponding to a target mean
μX

(0) of the quality variable X, when the process is in control; and n is the size of each
subgroup to be monitored. Note that the nonconforming fraction is the probability
that the random variable X exceeds a dangerous concentration (x0), and therefore,
this probability is P(X > x0) ¼ 1 � FX(x0). The Birnbaum-Saunders distribution has
as one of its parameters the median (Leiva 2016). One can reparameterize the
Birnbaum-Saunders distribution switching its median to its mean μX (Santos-Neto
et al. 2014), with μX being the mean of the quality variable X previously defined.
Note that this mean-based reparameterization of the Birnbaum-Saunders distribution
allows us to have a similar setting as the Gaussian or normal distribution. Therefore,
considering x0 as proportional to μX

(0), that is, x0 ¼ aμX
(0), this permit us to establish

a monitoring criterion, where a> 0 is a proportionality constant. Note that the target
mean μX

(0) and the dangerous level x0 can be taken from process specifications.
Thus, when a monitoring process is in control (μX ¼ μX

(0)) for a quality variable
X following a Birnbaum-Saunders distribution (Leiva et al. 2015), the
nonconforming fraction is given by p0 ¼ 1 � FX(x0). Note that the specification of
the point x0 is equivalent to specifying the inspection point a > 0, because
x0 ¼ aμX

(0), in which μX
(0) is the target mean, which is assumed to be known.

Algorithm 1 provides a criterion for monitoring processes using an np-chart for a
quality variable X following a Birnbaum-Saunders distribution.

Algorithm 1 np Control Chart Based on the Birnbaum-Saunders Distribution
1. Consider N subgroups of size n.
2. Collect n data x1, . . ., xn of the random variable of interest X for each subgroup.
3. Set the target mean μX

(0), the inspection constant a, and the control coefficient k.
4. Count in each subgroup of n data the number d of times that xi exceeds

x0 ¼ aμX
(0), for i ¼ 1,. . .,n.

5. Compute LCL ¼max{0, np0 – k(nbp0(1� bp0))1/2}, CL¼ nbp0, and UCL ¼ nbp0 + k
(nbp0(1� bp0))1/2, where bp0 is the maximum likelihood estimate of p0¼ 1� FX(x0),
where FX is the cumulative distribution function of the random variable X defined
in step 2.

6. Declare the process as out-of-control if d > UCL or d < LCL or as in-control if
LCL � d � UCL.

3.2 Standard Bivariate Control Charts

The standard Hotelling T2 chart (Jackson 1985) is a useful tool for bivariate process
control under a normal distribution. Specifically, it assumes that the vector summa-
rizing the quality characteristics, (X1, X2), namely, follows a bivariate normal
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distribution. To monitor a bivariate process, the following statistical hypotheses are
considered:

H0 : μ1, μ2ð Þ ¼ μ1
0ð Þ, μ2

0ð Þ
� �

versus H1 : μ1, μ2ð Þ 6¼ μ1
0ð Þ, μ2

0ð Þ
� �

, ð1Þ

where (μ1
(0), μ2

(0)) is the target mean vector of an in-control process. Then, the
standard T2 statistic for testing the hypotheses above under a normal distribution is
used. In general, the construction of a bivariate control chart considers two phases. In
Phase I, a data set of size N ¼ m � n is obtained from an in-control status of the
underlying process, where m is the number of subgroups and n is the size of each
subgroup. This data set is used (a) to estimate the parameters of interest; (b) to verify
the distributional assumption with goodness-of-fit techniques; (c) to calculate LCL
and UCL; and (d) to detect bivariate outliers. Note that a bivariate outlier is
considered to be atypical by considering the whole bivariate data and not the value
of one given random variable (Marchant et al. 2019). In Phase II, LCL and UCL
obtained in Phase I are used to assess whether a data sample for a new subgroup from
the process is in control or not. Hence, in Phase II, LCL and UCL are used to detect
deviations of the new data set for a target mean value, (μ1

(0), μ2
(0)), namely, or

another target parameter of interest. In particular, for standard bivariate control
charts, in Phase I, considering a number m � 20 of subgroups and a size of
subgroups greater than one (n > 1), the distribution of the standard T2 test statistic
has a closed mathematically form. Then, the corresponding LCL and UCL obtained
from T2 are used (Lowry and Montgomery 1995; Montgomery 2009). Next, in
Algorithm 2, we detail how to compute the LCL and UCL of a standard bivariate
control chart. The average run length (ARL) is the mean number of points that must
be plotted before one of them to indicate an out-of-control status. ARL can be used to
evaluate the performance of a control chart. The probability that an observation is
considered as out of control, if the process is actually in control, indicates a false
alarm rate (FAR) η, which often is in the range 0.01–0.05 (1–5%).

Algorithm 2 Computation of Control Limits in Phase I for Standard Hotelling
T2 Charts
1. Consider two quality characteristics (X1i, X2i) ~ N2((μ1, μ2),∑) and the data vector

(x1hi, x2hi), containing the observations of these two quality characteristics from
an in-control process, where h ¼ 1,. . ., m and i ¼ 1,. . ., n.

2. Obtain the maximum likelihood estimates of (μ1, μ2) and ∑ using the data of the
pooled sample of size N ¼ m � n.

3. Verify the distributional assumption, as well as the presence of bivariate outliers.
If the distributional assumption is verified and no bivariate outliers are detected,
go to Step 4; otherwise, non-normal and/or robust control charts must be
considered.

4. Calculate T2 assuming a target (μ1
(0), μ2

(0)).
5. Obtain the LCL and UCL for the bivariate control chart of FAR η.
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Now, the LCL and UCL obtained in Phase I are used to monitor the process in
Phase II, that is, to observe whether the process remains in control as the data of new
subgroups are obtained. In Phase II, the T2 statistic is now denoted by T2new. Thus,
we plot the sequence of values for T2new in the bivariate control chart corresponding
to r subgroups generated in this phase. Next, in Algorithm 3, we indicate how the
control chart based on the bivariate normal distribution is utilized to monitor the
underlying process.

Algorithm 3 Process Monitoring Using the Standard Hotelling T2 Chart
in Phase II
1. Obtain the new data vector (x1hi, x2hi), for h ¼ 1,. . ., r and i ¼ 1,. . ., n, but, in this

case, it is not necessary that the new data are collected from an in-control process.
2. Obtain the maximum likelihood estimates of (μ1, μ2) and ∑ with the data of

Step 1.
3. Compute T2new for each sample of new data generated in the hth subgroup, with

h ¼ 1,. . .,r, for regular time intervals, obtaining the sequence t2new1,. . ., t
2
newr.

4. Plot the points t2new1,. . ., t
2
newr in the bivariate control chart with LCL and UCL

obtained in Phase I.
5. Establish that the process is in control if all points t2new1,. . .,t

2
newr fall between

LCL and UCL; otherwise, if any of the points t2new1,. . ., t
2
newr falls below the

LCL or above the UCL, the process is in an out-of-control condition.

Bivariate control charts under a normal distribution use mean vector and
variance-covariance matrix estimates, which are sensitive to outliers in Phase
I. Bivariate outliers can influence parameter estimates and cause out-of-control
conditions not be detected. The identification of outliers is usually based on the
Mahalanobis distance (MD. Note that the MD is useful to test goodness of fit in
regression models (Marchant et al. 2016b). However, sometimes outliers do not have
a large MD, which is known as masking effect (Ben-Gal 2005). This effect is
because the maximum likelihood estimators of the model parameters employed to
generate the MD are statistically non-robust. Masking effects occur when a group of
outliers distorts the estimates of the mean vector and/or variance-covariance matrix,
resulting in a small difference from the outlier to the mean. For details on the
masking effect, see Marchant et al. (2018) and references therein.

3.3 Bivariate Birnbaum-Saunders Control Charts (Phase I)

There are many practical applications where the normality assumption is not ful-
filled, because the data exhibit asymmetrical behavior or heavy tails, as in the case of
environmental pollution data. In this perspective, the bivariate Birnbaum-Saunders
and Birnbaum-Saunders-t distributions are a good alternative to the bivariate normal
distribution. In addition, as mentioned, these distributions have attractive properties,
including robustness and a theoretical justification for modeling environmental data
(Leiva et al. 2015). Thus, bivariate control charts based on Birnbaum-Saunders and
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Birnbaum-Saunders-t distributions can provide a useful methodology for monitoring
urban environmental pollution and particularly PM2.5 and PM10. In order to present
the methodology to be used, the type Hotelling chart for bivariate process control is
considered under Birnbaum-Saunders and Birnbaum-Saunders-t distributions. Spe-
cifically, we assume that the vector summarizing the quality characteristics (X1i, X2i)
follows a bivariate Birnbaum-Saunders or Birnbaum-Saunders-t distribution, for
i ¼ 1,. . ., n. The observed values (data) of these characteristics are (x1hi, x2hi),
corresponding to the ith case in the hth subgroup, for h ¼ 1,. . .,m and i ¼ 1,. . .,n,
with m � 20 and n > 1, as mentioned. In addition, suppose that the underlying
process is in control and the vectors (X1i, X2i) are independent over time. Now, in
practice, we work with the observations (y1hi, y2hi), where yjhi ¼ log(xjhi), for the hth
subgroup of the random vector (Y1i, Y2i), which follows a bivariate log-Birnbaum-
Saunders and log-Birnbaum-Saunders-t distribution, with h ¼ 1,. . .,m, i ¼ 1,. . .,
n and j ¼ 1, 2. For details on the bivariate log-Birnbaum-Saunders and
log-Birnbaum-Saunders-t distributions, see Marchant et al. (2016b).

Such as in (1), to monitor a bivariate process control, the following statistical
hypotheses are considered:

H0 : μY1, μY2ð Þ ¼ μ 0ð Þ
Y1 , μ

0ð Þ
Y2

� �
versus H1 : μY1, μY2ð Þ 6¼ μ 0ð Þ

Y1 , μ
0ð Þ
Y2

� �
ð2Þ

where μ 0ð Þ
Y1 , μ

0ð Þ
Y2

� �
¼ log β 0ð Þ

1

� �
, log β 0ð Þ

2

� �� �
is the target mean vector of an

in-control process in logarithmic scale (see details in Marchant et al. 2018), with

β 0ð Þ
j being the jth element of the target median vector β 0ð Þ

1 , β 0ð Þ
2

� �
. Note that,

differently from the normal case, the distribution of the T2 statistic adapted (T2a) to
the case of bivariate Birnbaum-Saunders distributions does not have a closed
mathematically form. Then, we use the parametric bootstrap technique to determine
its distribution (Hall 2013). After this distribution is obtained, we compute its
quantiles, and then the LCL and UCL of the bivariate quality control chart used in
this work are obtained in Phase I. Next, in Algorithms 4 and 5, we detail how to
compute the LCL and UCL of bivariate Birnbaum-Saunders (with no outliers) and
bivariate Birnbaum-Saunders-t (with outliers) control charts, respectively, with the
parametric bootstrap distribution of the T2a statistic.

Algorithm 4 Computation of Bivariate Birnbaum-Saunders Control Chart
Limits in Phase I
1. Consider two positive quality characteristics (X1i, X2i) which follow a bivariate

Birnbaum-Saunders distribution and their data vector (t1hi, t2hi) contains the
observations of these quality characteristics, where h ¼ 1,. . .,m and i ¼ 1,. . .,n,
with m � 20 subgroups of size n > 1 from an in-control process, as mentioned.

2. Generate the data vector (y1hi, y2hi) containing the logarithms of the data collected
in Step 1, where (y1hi, y2hi) can be considered as an observation of (Y1i, Y2i), which
follows a bivariate log-Birnbaum-Saunders distribution, with h ¼ 1,. . .,
m, i ¼ 1,. . ., n and j ¼ 1, 2.
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3. Obtain the maximum likelihood estimates of the corresponding parameters using
the data of Step 2 with the pooled sample of size N ¼ m � n, and verify the
distributional assumption. If the bivariate Birnbaum-Saunders distributional
assumption is verified and no bivariate outliers are detected, go to Step 4;
otherwise, non-normal and/or robust control charts must be considered, for
example, as that proposed in Algorithm 5.

4. Produce a parametric bootstrap sample ((y�1h1, y
�
2h1),. . ., (y

�
1hn, y

�
2hn)) of size

n from a bivariate log-Birnbaum-Saunders distribution using the maximum
likelihood estimates computed in Step 3.

5. Calculate T2a with the bootstrap sample generated in Step 4, denoted by T2�a,

assuming a target mean μ 0ð Þ
Y1 , μ

0ð Þ
Y2

� �
from the process.

6. Repeat Steps 4–5 a number B of times (for example B ¼ 10,000) and compute B
values of the bootstrap statistic of T2a, denoted by t2�a1,. . ., t

2�
aB.

7. Set the desired FAR η of the control chart.
8. Use the B values of the bootstrap statistic obtained in Step 6 to find out the

100 � (η/2)th and 100 � (1 � η/2)th quantiles of the distribution of T2a, which
represent the LCL and UCL for the bivariate Birnbaum-Saunders control chart of
FAR η, respectively.

Algorithm 5 Computation of Bivariate Birnbaum-Saunders-t Control Chart
Limits in Phase I
1. Consider two positive quality characteristics (X1i, X2i) which follow a bivariate

Birnbaum-Saunders-t distribution and their data vector (t1hi, t2hi) which contains
the observations of these quality characteristics, where h ¼ 1,. . .,m and i ¼ 1,. . .,
n, with m� 20 subgroups of size n> 1 from an in-control process, as mentioned.

2. Generate the data vector (y1hi, y2hi) containing the logarithms of the data collected
in Step 1, where (y1hi, y2hi) can be considered as an observation of (Y1i, Y2i), which
follows a bivariate log-Birnbaum-Saunders-t distribution, with h ¼ 1,. . .,
m, i ¼ 1,. . .,n and j ¼ 1, 2.

3. Obtain the maximum likelihood estimates of the corresponding parameters using
the data of Step 2 with the pooled sample of size N ¼ m � n, and verify the
distributional assumption. If the bivariate Birnbaum-Saunders-t distributional
assumption is verified, go to Step 4; otherwise, another robust non-normal control
charts must be considered.

4. Produce a parametric bootstrap sample ((y�1h1, y
�
2h1),. . ., (y

�
1hn, y

�
2hn)) of size

n from a bivariate log-Birnbaum-Saunders-t distribution using the maximum
likelihood estimates computed in Step 3.

5. Calculate T2a with the bootstrap sample generated in Step 4, denoted by T2�a,

assuming a target mean μ 0ð Þ
Y1 , μ

0ð Þ
Y2

� �
from the process.

6. Repeat Steps 4–5 a number B of times (for example B ¼ 10,000) and compute B
values of the bootstrap statistic of T2a, denoted by t2�a1,. . ., t

2�
aB.

7. Set the desired FAR η of the control chart.
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8. Use the B values of the bootstrap statistic obtained in Step 6 to find out the
100 � (η/2)th and 100 � (1 � η/2)th quantiles of the distribution of T2a, which
represent the LCL and UCL for the bivariate Birnbaum-Saunders-t control chart
of FAR η, respectively.

3.4 Bivariate Birnbaum-Saunders Control Charts (Phase II)

Note that, in Phase I, it is also necessary to verify the distribution assumption by
using goodness-of-fit techniques and evaluate bivariate outliers with appropriate
methods. Subsequently, the LCL and UCL of the bivariate Birnbaum-Saunders or
Birnbaum-Saunders-t control charts obtained in Phase I, and summarized in Algo-
rithms 4 and 5, are used to monitor the process in Phase II, that is, to assess whether
the underlying process remains in control as the data of new subgroups are obtained.
Therefore, the monitoring process using the bivariate Birnbaum-Saunders control
charts is carried out in Phase II and summarized in Algorithm 6, with the adapted
Hotelling statistic being denoted by T2anew.

Algorithm 6 Process Monitoring Using the Bivariate Birnbaum-Saunders
and Birnbaum-Saunders-t Chart in Phase II
1. Repeat Steps 1–2 of Algorithms 4 and 5, obtaining the data vector (y1hi, y2hi), for

h ¼ 1,. . .,r and i ¼ 1,. . .,n, but, as mentioned, in this case, it is not necessary that
the new data are collected from an in-control process.

2. Calculate the T2anew statistic for each sample of the new data obtained in Step
1, generated in the hth subgroup, with h ¼ 1,. . ., r, for regular time intervals,
generating the sequence t2anew1,. . ., t

2
anewr.

3. Plot the points t2anew1,. . ., t2anewr in the bivariate Birnbaum-Saunders and
Birnbaum-Saunders–t control charts, with LCL and UCL obtained in Phase I.

4. Establish that the process is in control if all points t2anew1,. . ., t
2
anewr fall between

LCL and UCL; otherwise, if any of the points t2anew1,. . ., t
2
anewr falls below the

LCL or above the UCL, the process is in an out-of-control condition.

4 Case Study in Santiago of Chile

4.1 Data and Air Monitoring Stations in Santiago

We use data collected by the Chilean Metropolitan Environmental Health
Service corresponding to the random variables: PM2.5 (X1) and PM10 (X2) concen-
trations, both of them measured in μg/Nm3. These data are available at https://sinca.
mma.gob.cl/ and were collected in 2015 as 1 h (hourly) average values. PM2.5 and
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PM10 concentrations were observed in the monitoring stations (MS1)-(MS10) of
Fig. 1. For our data analytics, we selected the MS5 station because it had high levels
of pollution in the period of critical events of air quality (April 1 to August 31) in
Santiago (Marchant et al. 2013). We use data of PM2.5 and PM10 concentrations
from the MS5 station and denote them as “PM2015MS5.” We employ the Chilean
guidelines values as targets in this case study. First, we carry out a correlation
analysis to detect if PM2.5 and PM10 concentrations of PM2015MS5 data are
statistically associated.

4.2 Data Exploratory Analysis for PM2.5 and PM10

Figure 2 shows the scatterplot for PM2.5 and PM10 concentrations. From this figure,
we detect that there is a high positive association between these concentrations being
corroborated by a Pearson coefficient of correlation equal to 0.85 in MS5 station.
Therefore, in order to monitor urban environmental pollution in Santiago, following
the guideline of the Chilean Ministry of Health, which indicates that both PM2.5 and
PM10 must be considered, we propose to use a methodology based on np and
bivariate statistical control charts. This methodology allows us, on the one hand,
to determine the number of times that the Chilean guidelines for PM2.5 and PM10
are exceeded each hour of the day and, on the other hand, to monitor PM10 and
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Fig. 2 Scatterplot and correlation between PM2.5 and PM10 concentrations with
PM2015MS5 data
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PM2.5 concentrations simultaneously, predicting critical periods of contamination
adequately.

We use the methodology proposed in Sect. 3 to monitor PM pollution in
Santiago, Chile. This methodology was implemented by the authors in a computa-
tional routine in R, a noncommercial and open-source software for statistical com-
puting and graphs, which may be secured at no cost from http://www.r-project.org.
The R software is currently very popular in the international scientific community
and is one of the more used around of world. We carry out an exploratory data
analysis for PM2015MS5. Table 1 provides descriptive statistics for each variable,
including minimum and maximum concentrations, central tendency statistics, stan-
dard deviation (SD), and coefficients of variation (CV), skewness (CS), and kurtosis
(CK). This table shows empirical distributions with positive skewness, different
degrees of kurtosis, and a considerable amount of concentrations that exceed the
Chilean guidelines for PM2.5 and PM10, that is, 50 μg/Nm3 and 150 μg/Nm3,
respectively. Note that the exploratory analysis for each variable indicates marginal
Birnbaum-Saunders or Birnbaum-Saunders-t distributions that seem to be good
candidates for describing PM2015MS5 data.

4.3 Univariate and Bivariate Control Charts

To calculate the control limits in Phase I, we utilize data for the months of January
and February of 2019 with k ¼ 59, n ¼ 24, N ¼ 1416, B ¼ 10,000 (bootstrap
replications) and FAR η ¼ 0.0027. We use these months since their air quality is
stable (i.e., assumed as an in-control process), because the meteorological and
topographical conditions favor no saturation of PM concentrations. We consider
the degrees of freedom parameter v ¼ 4 for the Birnbaum-Saunders-t distribution
according to the robustness aspects mentioned in Marchant et al. (2016a). Note that
this parameter v allows us accommodate outliers suitably.

Figure 3a, b displays the theoretical probability versus empirical probability
(PP) plots with acceptance bands for a significance level of 1% in MS5 station

Table 1 Summary statistics
for data sets in study

Statistic

Phase I Phase II

PM2.5 PM10 PM2.5 PM10

n 1416 1416 744 744

Minimun 3 10 1 3

Mean 19.08 54.75 34.77 60.62

Median 18 51.5 29 47

Maximun 76 214 216 350

SD 8.68 24.13 26.33 50.15

CV 45.49% 44.06% 75.73% 82.73%

CS 1.78 1.304 2.04 1.9

CK 5.55 3.61 7.83 4.62
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based on bivariate Birnbaum-Saunders and bivariate Birnbaum-Saunders-t distribu-
tions, respectively. From this figure, we confirm the good fit of the bivariate
Birnbaum-Saunders and bivariate Birnbaum-Saunders-t distributions to the data in
Phase I, which is supported by the p-values 0.4419 and 0.5839, respectively, of the
Kolmogorov-Smirnov (KS) test associated with these PP plots (Marchant et al.
2016a). To monitor air quality of August 2015 in Phase II, we employ bivariate
Birnbaum-Saunders and np univariate Birnbaum-Saunders charts. For bivariate
Birnbaum-Saunders-t charts, we use the LCL and UCL obtained in Phase I summa-
rized in Algorithm 5. For the control chart of this month, the number of subgroups
and the subgroup size are r ¼ 31 days and n ¼ 24 h, respectively, giving a total of
744 observations. Furthermore, we use the transformed MD with the Wilson-
Hilferty approximation to obtain a normal distribution and then to assess the fit of
the most appropriate distribution to these data. For details about the Wilson-Hilferty
approximation, see Marchant et al. (2016a, b).

Figure 4a, b displays the PP plots with acceptance bands for a significance level of
1% in MS5 station based on bivariate Birnbaum-Saunders and Birnbaum-Saunders-t
distributions, respectively. From this figure, the Birnbaum-Saunders-t distribution
has a better fit than the Birnbaum-Saunders distribution to the data in Phase II, which
is supported by the p-values 0.609 and 0.3091, respectively, of the KS test associated
with these PP plots (Marchant et al. 2016a). Due to such a situation, we continue this
study only with the Birnbaum-Saunders-t distribution because of its robust estima-
tion of parameters and the good fit to these data.

Figure 5 shows the bivariate Birnbaum-Saunders-t control chart for PM2015MS5
data. From this figure, it is possible to observe that there are no out-of-control
episodes during this month, when considering the joint behavior of PM2.5 and
PM10 concentrations. This type of chart is appropriate when there is a high corre-
lation between the concentrations of PM2.5 and PM10 such as in our case; see Fig. 2.
In addition, to monitor the number of times that the Chilean guidelines for PM2.5
and PM10 are exceeded each hour of the day of August-2015 in Phase II, we employ

Fig. 3 PP plots in Phase I for bivariate Birnbaum-Saunders (left) and Birnbaum-Saunders-t (right)
distributions with PM2015MS5 data
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the univariate Birnbaum-Saunders np-chart. For the univariate chart of this month,
the number of subgroups and the subgroup size are the same as for the bivariate
chart.

Figure 6a, b shows the np Birnbaum-Saunders control charts for PM2.5 and
PM10 concentrations, respectively. From this figure, it is possible to observe that the
concentrations of PM2.5 exceed the Chilean guidelines much more than those of
PM10. This occurs specifically in the first days of the month of August, where the
Chilean guidelines are exceeded more than 15 times during a day, considering a
maximum of 24 observations each day. Such a situation is highly detrimental to
health as consequence of breathing air with high concentrations of PM, especially
PM2.5, as mentioned in Sects. 1 and 2.

Fig. 4 PP plots in Phase II for bivariate Birnbaum-Saunders (left) and Birnbaum-Saunders-t (right)
distributions with PM2015MS5 data
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4.4 Big Data, Analytics Results, and Its Connection
to Data-Driven Decision-Making

Current technologies, such as computer-based transactions, digital instruments, and
sensors, allow us to generate large-scale data from different processes. These data
may be collected efficiently, rapidly, and automatically and are frequently available
online for decision-makers and analysts access. This is known as big data, a term
often employed to describe large, diverse, and complex (structured and
non-structured) data sets, which have high volume, variety, and velocity in their
generation, otherwise known as the 3Vs (Baesen 2014; Dietrich 2015). Such a
situation results in enormous opportunities for data-based knowledge discovery,
and it is expected that the importance of data science will continue to increase in
the future, becoming relevant for researchers in diverse areas who will be ready to
exploit new opportunities for data-driven decision-making. In this new big data era,
many methodologies need to be updated, as, for example, control charts (Aykroyd
et al. 2019), where big data sources are providing new avenues for such charts
because of continuous monitoring in diverse fields.

Control charts have primarily been used to monitor industry processes (Mont-
gomery 2009), but recently, these methodologies are also being used to monitor
service processes, such as banking and finance, distribution of electrical energy,
public transportation, and retail (Aykroyd et al. 2019). Furthermore, control charts
have also been used in education, government policies, healthcare, and marketing.
The use of control charts in environmental monitoring processes is currently limited,
but we expect it may become a popular alternative in the big data era.

The data-driven methodology proposed in this paper, based on tools of control
charts for environmental monitoring, shows a good performance when assessing air
quality, particularly when two correlated statistically variables are considered. The
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analytics results obtained with our methodology are consistent with the official
information of the Chilean Ministry of the Environment for PM10 (https://bit.ly/
2W2jb1V). Specifically, there is an agreement between the critical episodes empir-
ically detected with our methodology based on the robust bivariate Birnbaum-
Saunders control chart and those verified by the Chilean Health Authority, that is,
if our methodology were used, the same environmental decision made by the
authority would be established. Note that joint analysis of PM10 and PM2.5
concentrations permits us to monitor air quality using one model, instead of
employing two models as currently applied to perform this monitoring. With the
current model, the interaction and/or dependence of the PM10 and PM2.5 is not
considered. In addition, this data science tool helps to prevent and/or adequately alert
the population about possible critical episodes of air contamination, providing
support to regulatory decision-making when appropriate mitigation measures are
needed, such as the prohibition of outdoor physical activities or domestic coal or
firewood burning or restrictions on the use of internal combustion vehicles.

5 Summary

Airborne particulate matter pollution is a serious environmental problem. We pro-
pose that monitoring of air quality may be achieved by employing data analytics to
generate information within the context of data-driven decision making to prevent
and/or adequately alert the population about possible critical episodes of air con-
tamination. In this paper, we propose a methodology for monitoring particulate
matter pollution in Santiago of Chile, based on bivariate quality control charts and
an asymmetric distribution. A case study with real particulate matter pollution from
Santiago is provided, which shows that the methodology is suitable to alert early
episodes of extreme air pollution. The results are in agreement with the critical
episodes reported with the current model used by the Chilean health authority.

6 Conclusions

In this work, we have proposed and implemented a methodology based on bivariate
control charts with heavy-tailed asymmetric distributions. These distributions have a
theoretical support and can be applied to atmospheric environmental data. This
methodology is useful for monitoring environmental risk when the particulate matter
concentrations follows bivariate Birnbaum-Saunders or Birnbaum-Saunders-Stu-
dent-t distributions. We have illustrated the proposed methodology with a case
study of real-world data of air quality in Santiago, Chile. This case study has
shown that the new methodology is useful for alerting episodes of extreme urban
environmental pollution, allowing us to prevent adverse effects on human health for
the population of Santiago. We have empirically demonstrated an agreement
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between our methodology and real-world situations, as when the Chilean health
authority detected environmental critical episodes and dictated environmental alert,
pre-emergency, and emergency in Santiago, Chile.

The random variables to be modeled, related to PM2.5 and PM10 concentrations,
correspond to an aggregation of a great amount of compounds, which are adsorbed
on a solid or liquid surface in the atmosphere. Depending on the diverse composition
of these particles, they can show different reactivity and balance between their
degradation and production processes. Sometimes these particles show seasonal
time dependence, or if the sources vary, their concentration may also vary, such as
when drastic measures are taken to reduce their emissions. Therefore, a limitation of
this study is not considering time series components in the modeling, which is an
open problem to be conducted in future research (Decanini and Volta 2003; Querol
et al. 2004; Kessler et al. 2010). Regarding this, we must mention that PM2.5 and
PM10 levels are considered simple dilutions and concentrations in the air masses,
without taking into account factors such as composition, chemical reactivity,
production-degradation equilibrium, and evolution over time of these quantities. In
particular, the chemical reactivity of these compounds obeys to different kinetic
processes of formation and degradation, described in detail by Sander et al. (2006).
Thus, this last aspect is also an open issue to be considered in a future study.
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