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Cancer is a public health problem worldwide, and one of the crucial steps within

tumor progression is the invasion and metastasis of cancer cells, which are directly

related to cancer-associated deaths in patients. Recognizing the molecular markers

involved in invasion and metastasis is essential to find targeted therapies in cancer.

Interestingly, about 50% of the discovered drugs used in chemotherapy have been

obtained from natural sources such as plants, including isoflavonoids. Until now, most

drugs are used in chemotherapy targeting proliferation and apoptosis-related mole-

cules. Here, we review recent studies about the effect of isoflavonoids on molecular

targets and signaling pathways related to invasion and metastasis in cancer cell cul-

tures, in vivo assays, and clinical trials. This review also reports that glycitein, daid-

zein, and genistein are the isoflavonoids most studied in preclinical and clinical trials

and displayed the most anticancer activity targeting invasion-related proteins such as

MMP-2 and MMP-9 and also EMT-associated proteins. Therefore, the diversity of

isoflavonoids is promising molecules to be used as chemotherapeutic in invasive can-

cer. In the future, more clinical trials are needed to validate the effectiveness of the

various natural isoflavonoids in the treatment of invasive cancer.
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1 | INTRODUCTION

Cell invasion and metastasis represent 90% of cancer-associated

deaths (Guan, 2015). Cancer conventional therapeutics consists of

eradication of the primary tumor by surgery or radiotherapy and sys-

temic chemotherapy (Falzone, Salomone, & Libra, 2018). Furthermore,

in metastatic cancer, the administration of chemotherapeutic agents is

necessary (Abotaleb et al., 2018). However, despite advances in can-

cer treatment and high response rates to chemotherapy, these effects

are not prolonged. Satisfactory results are short due to the mecha-

nisms of toxicity, chemoresistance, and evasion of the immune

system, and cancer continues to be one of the leading causes of death

worldwide (Vasan, Baselga, & Hyman, 2019).

Natural products continue to be an essential source of biomole-

cules with potential therapeutic use in patients with diverse cancer

types and have shown resistance to current chemotherapy (Karan

et al., 2020). Interestingly, the primary sources of biomolecules in can-

cer therapeutics have been obtained from microbes and plants found

in the environment (Mushtaq, Abbasi, Uzair, & Abbasi, 2018). Cur-

rently, around 50% of the drugs used as chemotherapeutics in cancer

have been acquired or directly derived from natural products

(Newman & Cragg, 2020). Phytochemicals are plant-derived
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secondary metabolites that have shown promising potential to

either adjuvant or improve efficacy and lessen the side effects of con-

ventional cancer treatments (Choudhari, Mandave, Deshpande,

Ranjekar, & Prakash, 2020; Koh, Ho, & Pan, 2019).

Phytochemicals act by promoting cell death, inhibiting cell prolif-

eration and invasion, inducing apoptosis, and stimulating the immune

system, making them excellent chemotherapeutic agents (Noriega-

Rodríguez et al., 2020; Sánchez-Valdeolívar et al., 2020). Evidence

from in vitro, in vivo, and clinical studies suggest that isoflavonoids

modulate several signaling pathways involved in cancer development

and progression (Rizeq et al., 2020). This review provides information

on the scientific research advances of isoflavonoids as invasive cancer

therapy agents. The effect of isoflavonoids on tumor invasion and

metastasis-related markers is summarized from studies derivates from

in vitro, in vivo, and clinical trials. The results suggest that iso-

flavonoids in the future could be used as alternative or adjuvant ther-

apy in the treatment of invasive and metastatic cancer.

2 | CANCER INVASION AND METASTASIS

Invasion and metastasis of tumor cells are the most significant malig-

nancy feature, which entails the ability to invade surrounding tissue,

spread, and colonize distant tissues (Meirson & Samson, 2019).

Metastasis is a process of multiple sequential stages whose result is

the formation of a secondary from a primary tumor and is the result

of the interactions between cancer cells and the tumor

microenvironment-related factors, such as the components of the

extracellular matrix, the signaling induced by cytokines, interleukins,

and growth factors that deregulate cellular signaling pathways and

regulation of gene expression (Liskova et al., 2020). Metastatic spread

of malignant cells is the responsible hallmark for the most significant

number of cancer-related deaths (Meirson & Samson, 2019). Under-

standing the biological players involved with the metastatic process is

crucial to finding therapeutic options for successful interventions

(Fares, Fares, Khachfe, Salhab, & Fares, 2020). The metastatic progres-

sion of solid tumors is carried out in five main steps: (1) cell migration

and local invasion through the basement membrane, (2) infiltration of

tumor cells through blood or lymphatic system, (3) survival in circula-

tion, (4) extravasation to secondary tissue, and (5) adaptation to the

tumor microenvironment and colonization at secondary tumor sites

(Hanahan & Weinberg, 2011). However, the first and perhaps the

most crucial step in the metastatic cascade is the invasion of tumor

cells (Figure 1) (Haeger, Krause, Wolf, & Friedl, 2014).

Cancer invasion is a process involving the activities of proteolytic

enzymes, including matrix metalloproteinases (MMPs) such as

MMP-2, MMP-9, and MMP-14, which degrade the extracellular

matrix (ECM) proteins, basement membranes, and adhesion molecules

(Gerashchenko et al., 2019). Invasion is also associated with the

epithelial to mesenchymal transition (EMT), characterized by loss of

cell–cell adhesion, changes in cell polarization, actin cytoskeleton rem-

odeling, invadopodia formation, and degradation of the basement

membrane underlying the epithelium to enter the bloodstream or

lymph nodes and travel to distant organ sites (Gerashchenko et al.,

2019; Haeger et al., 2014). During EMT, epithelial markers such as E-

cadherin, cytokeratins, and ocludins decrease, whereas the expression

of mesenchymal markers such as N-cadherin, vimentin, fibronectin,

and secretion of cellular proteases increase (Haeger et al., 2014;

Mittal, 2018). The EMT program activation is regulated by several sig-

naling pathways, including the canonical Ras/MAPK, PI3K-Akt-GSKβ-

NF-κB, and Wnt/β-catenin pathways (Dongre & Weinberg, 2019).

These signaling pathways converge in the activation of the EMT-

related transcription factors Snail, Slug, Zeb, and Twist (Olea-Flores

et al., 2019). Throughout EMT, changes in the reorganization of the

actin cytoskeleton, microtubules, and the intermediate filaments

occur, which favors tumor invasion and metastasis (Liu, Lin, Tang, &

Wang, 2015). Vimentin is an intermediate filament belonging to mes-

enchymal cells; it is abundantly expressed in invasive cancer types

(Satelli & Li, 2011). Its expression is directly correlated with aggres-

siveness and poor prognosis, promoting tumor invasion and metasta-

sis (Liu et al., 2015; Meng et al., 2009). Vimentin expression is

controlled by Twist, Snail, Zeb1, and Slug transcription factors, which

are induced by TGF-β signaling (Francart et al., 2020; Sutoh

Yoneyama et al., 2014).

Besides, a substantial correlation between the overexpression or

activation of MMPs, cell invasion, and metastasis has been described

(Gonzalez-Avila et al., 2019; Juárez-Cruz et al., 2019). MMPs are

involved in the proteolytic degradation of the basement membrane

and ECM; they play a fundamental role in angiogenesis and metasta-

sis, MMPs expression is induced by growth factors and signaling path-

ways such as EGF, RTK, PI3K, and NF-κB (Lyu, Xiao, Yin, Yang, & He,

2019; Yang et al., 2020). MMP-14 locally degrades collagen type I, II,

and III, as well as gelatin, fibronectin, and laminin, is also recruited dur-

ing the invadopodia formation and focal contacts, MMP-14 degrade

several components of the ECM; additionally, it activates MMP-2 and

MMP-9 by cleavage their prodomain. MMP-2 and MMP-9 are also

responsible for degrading the main components of the ECM, type IV

collagen (Castro-Castro et al., 2016; Stankovic et al., 2010).

Currently, chemotherapy is the conventional treatment applied in

invasive cancer therapy (Schirrmacher, 2019; Twelves, Jove,

Gombos, & Awada, 2016). However, within its limitations are the tox-

icity and chemoresistance generated by tumor cells; therefore, finding

new treatment alternatives is critical, and natural products appear to

have promising potential.

3 | NATURAL PRODUCTS AND CANCER

Natural products have been the basis for discovering new drugs and

continue to be an essential source with infinite therapeutic potential

for the control of cancer patients, resistant to current treatments

(Karan et al., 2020). The primary sources of successful cancer treat-

ment products have been natural compounds derived from microor-

ganisms, marine life forms, and plants (Ratovitski, 2017).

Phytochemicals, abundantly present in plants, have shown a positive

biological impact on human health, its effect has been reported as
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antioxidant, neuroprotective, antiinflammatory, antiinfectious, and

anticancer activities (Pérez-Jiménez, Neveu, Vos, & Scalbert, 2010).

Among the most effective chemotherapeutic agents of natural origin

currently available are the alkaloids vinblastine and vincristine,

etoposide, paclitaxel and docetaxel, topotecan, and irinotecan

(Demain & Vaishnav, 2011). These phytochemicals regulate the

molecular pathways involved in tumor growth and progression; some

specific mechanisms include increasing the oxidative state, inhibiting

proliferation and the cell cycle progression, inducing apoptosis, and

regulating the immune system (Lichota & Gwozdzinski, 2018).

While invasion and metastasis are the most critical steps in carci-

nogenesis, the strategy to block the cancer cell invasion and metasta-

sis in patients is still limited (Jiang et al., 2015). However, the best

approach would be to have a compound that could act in the regula-

tion of adhesion molecules, avoid the degradation of the ECM, block

the EMT pathways increasing the levels of epithelial markers, and

decreasing the levels of mesenchymal markers (Gerashchenko et al.,

2019). In this context, one of the significant challenges for therapeutic

accomplishment is the development of chemoresistance in cancer

cells against conventional chemotherapeutic agents via modulation of

invasion and metastasis markers and also oncogenic signaling path-

ways (Mansoori, Mohammadi, Davudian, Shirjang, & Baradaran,

2017). Nevertheless, numerous studies have shown that flavonoids

could be used for the prevention and treatment of cancer. In nature,

polyphenols are generally conjugated with organic acids and sugars,

establishing two main categories: flavonoids and non-flavonoids

(Abdal Dayem et al., 2016; Avtanski & Poretsky, 2018). In plants, fla-

vonoids are secondary metabolites with antibacterial, antiviral, antiox-

idant, antitumor, and antiinflammatory activity (Abotaleb et al., 2018).

Flavonoids are also the largest subclass of polyphenols; their basic

structure includes two benzene rings (A and B) attached to heterocy-

clic pyran ring (C). Flavonoids are also subdivided into several groups

depending on changes in ring C (presence of the 3-hydroxyl group

and double bond or 4-oxo group) and modifications in rings A and B

and the difference in the number and connection position of the

hydroxyl and methoxy groups. According to these chemical

F IGURE 1 Hallmarks in cell invasion: (a) decrease or loss in E-cadherin expression, involved in cell–cell junctions; (b) expression and
remodeling of extracellular matrix such as fibronectin, tenascin-C, and laminin5; (c) remodeling of the cytoskeleton; (d) expression of EMT-related
markers; and (e) secretion or activation of matrix metalloproteases such as MMP-2, MMP-9, and MMP-14 [Colour figure can be viewed at
wileyonlinelibrary.com]
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arrangements, flavonoids are also classified into flavanone, flavone,

flavanol, flavonol, anthocyanin, and isoflavonoids (Jiang, Doseff, &

Grotewold, 2016; Sudhakaran, Sardesai, & Doseff, 2019).

Furthermore, a significant group present in the human diet and

several secondary metabolites of a phenolic nature are the

isoflavonoids.

4 | ISOFLAVONOIDS

Isoflavonoids or isoflavones are a subgroup of phenolic compounds

widely distributed in plants of the Fabaceae family (Křizová,

Dadáková, Kašparovská, & Kašparovský, 2019). Structurally, the iso-

flavonoids possess a B ring attached to position C-3 of ring C

(3-phenylchroman skeleton); some examples are genistein (40,5,7-

Trihydroxyisoflavone), daidzein (7,40-dihydroxyisoflavone), glycitein

(7,40-dihydroxy-6-methoxyisoflavone), biochanin A (5,7-dihydroxy-40-

methoxyisoflavone), and formononetin (7-hydroxy-3-[4-

methoxyphenyl]-4H-chromen-4-one) (Al-Maharik, 2019) (Figure 2).

The primary sources of isoflavones are legumes from the Fabaceae

family, including soybeans (Glycine max L.), red clover (Trifolium

pratense L.), and Chickpea (Cicer arietinum L.) (Bilal, Chowdhury,

Davidson, & Whitehead, 2014; Křizová et al., 2019).

Isoflavonoids have been found in two chemical forms, aglycones

(formononetin and biochanin A) or glycosides (daidzin and genistin).

Also, the isoflavone glycosides can be esterified with an acetyl or

malonyl group; the presence of hydroxyl and sugar groups increase

the solubility of isoflavones in water, while methyl groups, isopentyl

units, and other substituents allow isoflavone molecules to be lipo-

philic (Křizová et al., 2019).

Interestingly, in recent years, various biological activities of iso-

flavonoids have been reported in the maintenance of human health.

5 | BIOLOGICAL ACTIVITY OF
ISOFLAVONOIDS

Isoflavonoids have shown antioxidant effects due to their free radical

scavenging capacity by donating hydrogen atoms of the hydroxyl

group attached to the benzene ring, thus protecting against oxidative

damage and macromolecule damage, reducing low-density lipopro-

teins (LDL) (Yoon & Park, 2014). Besides, isoflavonoids promote the

activation and expression of the antioxidant enzymes catalase (CAT),

superoxide dismutase (SOD), and glutathione (GSH), decreasing the

activation and expression of hepatic malondialdehyde (MDA) through

the regulation of the Nrf2 and PPARγ pathways (Zhang et al., 2013).

F IGURE 2 Chemical structure of Isoflavonoids including: genistein, daidzein, glycitein, formononetin, biochanin A, and glabridin [Colour figure
can be viewed at wileyonlinelibrary.com]
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Structurally, isoflavonoids show similarities to estrogens, bind to

estrogen receptors with a preferential affinity for ERβ, competing with

17β-estradiol for the receptor's ligand-binding domain, and exhibit

estrogenic as well as antiestrogenic activities. The antiestrogenic

activity is associated with a lower incidence of estrogen-related can-

cers such as breast and ovarian cancer, where they have shown anti-

mutagenic, antiproliferative, and antitumor effects (Basu & Maier,

2018; Lepri et al., 2013).

Recent evidence demonstrates the biological effect of iso-

flavonoid compounds and their potential in developing new drugs to

treat invasive cancer (Abdal Dayem et al., 2016). These data are sum-

marized below.

6 | ANTIINVASIVE ACTION OF
ISOFLAVONOIDS

Isoflavonoids have shown biological activity as therapeutic agents for

the potential treatment of invasive cancer; several studies in vitro,

in vivo, and clinical trials show antitumor activity on invasion and

metastasis markers, dysregulating different cancer-related signaling

pathways (Figure 3).

6.1 | In vitro studies

In numerous in vitro studies, the antiinvasive effect of isoflavonoids

has been reported on different cancer cell lines. These findings are

summarized below (Table 1).

6.1.1 | Genistein

The most studied isoflavonoid is genistein; its effect has been

observed in several cancer cell lines (Table 1). In MDA-MB-435 and

MDA-MB-231 breast cancer cells, genistein treatment decreased cell

migration and invasion due to decreased osteopontin expression

(Khongsti et al., 2021). In PC3 prostate cancer cells, genistein inhibited

cell migration by reducing MMP-2 secretion, suggesting that genistein

indirectly blocks MMP-2 expression through the p38 MAPK pathway

(Shafiee et al., 2020). In HeLa cervical cancer cells, genistein treatment

inhibited cell migration and invasion by regulating the FAK-paxillin

and MAPK signaling pathways (Chen et al., 2020). In ovarian cancer

cells, SKOV-3, A2780CP, and OVCAR-3 that overexpress ERα and

ERβ, genistein and daidzein decreased cell migration and invasion by

inhibiting activation of the FAK and PI3K/Akt/GSK signaling path-

ways; these isoflavonoids also increased the expression of p21 and E-

cadherin and decreased the expression of vimentin (Chan et al., 2018).

Additionally, in B16F10 melanoma cells, genistein inhibited cell migra-

tion and invasion by modulation the MAPK and FAK/paxillin path-

ways, since the treatment decreased expression of p-FAK, p-paxillin,

tensin-2, vinculin, and α-actin, also showed a significant effect in the

decrease in p-p38, p-ERK, and p-JNK expression (Cui et al., 2017).

Genistein also reverses the epithelial-mesenchymal transition in gas-

tric cancer stem cells GCSLC derived from SGC-7901 human gastric

cancer cells, the treatment with 7-difluoromethoxyl-5,40-di-n-octyl

genistein decreased N-cadherin and Twist1 expression and increased

E-cadherin expression in a FoxM1-dependent pathway (Cao et al.,

2016). In another study, genistein inhibited migration in the hepato-

cellular carcinoma cells HepG2, SMMC-7721, and BEL-7402 by

suppressing the EMT program induced by TGF-β. Changes in mRNA

and protein levels of mesenchymal markers such as N-cadherin and

vimentin and increased expression of epithelial markers as E-cadherin

and α-catenin were observed (Dai et al., 2015). Furthermore, in H466

lung cancer cells, genistein reduced cell migration by suppressing

FoxM1 activity and decreasing MMP-2 and MMP-9 secretion and

activation (Tian et al., 2014). In the hepatocellular carcinoma cells

HepG2, Huh-7, and HA22T, genistein decreased 12-O-Tetra-

decanoylforbol-13-acetate (TPA) -induced invasion and cell migration

by suppressing MMP-9 transcriptional expression. This effect is by

inhibiting the MAPK, IκB, and PI3K/Akt signaling pathways and regu-

lating the activity of activating protein (AP)-1 and nuclear factor-κB

(NF-κB) (Wang et al., 2014). In HeLa cervical cancer cells, genistein

inhibited cell migration through the modulation in the secretion of

MMP-9 and its inhibitor TIMP-1 (Hussain et al., 2012). In MHCC97-H

hepatocellular carcinoma cells, genistein also inhibited invasion, it

F IGURE 3 Antitumor activity of
isoflavonoids in preclininal and clinical
trials [Colour figure can be viewed at
wileyonlinelibrary.com]
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TABLE 1 In vitro effect of isoflavonoids

Isoflavonoid Model Concentration/time Antiinvasive effect Reference

Genistein MDA-MB-435 y MDA-MB-231 breast

cancer cells

50 μM (72 h) #Osteopontin Khongsti, Das, and

Das (2021)

PC3 prostate cancer cells 50 μM (24 h) #MMP-2 Shafiee, Saidijam,

Tayebinia, and

Khodadadi (2020)

HeLa cervical cancer cells 100 μM (2 h and 48 h) # FAK-paxillin and

MAPK

Chen et al. (2020)

SKOV-3, A2780CP, and OVCAR-3

ovarian cancer cells

50 μM (48 h) #FAK, PI3K/Akt/GSK,
vimentin

"p21, E-cadherin

Chan et al. (2018)

B16F10 melanoma cells 50 μM (24 h) #Tensin-2, vinculin,
α-actinin, p38, ERK,
JNK

Cui et al. (2017)

GCSLC gastric cancer stem cells 10 μM (48 h) #N-cadherin, Twist

"E-cadherin
Cao et al. (2016)

HepG2, SMMC-772,1 and Bel-7402

hepatocellular cancer cells

9 μM (24 h) "E-cadherin, α-catenin
#N-cadherin, vimentin

Dai et al. (2015)

H466 lung cancer cells 50 μM (48 h) #FoxM1, MMP-2,

MMP-9

Tian et al. (2014)

HepG2, Huh-7, and HA22T

hepatocellular cancer cells

40 μM (24 h) #MMP-9 Wang, Chen, Kao, Liu,

and Yeh (2014)

MHCC97-H hepatocellular

carcinoma cells

20 μg/mL (90 min) #FAK Gu, Zhu, Dai, Zhong, and

Sun (2009)

HCC1395 breast cancer cells 50 μM (72 h) #MMP-2, MMP-7,

CXCL12

Lee, Huang, Tzeng,

Chang, and

Hsu (2007)

Genistein/Glycitein/

Daidzein

MDA-MB-231 breast cancer cells 50 μM (48 h) #MMP-9

"TIMP-1

Magee, McGlynn, and

Rowland (2004)

Biochanin A U-87MG and T98 multiforme

glioblastoma cells

70 μM (72 h) #EGFR, ERK, Akt,
MMP-2, MMP-14

"p53

Desai et al. (2019)

Co-culture of the human lung adenocarcinoma

cell line A427 and the human monocytic

leukemia cell line AML-193

20 μM (24 h) #EMT, Snail

"E-cadherin
Wang, Li, and

Chen (2018)

SK-MEL-28 human malignant melanoma cells 50 μM (48 h) #Cell migration and

invasion

Xiao, Zheng, Sun, and

Yang (2017)

FaDu pharynx squamous carcinoma cells 25 μM (24 h) #MMP-2, MMP-9 Cho et al. (2017)

HER2-overexpressed SK-BR-3 breast cancer cell 50 μM (72 h) #NF-κB, MMP-9,

MMP-14

Sehdev, Lai, and

Bhushan (2009)

Puerarin Bel-7,402, Huh7, and L02 hepatocellular

carcinoma cells

50 mM (24 h) "E-cadherin
#Vimentin, N-cadherin,

Snail, Slug, PTEN

Zhou, Xue, Wang, and

Ren (2020)

T24 and UM-UC-3 bladder cancer cells 50 and 100 μg/mL

(24 h)

#MMP-2, MMP-9 Du, Zhang, and

Sun (2020)

HeLa cervical cancer cells 1–2 mM (48 h) #PI3K, Akt, mTOR Jia, Hu, Yang, and

Li (2019)

T24 and EJ bladder cancer cells 100 μM (48 h) #mTOR/p70S6K Jiang et al. (2017)

MCF-7 and MDA-MB-231 breast cancer cells 50 μM (24 h) #CCR7, CXCR4,
MMP-2, MMP-9,

ICAM, VCAM,

TNF-α, IL-6, NF-κB

Liu, Zhao, Wang, Lin, and

Yang (2017)

A549 lung cancer cells 40 μM (48 h) #VEGF, MMP-9,

ICAM-1

Kang et al. (2017)
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decreased FAK phosphorylation and activation (Gu et al., 2009). While

in HCC1395 primary breast cancer cells, genistein inhibited invasion

by decreasing the expression of MMP-2, MMP-7, and CXCL12 (Lee

et al., 2007). Genistein also significantly decreased the invasive capac-

ity in MDA-MB-231 breast cancer cells, an effect attributed to the

decrease in MMP-2 secretion (Magee et al., 2004).

All these data together demonstrate that genistein inhibits

MMP-2 and MMP-2 secretion/activation as well as cell migration and

invasion in a PI3K-Akt and FAK-paxillin signaling pathways-dependent

manner in various cancer cell lines.

6.1.2 | Biochanin A

In the human glioblastoma cell lines U-87 MG and T98 G, biochanin A

showed a synergistic effect with the chemotherapeutic agent

temozolomide inhibiting the phosphorylation and activation of ERK,

Akt, and c-Myc. The treatment also decreased MMP-14 and MMP-2

and promoted the expression of p53 (Desai et al., 2019). Co-culture

of the A427 lung adenocarcinoma cell line and the AML-193 mono-

cytic leukemia cell line, biochanin A inhibits invasion in A427 cells and

inhibits the production of TNF-α and IL-6, suggesting biochanin A

reduces the proinflammatory activity, besides, reduces Snail expres-

sion and increases E-cadherin expression, inhibiting thus the EMT pro-

cess (Wang, Li, & Chen, 2018). In SK-Mel-28 human malignant

melanoma cells, Biochanin A inhibits cell migration and invasion

through the NF-κB and MAPK signaling pathways (Xiao et al., 2017).

Biochanin A also inhibited cell migration and invasion in FaDu human

pharynx squamous carcinoma cells, decreasing MMP-2 and MMP-9

secretion, an effect mediated by inhibition in phosphorylation and

activation of p38, NF-κB, and Akt signaling pathways (Cho et al.,

2017). Biochanin A also inhibited the phosphorylation and activation

of ERK1/2 and Akt in SK-BR-3 breast cancer cells that overexpress

HER2. It also showed an effect on the inhibition of NF-κB and a

decrease in the activity and secretion of MMP-9 and MMP-14,

suggesting a blockage in signaling pathways that promote invasion

(Sehdev et al., 2009).

Interestingly, these studies report that biochanin A inhibits the

expression of MMP-2, MMP-9, MMP-14, and EMT in cancer cell lines.

In addition, the signaling pathways by which biochanin A inhibits cell

migration and invasion are through ERK, Akt, and NFκB.

6.1.3 | Puerarin

In Bel-7,402, Huh7, and L02 hepatocellular carcinoma cells, puerarin

decreased cell migration and invasion; puerarin also controlled the

EMT-related genes promoting the expression of E-cadherin and

reduce the expression of vimentin, N-cadherin, Snail, and Slug and

inhibiting PTEN expression (Zhou et al., 2020). Treatment with

TABLE 1 (Continued)

Isoflavonoid Model Concentration/time Antiinvasive effect Reference

Formononetin SGC-7901 and MGC-803 gastric cancer cells 30, 50, and 80 μM (24 h) # miR-542-5p Wang, Li, Zhao, and

Fan (2018)

SW1116 and HCT116 colon carcinoma cells 200 μM (48 h) #MMP-2, MMP-9 Wang, Li, Zhao, and

Fan (2018)

A2780 and SKOV3 ovarian cancer cells 40 μM (48 h) #MMP-2, MMP-9 Zhang et al. (2018)

MDA-MB-231 and T47D breast cancer cells 160 μM (12 h) #MMP-2, MMP-9

"TIMP-1, TIMP-2

Zhou et al. (2014)

Glabridin MG63 and HOS human osteosarcoma cell lines 20 mM (24 h) #MMP-2, MMP-9 Jie et al. (2019)

Huh7 and Sk-Hep-1, human hepatoma cell lines 40 μM (24 h) #MMP-9 Hsieh, Lin, Yang, Chen,

and Chiou (2014)

Human non-small cell lung cancer A549,

MDA-MB-231 breast cancer cells,

and HUVEC cells

10 μM (48 h) "E-cadherin
#Vimentin, N-cadherin,

Integrin αv, β3

Hsu et al. (2011); Tsai

et al. (2011)

Daidzein MCF10DCIS.com breast cancer cells 30 μM (24 h) #MMP-9 Bao et al. (2014)

MDA-MB-231 breast cancer cells 50 μM (48 h) #MMP-2 Magee, Allsopp,

Samaletdin, and

Rowland (2014)

Glycitein U87MG human astroglioma cells 50 ng/mL (24 h) #MMP-3, MMP-9,

NF-κB, AP-1
Lee et al. (2010)

Brazilin MCF7/HER breast cancer cells 25 μM (24 h) #MMP-2, MMP-9 Jenie, Handayani,

Susidarti, Udin, and

Meiyanto (2018)

Brazilein MDA-MB-231 breast cancer cells 20 μM (24 h) #MMP-9 Hsieh, Tsai, Chu, Chang,

and Chang (2013)

Vascular smooth muscle cells (VSMC) 30 μM (24 h) #MMP-9 Guo et al. (2013)
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puerarin decreases the migration and invasion of T24 and UM-UC-3

bladder cancer cells, an effect attributed to the decrease in the activa-

tion levels of MMP-2 and MMP-9 (Du et al., 2020). Puerarin also

inhibited cell migration in HeLa cervical cancer cells by decreasing

PI3K, Akt, and mTOR expression (Jia et al., 2019). While in T24 and EJ

bladder cancer cells, puerarin inhibited cell invasion and activation of

the mTOR/p70S6K signaling pathway (Jiang et al., 2017). In another

study, treatment with puerarin significantly inhibited lipopolysaccha-

ride (LPS)-induced cell migration, invasion, and adhesion in MCF-7

and MDA-MB-231 breast cancer cells. An effect due to the decrease

in the expression of CCR7, CXCR4, MMP-2, MMP-9, ICAM, and

VCAM as well as TNF-α and IL-6, and inhibition in the NF-κB activa-

tion suggesting this effect was mediated by phosphorylation of p65

and IκBα (Liu et al., 2017). Furthermore, in A549 lung cancer cells,

puerarin inhibited cell migration and invasion due to VEGF expression

inhibition, MMP-9, and ICAM-1 (Kang et al., 2017).

Importantly, puerarin inhibits cell migration and invasion in a

mTOR/p60S6K pathway-dependent manner in cancer cell lines. It also

inhibits the EMT process by decreasing the expression of mesenchymal

markers such as Snail, Slug, vimentin, N-cadherin, MMP-2, and MMP-9.

6.1.4 | Formononetin

In SGC-7901 and MGC-803 gastric cancer cells, formononetin treat-

ment inhibited the capacity for cell migration and invasion, suggesting

that the effect was due to a decrease in the expression levels of miR-

542-5p (Wang & Zhao, 2020). In SW1116 and HCT116 colon carci-

noma cells, formononetin suppressed cell growth by dysregulation the

expression of cyclin D1 and arrest of the cell cycle in the G0-G1

phase. Formononetin also inhibited the secretion of MMP-2 and

MMP-9 by dysregulation the PI3K/Akt signaling pathway and inacti-

vation of the transcription factor STAT3 (Wang, Li, Zhao, & Fan,

2018). Furthermore, in the A2780 and SKOV3 ovarian cancer cell

lines, the cell migration and invasion capacity diminished due to the

decrease in MMP-2 and MMP-9 expression and dysregulation in ERK

phosphorylation (Zhang et al., 2018). In MDA-MB-231 and 4T1 inva-

sive breast cancer cells, formononetin decreased the ability of cell

migration and invasion, decreased secretion MMP-2 and MMP-9, and

increased expression of the tissue metalloproteinase inhibitors

TIMP-1 and TIMP-2, an effect probably due to inhibition of the PI3K/

Akt signaling pathway (Zhou et al., 2014).

Importantly, formononetin inhibits cell migration and invasion by

downregulation of miR-542-5p. It also inhibits the secretion of

MMP-2 and MMP-9 and the expression of the metalloprotease inhibi-

tors TIMP-1 and TIMP-2.

6.1.5 | Glabridin

In MG63 and HOS osteosarcoma cell, glabridin inhibited invasion by

decreasing MMP-2 and MMP-9 secretion and by reducing

expression of the c-Fos, c-Jun proteins. The formation of the

CREB–AP1 (c-Fos–c-Jun) complex was attenuated by inhibiting the

phosphorylation and activation of p38 and JNK through the ERK1/2

signaling pathway (Jie et al., 2019). Furthermore, glabridin significantly

inhibited cell migration and the invasive capacity of HCC, Huh7, and

Sk-Hep-1 human hepatoma cells by inhibiting the ERK1/2/NF-kB/

AP-1/c-Fos/c-Jun and JNK1/2/NF-kB/AP-1/c-Fos/c-Jun signaling

pathways and consequently reduced the binding of NF-kB and AP-1

to the promoter region of the MMP9 gene, preventing its transcription

(Hsieh et al., 2014). Glabridin also inhibited cell migration and invasion

in MDA-MB-231 breast cancer cells, HUVEC human umbilical vein

endothelial cells, and A549 lung cancer cells by inhibition of FAK and

Src activation and blockage Akt and ERK1/2 signaling pathways, in

addition to decreased expression of vimentin and N-cadherin, as well

as α5 and β3 integrin (Hsu et al., 2011; Tsai et al., 2011).

6.1.6 | Daidzein

In MCF-10DCIS.com breast cancer cells, daidzein suppressed tumor

necrosis factor-α-induced cell migration, as well as MMP-9 activation

and invasion by inhibiting Hedgehog/Gli1 signaling (Bao et al., 2014).

Daidzein also inhibited invasion in MDA-MB-231 breast cancer cells

through the down-regulation of MMP-2 (Magee et al., 2014).

6.1.7 | Glycitein

In U87MG human astroglioma cells, glycitein inhibited cell invasion

by preventing activation and secretion of MMP-3 and MMP-9

induced by the tumor promoter PMA, glycitein also inhibited DNA

binding and decreased NF-κB and AP-1 transcriptional activity (Lee

et al., 2010).

6.1.8 | Brazilein and brazilin

Brazilein and brazilin are the isoflavonoids less studied; the

antiinvasive or metastatic effect of these isoflavonoids is shown

below. The combination of brazilin with doxorubicin inhibited cell

migration in MCF7/HER2 breast cancer cells by decreasing the

MMP-2, MMP-9 secretion, and dysregulation of Rac1 decreased in

p120 and HER2 expression (Jenie et al., 2018). In MDA-MB-231

breast cancer cells, brazilein inhibited cell migration and invasion by

preventing the PI3K/Akt and p38MAPK signaling pathways and

inhibiting the transcriptional activity NF-kB and consequently the

MMP-9 expression (Hsieh et al., 2013). Finally, brazilin inhibited cell

migration, Src phosphorylation, and blocking the ERK1/2 and Akt sig-

naling pathways in VSMC smooth muscle vascular induced by

platelet-derived growth factor (PDGF-BB) (Guo et al., 2013).

In conclusion, in several studies using cancer cell lines, iso-

flavonoids promote a decrease in the expression or activation of

invasion-related markers such as MMP-2, MMP-9, and MMP-14. In

addition, isoflavonoids inhibit cell migration by inhibiting regulatory
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proteins such as FAK and Paxillin, both processes being regulated by

signaling pathways such as PI3K-Akt, ERK, and mTOR-p60S6K.

6.2 | In vivo effects

The studies on the in vivo effect of isoflavonoids on invasive cancer

markers using animal models are summarized below (Table 2).

6.2.1 | Genistein

In female BALB/c athymic nude mice with MCF-7/ERβ1 and MDA-

MB-231/ERβ1 breast tumor cell xenografts, oral administration of

genistein suppressed tumor growth in a time and dose-dependent

manner, suggesting that the effect was due to arrest of the cell cycle

(Jiang et al., 2018). In BALB/c nu/nu female mice, inoculated with

HCC-LM3 hepatocellular carcinoma cells, treated with oral genistein

showed a significant decrease in tumor size; the effect was inhibiting

PCNA expression, HIF-1 α/GLUT1/HK2 (Li et al., 2017). In female

Sprague–Dawley rats fed a diet of genistein (genistein for life) and

genistein after breast tumor induction using anthracene7,12-

dimethylbenz (a) (DMBA), treated with tamoxifen, genistein deficiency

reduces de novo tamoxifen resistance. After diagnosis, administration

with genistein reduced recurrence risk by decreasing the expression

of autophagy-related genes UPR, GRP78, IRE1α, ATF4, and Beclin-1

and proteins linked immunosuppression (TGFβ and Foxp3). Genistein

also promotes dysregulation of the cytotoxic T cell marker CD8a in

tumors from the genistein group for life and the genistein group post-

diagnosis (Zhang et al., 2017). In female BALB/c mice inoculated with

S180 mouse sarcoma cells, intraperitoneal, genistein treatment

increased radiosensitivity, showing decreased tumor volume and size.

The treatment with X-ray in combination with genistein promotes

apoptosis by increased Bax expression and decreased Bcl-2 expres-

sion (Liu et al., 2016). In nude BALB/c female mice inoculated with

MGC-803 gastric cancer cells, daily treatment with genistein for

7 days reduced tumor size and weight relative to control (Huang et al.,

2014). In a nude female mice model injected with MCF7 breast cancer

cells, genistein injected peritoneally decreased tumor weight and

ALDH levels, indicating that the effect was by inhibition in the

Hedgehog-Gli1 signaling pathway (Fan et al., 2013). While in a

C57BL/6J female mouse model subcutaneous inoculated with the

melanoma cell line B164A5, administration of genistein decreased

tumor volume and weight as well as metastatic potential (Danciu

et al., 2013). In a model of azoxymethane-induced Sprague–Dawley

female rat colon cancer, administration of dietary genistein 140 mg/

kg from gestation to 13 weeks of age inhibited the development of

aberrant colon crypts. Genistein also decreased expression in

β-catenin, c-Myc, Wnt5a, and Sfrp2, while lifetime exposure to genis-

tein reduces the incidence and frequency of colon preneoplasia

(Zhang, Li, et al., 2013). In BALB/c nu/nu male mice with hepatocellu-

lar carcinoma MHCC97-H xenografts, the intraperitoneal administra-

tion of genistein for 20 days has been observed inhibited tumor

growth and weight and decreased the number of micrometastatic lung

foci (Gu et al., 2009). In a model of immunodeficient female mice

injected with 253 J BV human bladder cancer cells, treatment with

genistein for 2 weeks decreased tumor size, induced apoptosis. It

inhibited angiogenesis by decreasing NF-κB expression and increased

IκB-α, treatment with dietary genistein also inhibited lung metastasis

(Singh et al., 2006). In another study, the nude female mice (ICR-SCID)

injected with pancreatic tumor cells COLO 357 and L3.6pl, orally

administrated genistein combined with gemcitabine showed a syner-

gistic effect in decreasing tumor weight and inhibition of NF-κB

(Banerjee et al., 2005). In mice C57BL/6J treated with a diet enriched

with genistein and daidzein (0.3%) for 7 days, the production of IFN-γ

after administration of IL-12/IL-18 was decreased, thus modulating

the activity of natural killer cells (Mace et al., 2019).

In summary, the administration of genistein in animal models pro-

motes a reduction in tumor size and volume. Interestingly, it also

inhibits the number of metastatic tumors in the lung.

6.2.2 | Formononetin

In BALB/c nude mice with SGC-7901 cell xenograft tumors of gastric

cancer, intragastric administration with formononetin (30 mg/kg)

three times per week decreased tumor size and volume (Wang &

Zhao, 2020). In athymic nu/nu female mice with U266 human multiple

myeloma xenograft tumors, formononetin intraperitoneally adminis-

tration inhibited tumor growth and activation of STAT3 and STAT5. It

blocked their nuclear translocation by preventing their binding to

DNA, suggesting that this effect is correlated with suppression in

JAK1, JAK2, and c-Src kinases activation. It is mediated by increased

production of reactive oxygen species (ROS) due to the GSH/GSSG

imbalance (Kim et al., 2018). In nude BALB/c female mice with

HCT116 colorectal carcinoma cell xenograft tumors, formononetin

administration significantly reduced tumor growth by inhibiting the

PI3K/Akt and STAT3 signaling pathways (Wang, Li, Zhao, & Fan,

2018). Regarding BALB/c nude female mice with CNE1 nasopharyn-

geal carcinoma cell xenografts, the formononetin treatment at a high

or low dose (20 and 10 mg/kg, respectively) administered intraperito-

neally every 2 days for 10 days, decreased volume and tumor mass in

a dose-dependent manner; formononetin also increased p-JNK1/2, p-

p38, Bax, and caspase-3 and decreased p-Akt and Bcl-2 expression

(Qi et al., 2016). In BALB/c immunodeficient mice with MDA-MB-231

breast cancer cell xenografts, the treatment with formononetin

100 mg/kg intragastric via decreased tumor volume and weight.

Besides, formononetin inhibited the activation of FGF2Rα, PI3K, Akt,

STAT3, and the secretion of MMP-2/MMP-9 (Wu et al., 2015). Treat-

ment with formononetin in BALB/c nude female mice with MDA-MB-

231-luc breast cancer cells decreased pulmonary metastasis develop-

ment in a dose and time-dependent manner by inhibiting the PI3K/

Akt signaling pathway and decrease in MMP-2 and MMP-9 secretion

(Zhou et al., 2014). In a HeLa human cervical tumor cell xenograft

model in BALB/c mice, intragastric administration of formononetin at

low and high doses (20 and 40 mg/kg, respectively) once daily for
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TABLE 2 In vivo effect of isoflavonoids

Isoflavonoid Model Dose-time Effect Reference

Genistein In female BALB/c athymic nude mice

with MCF-7/ERβ1 and MDA-MB-

231/ERβ1 breast tumor cell

xenografts

1,000 ppm

(30 d)

#Tumor growth Jiang, Fan, Cheng, Hu,

and Liu (2018)

Mice BALB/c inoculated with HCC-

LM3 hepatocellular carcinoma cells

80 mg/kg (20 d) #Tumor size, PCNA,

HIF-1 α, GLUT1
Li et al. (2017)

Female Sprague–Dawley rats 500 ppm

(10.9 ± 0.8 weeks)

#Resistance to tamoxifen,

recurrence, UPR, GRP78,

IRE1α, ATF4, Beclin-1

genes, TGFβ, FOXP3

Zhang et al. (2017)

Female BALB/c mice inoculated with

S180 mouse sarcoma cells

200 mg/kg (24 h) "Radiosensitivity
#Tumor volume and size

Liu et al. (2016)

Nude BALB/c mice inoculated with

MGC-803 gastric cancer cells

1.5 mg/kg

(7 d)

#Tumor size and weight,

BCG2 mRNA

Huang, Wan, Luo,

Huang, and Luo (2014)

Mice inoculated with MCF7 breast

cancer cells

50 mg/kg

(2 weeks)

#Tumor weight, ALDH,

hedgehog–Gli1 signaling

pathway

Fan et al. (2013)

C57BL/6J mice inoculated with the

melanoma cell line B164A5

15 mg/kg (15 d) #Tumor volume and

weight, and metastatic

potential

Danciu, Borcan, Bojin,

Zupko, and

Dehelean (2013)

Sprague–Dawley rats with colon

cancer

140 mg/kg

(13 weeks)

#Development of aberrant

colon crypts,

β-Catenin, c-Myc,

Wnt5a, Sfrp2

Zhang, Li, Zhou, and

Chen (2013)

BALB/c nu/nu mice with MHCC97-H

hepatocellular carcinoma cell

xenografts

50 mg/kg

(20 d)

#Tumor growth and weight

#Number of

micrometastatic

pulmonary foci

Gu et al. (2009)

Mice inoculated with human bladder

cancer cells 253J BV

0.14% (2 weeks) #Tumor size, angiogenesis,

lung metastasis, NF-kB

"IκB-α

Singh, Franke, Blackburn,

and Zhou (2006)

Nude female mice (ICR-SCID)

inoculated with COLO 357 and

L3.6pl pancreatic tumor cells

1 mg/d (10 d) #Tumor weight and NF-kB Banerjee et al. (2005)

Genistein/

Daidzein

Mice C57BL/6 J 7.246 g/kg (7 d) # IFN-γ production after IL-

12/IL-18 treatment

Mace et al. (2019)

Formononetin BALB/c nude mice with gastric cancer

SGC-7901 cell xenograft tumors

(30 mg/kg) three

times per week

#Tumor growth Wang and Zhao (2020)

Athymic nu/nu mice with human

multiple myeloma xenograft tumors

U266

40 mg/kg (3 weeks) #Tumor growth and

STAT3/5

Kim et al. (2018)

BALB/c mice with HCT116 colorectal

carcinoma cell tumors

15 mg/kg

(14 d)

#Tumor growth, PI3K/Akt

and STAT3

Wang, Li, Zhao, and

Fan (2018)

BALB/c mice with CNE1

nasopharyngeal carcinoma cell

xenografts

20 mg/kg

(10 d)

#Tumor size, weight

"p-JNK1/2, p-p38, Bax,

caspase-3, p-Ak, Bcl-2

Qi et al. (2016)

BALB/c mice with MDA-MB-231

breast cancer cell xenografts

100 mg/kg

(25 d)

#Tumor size, weight,

FGF2Rα, PI3K, Akt,
STAT3, MMP-2, MMP-9

Wu et al. (2015)

BALB/c mice with MDA-MB-231-Luc

breast tumor cell xenografts

20 mg/kg

(35 d)

#Development of

metastasis, PI3K/Akt,

MMP-2, MMP-9

Zhou et al. (2014)

BALB/c mice with HeLa human

cervical tumor cell xenografts

20 and 40 mg/kg

(5 weeks)

#Tumor weight, volume,

pAkt

Jin, Xu, Zhao, Wang, and

Cui (2014)

60 mg/kg (20 d) Li et al. (2014)
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TABLE 2 (Continued)

Isoflavonoid Model Dose-time Effect Reference

Nude mice with PC-3 prostate cancer

cell xenograft

#Tumor growth, weight,

and Akt/Cyclin

D1/CDK4

BALB/c nu/nu mice with colon cancer

xenografts HCT-116

20 mg/kg (14 d) #Tumor size, proliferation,

VEGF, MMPs,

angiogenesis, invasion

Auyeung, Law, and

Ko (2012)

BALB/c mice with MCF7 breast tumor

cell xenografts

60 mg/kg (20 d) #Tumor growth, IGF1/

IGF1R-PI3K/Akt, and

cyclin D1 mRNA

Chen, Zeng, Xin, Huang,

and Chen (2011)

Daidzein Mouse BALB/c inoculated with A549

lung cancer cells

— #Tumor size, Ki-67,

p65-NF-κB
Guo et al. (2020)

Nude mice with subcutaneous breast

cancer xenografts injected with

MCF7 cells and MCF7/ADR cells

5 mg/kg (15 d) #Tumor size, weight, ERα,
BCRP

"Bax, p53, p21

Guo et al. (2019)

Nude mice inoculated with SKVO3

ovarian cancer cells

40 μg/kg (4 weeks) #Tumor size and Ki-67

"Caspase-3
Hua, Li, Chen, and

Liu (2018)

Nude mice injected with JEG-3

choriocarcinoma cells

20 mg/kg (4 weeks) #Xenograft growth,

c-Myc, PCNA, p-ERK

Zheng et al. (2017)

Mice BALB/c nu/nu with PC-3

prostate tumor

0.21 mg/kg (36 d) #Tumor size and lymph

node metastasis

Singh-Gupta et al. (2010)

Biochanin A Nude mice with A549 and 95D lung

cancer cell xenografts

72 mg/kg (4 weeks) #Tumor size

"Apoptosis
Li et al. (2018)

Nude athymic female mice with MCF7

breast cancer cell xenografts

15 mg/kg (4 weeks) #Tumor volume and size Moon, Shin, An, and

Morris (2008)

Athymic mice nu/nu with LNCaP

prostate cancer cell xenograft

400 μg/mL (10 d) #Tumor size, cyclin E

"p21
Rice et al. (2002)

Glabridin Female Sprague–Dawley rats with

mammary carcinogenesis

1 and 2.5 mg/kg

(16 weeks)

#Tumor volume, size,

oxidative stress, and

EGFR

"Restoration of phase I and

II antioxidant systems

Zhu et al. (2019)

BALB/c nude mice with MDA-MB-231

breast cancer cell xenograft

20 mg/kg

(6 weeks)

#Tumor weight, SMAD2,

DNMT1, DNMT3a,

vimentin

Jiang et al. (2016)

Male BALB/c nude mice with SK-

Hep-1 cell hepatoma xenograft

10 mg/kg (28 d) #Tumor formation, MMP-9,

ERK1/2, JNK1/2

Hsieh et al. (2014)

Puerarin Male BALB/c nu/nu mice with

xenografts of Bel-7,402 cells and

Huh7 hepatocellular carcinoma cells

40 mg/kg

(45 d)

#Tumor weight, size, and

metastasis, vimentin,

N-cadherin, snail, slug,

PTEN

"E-cadherin

Zhou et al. (2020)

Nude mice with UM-UC-3 bladder

cancer cell xenografts

50 and 100 μg/mL #Tumor volume and

weight, circular RNA

0020394, and NRBP1

"miR-328-3p

Du et al. (2020)

Male BALB/c mice with colitis-

associated colon cancer

4, 6 and 8 mg/kg

(21 d)

#Tumorigenesis,

metastasis, TNF-α, IL-
17A, N-cadherin,

MMP-2, Snai1, Zeb1,

Twist1

Deng et al. (2019)

Mice with A549 lung carcinoma cell

xenografts

40 mg/kg

(30 d)

#Tumor volume and size,

IL-10, IL-4, TGF-β, MEK/

ERK1/2

Kang et al. (2017)

6,8-diprenilgenisteína BALB/c female mice 2,5 mg/kg (14 d) #Lymph node metastasis

and VEGFR-2

Bae, Hwang-Bo, Lee,

Lee, and Chung (2021)
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5 weeks decreased weight and volume of the tumor and inhibited Akt

phosphorylation, showing the highest concentration the most signifi-

cant effect (Jin et al., 2014). In nude mice with PC-3 prostate cancer

cell xenograft intraperitoneally administered with formononetin

(15, 30, and 60 mg/kg/day) for 20 days, it inhibited tumor growth and

weight in a dose-dependent manner. The effect was by inhibition in

the activation of the Akt/Cyclin D1/CDK4 pathway (Li et al., 2014). In

BALB/c-nu/nu female mice with HCT-116 colon cancer xenografts,

10 days after tumor induction, the treatment with formononetin for

14 days decreased the volume and tumor size and cell proliferation.

Formononetin also reduced vascular endothelial growth factor (VEGF)

and matrix metalloproteinases expression, suggesting formononetin

inhibits angiogenesis and invasion in colon cancer tumor cells

(Auyeung et al., 2012). In nude BALB/c mice with MCF7 breast tumor

cell xenografts, treatment with formononetin inhibited local tumor

growth in a dose-dependent manner, an effect mediated by inhibition

in IGF1/IGF1R-PI3K/Akt signaling pathways and decreased expres-

sion in cyclin D1 mRNA (Chen et al., 2011).

Interestingly, in the results described in vivo, formononetin

decreased the levels of MMP-2, MMP-9 and inhibition of the PI3K-

Akt and JAK–STAT signaling pathways. In addition, formononetin

decreased tumor size and volume, as well as invasion and metastasis

to the lung.

6.2.3 | Daidzein

In BALB/c mice inoculated with A549 lung cancer cells, daidzein

decreased tumor size and levels of Ki-67 and p65-NF-κB (Guo et al.,

2020). Whereas, in nude mice with subcutaneous breast cancer xeno-

grafts injected with MCF7 and MCF7/ADR breast cancer cells, daid-

zein potentiated the chemotherapeutic effect of topotecan

administered gastrointestinally and intraperitoneally every third day

for 15 days. It showed a synergistic effect on inhibiting the size and

tumor weight, suggesting that daidzein reversed breast cancer resis-

tance to topotecan. Xenograft mice with MCF7 cells treated with

topotecan- and daidzein-induced apoptosis through increased Bax,

p53, and p21 expression and decreased Bcl2 expression, whereas in

MCF7/ADR xenografted mice, the treatment decreased ERα and

BCRP expression (Guo et al., 2019). In another study, immunodefi-

cient nude mice inoculated with SKVO3 ovarian cancer cells, daidzein

decreased the size of the tumor, suggesting a decrease in the Ki-67

expression and an increase in caspase-3 expression (Hua et al., 2018).

Nude mice injected with JEG-3 choriocarcinoma cells, subcutaneous

administration of daidzein inhibited xenografts' growth and

suppressed c-Myc, PCNA, and p-ERK expression (Zheng et al., 2017).

In BALB/c nu/nu nude male mice with PC-3 prostate tumors, the daily

treatment with daidzein (0.21 mg/day) for 36 days acted as a radio-

sensitizer. It showed a synergistic effect with radiotherapy by reduc-

ing tumor size and inhibited lymph node metastasis, regulating

AP1/Ref-1 (Apurinic/Apyrimidinic Endonuclease 1/Redox Factor-1),

NF-κB, and HIF-1α in cells positive for the androgen receptor

(AR) (Singh-Gupta et al., 2010).

6.2.4 | Biochanin A

In nude male mice with A549 and 95D lung cancer cell xenografts,

treatment with biochanin A during 4 weeks significantly inhibited the

tumor size due to cell cycle arrest and apoptosis, decreasing the

expression of cyclin A, CDK2, and Bcl-2 and increasing the expression

of Bax, Caspase-3, and p21 (Li et al., 2018). In athymic nude male mice

with MCF7 breast cancer cell xenografts, treatment with biochanin A

inhibited tumor volume and size (Moon et al., 2008). In athymic nu/nu

male mice with LNCaP prostate cancer cell xenograft tumors, intra-

peritoneally treatment with biochanin A 400 μg/mL/day for 10 days,

after 3 weeks of tumor implantation, decreased the tumor size,

suggesting the effect was due to an increase in p21 and a decrease in

cyclin E. However, at 6 weeks, the incidence of tumors was similar

between the control group and the treated group, considering that

the treatment shows a cytostatic effect, and eventually, the cells

recover (Rice et al., 2002).

6.2.5 | Glabridin

In female Sprague–Dawley rats, mammary carcinogenesis by subcuta-

neous administration of 7,12-dimethylbenz [a] anthracene (DMBA)

(25 mg) was induced. Treatment with glabridin once daily for

16 weeks, at a dose of 1, 2.5, and 5 mg/kg, decreased tumor volume

and size, as well as oxidative stress by restoring phase I and II antioxi-

dant systems and inhibited EGFR phosphorylation (Zhu et al., 2019).

In nude BALB/c mice with MDA-MB-231 breast cancer cell xenograft,

treatment with glabridin 20 mg/kg of body weight per day adminis-

tered for 6 weeks, decreased tumor weight and SMAD2, DNMT1,

DNMT3a, and vimentin expression, also decreased methylation of the

miR-148a promoter (Jiang, Li, et al., 2016). In male nude BALB/c mice

with SK-Hep-1 cell hepatoma xenograft, administration of glabridin

10 mg/kg for 28 days suppressed tumor formation, in addition to

decreased levels of MMP-9 and inhibited phosphorylation in ERK1/2

and JNK1/2 (Hsieh et al., 2014).

6.2.6 | Puerarin

Male BALB/c nu/nu mice with Bel-7,402 cell xenografts and Huh7

hepatocellular carcinoma cells, puerarin 40 mg/kg for 45 days

decreased the weight, size, number, and diameter of metastatic nod-

ules in the liver also increased E-cadherin expression and reduced

vimentin, N-cadherin, Snail, Slug and PTEN expression (Zhou et al.,

2020). In nude mice with UUM-UC-3 bladder cancer cell xenografts

transfected with puerarin 50 and 100 μg/mL, tumor volume and

weight decreased, suggesting that the effect was due to an increase in

miR-328-3p and a decrease in levels of circular RNA 0020394 and

nuclear receptor 1 binding protein NRBP1 (Du et al., 2020). In male

BALB/c mice with colitis-associated colon cancer, intraperitoneally

treatment with puerarin 4, 6, 8 mg/kg for 21 days reduced tumorigen-

esis and metastasis by decreasing the TNF-α, IL-17A, N-cadherin, and
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MMP-2 expression as well as a decrease in expression of the tran-

scription factors Snai1, Zeb1, Twist1 (Table 2) (Deng et al., 2019). In

contrast, in NOD/SCID mice with A549 lung carcinoma cell xeno-

grafts treated with puerarin 40 mg/kg for 30 days, there is a decrease

in tumor volume and size, promoting the inhibition of the macro-

phages polarized to the M2 phenotype and a reduction in the expres-

sion of tumorigenesis-related cytokines (IL-10, IL-4, and TGF-β); in

addition, puerarin also inhibited the activation of the MEK/ERK1/2

pathway (Kang et al., 2017).

These reports show that in in vivo models, pueranin promotes a

decrease in tumor size and volume as well as a reduction in metastatic

nodules in the liver. These events are related to the decline of tran-

scription factors related to EMT.

6.3 | 6,8-diprenylgenisteine

In female BALB/c mice with sentinel lymph node from VEGF-A-

induced oral cancer, treatment with a natural derivative of genistein

(6,8-diprenylgenisteine) at a dose of 2.5 mg/kg every 2 days for

14 days by intraperitoneal injection suppressed lymph node metasta-

sis, suggesting that the effect was by inhibition in VEGFR-2 signaling

(Bae et al., 2021).

6.4 | Clinical trials

Isoflavonoids currently under evaluation in phase II and phase III clini-

cal trials in cancer patients must meet the following criteria: random-

ized, double-blind, placebo-controlled studies (Amawi, Ashby, &

Tiwari, 2017; Andrew & Izzo, 2017). Of these, genistein has been

evaluated, and the synergistic effect of Genistein/daidzein/glycitein

and Genistein/daidzein/equol has been assessed. In Table 3, we sum-

marize the findings found in patients.

6.4.1 | Genistein

In another phase II trial in men with prostate cancer, the administra-

tion of genistein for 1 month before radical prostatectomy selectively

affected the motility and metastasis-related genes in cancer cells by

inhibiting the expression of mitogen-activated protein kinase

4 (MEK4) and MMP-2 (Zhang et al., 2019). In phase II clinical trial, in

patients with prostate cancer, the administration of genistein 30 mg,

from 3 to 6 weeks before prostatectomy, promoted the PTEN activity

and inhibited the MYC activity (Bilir et al., 2017). In phase II clinical

trial in 59 patients diagnosed with urothelial bladder cancer, genistein

administered orally twice a day (300 or 600 mg/day) for 14 to 30 days

before surgery; the treatment was well tolerated, and the administra-

tion of genistein inhibited the phosphorylation and activation of

EGFR, Akt, and MAPK (Messing et al., 2012). In phase II clinical trial,

patients with localized prostate adenocarcinoma in clinical stage T1 or

T2, genistein PTI G-4660 150 mg/day for 4 weeks, inhibited the

MEK4 kinase activity and decreased the transcriptional level of

MMP-2 (Xu et al., 2009).

6.4.2 | Genistein/daidzein/glycitein

Administration of isoflavonoids (55% daidzein, 30% glycitein, and

15% genistein) 80 mg/day for 6 weeks in men with stage T1 or T2

localized prostate cancer reduced the expression of the prostate-

specific antigen (PSA). It also decreased the expression of genes

involved in the cell cycle, such as CDC27, APAF1, CCNB2, CCNG2,

CCNC, UBE1, CUL2, CUL3, E2F4, and CHEK2 (Hamilton-Reeves et al.,

2013). In clinical trials, prostate-specific antigen (PSA) levels

decreased in the group of patients with stage T1 or T2 prostate can-

cer treated with a supplement containing isoflavones (66% daidzein,

24% glycitein, and 10% genistein) 40 mg and curcumin 400 mg for

6 months (Ide et al., 2010).

TABLE 3 Effect of isoflavonoids in clinical trials

Isoflavonoid Model Dose-time Effect Reference

Genistein Prostate cancer patients 150 mg/d (1 month) #MEK4, MMP-2 Zhang et al. (2019)

Prostate cancer patients 30 mg/d (3–6 weeks) #MYC, PTEN, CD24,

HIF-1α
Bilir et al. (2017)

Patients with urothelial bladder

cancer

300 and 600 mg/d

(14–30 d)

#pEGFR, pAkt, pMAPK Messing et al. (2012)

Patients with stage T1 or T2

Prostate adenocarcinoma

150 mg/d (4 weeks) #MEK4, MMP-2 Xu et al. (2009)

Genistein/

daidzein/

glycitein

Patients with stage T1 or T2

prostate cancer

80 mg/d (6 weeks) #PSA, CDC27, APAF1,
CCNB2, CCNG2, CCNC,

UBE1, CUL2, CUL3,

E2F4, CHEK2

Hamilton-Reeves

et al. (2013)

Patients with stage T1 or T2

prostate cancer

400 mg/d (6 months) #PSA Ide et al. (2010)

Genistein/daidzein/equol Prostate cancer patients 47 mg (12 months) #PSA Pendleton et al. (2008)

CAYETANO-SALAZAR ET AL. 13



6.4.3 | Genistein/daidzein/equol

While in a phase II study in prostate cancer patients with biochemical

recurrence and elevated PSA levels, administration of isoflavonoids

(genistein, daidzein, and equol) 47 mg/8 oz for 12 months decrease

PSA levels reporting that isoflavonoid administration may have biolog-

ical activity in men with recurrent prostate cancer (Pendleton

et al., 2008).

Even though clinical trial reports indicate the potential of iso-

flavonoids in the treatment of cancer patients, additional studies are

needed to validate their effectiveness without ignoring the limitations

regarding the low solubility, bioavailability, and metabolic instability of

isoflavonoids. Therefore, alternatives must be found to overcome

these challenges.

7 | CONCLUSIONS

Currently, treatment strategies to inhibit cell invasion and metastasis

of tumor cells remain limited; chemotherapy is the conventional form

applied in the treatment of metastatic cancer; however, within its limi-

tations are high toxicity and chemoresistance, and metastasis remains

to be one of the leading causes of cancer deaths. A wide variety of

studies supports the biological potential of isoflavonoid compounds

on tumor invasion and metastasis. In in vitro assays, these compounds

act by interfering with the signaling pathways involved in tumor pro-

gression such as NF-κB, PI3K/Akt, or MAPK/ERK. Downstream the

isoflavonoids act by repressing genes such as MMP2, MMP9 and

MMP14, VIM, RAC1, and HER2 and promote the expression of epithe-

lial genes such as CDH1, TMP1, and TIMP2. Regarding in vivo assays,

F IGURE 4 Proposed model of the effect of isoflavonoids on molecules related to the process of cell invasion and metastasis. The
isoflavonoids biochanin A, formononetin, puerarin, glabridin, genistein, daidzein, glycitein, brazilein and brazilin, block signaling pathways
mediated by TGF-β/IRS, EGF/EGFR, FAK/Paxillin, MAPK, IκB, PI3K/Akt ERK, STAT3, FAK, and Src. Downstream these isoflavonoids regulate the
expression of transcription factors STAT3, AP1, c-Jun, c-Fos and inhibit the expression of the CDH2, CCND1, MMP14, MMP9, MMP2, MYC,
VIM, SNAI, CTNNBIP1, and TWIST1 genes and promote the expression of CDKN1A, CDH1, TIMP1, TIMP2, and CTNNA genes, thus inhibiting

the process of tumor invasion and metastasis [Colour figure can be viewed at wileyonlinelibrary.com]
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several studies indicate that isoflavonoids decreased tumor volume

and size in mice and reported that isoflavonoids act on the signaling

pathways described in cancer cell cultures (in vitro assays).

Regarding clinical trials, although there is little evidence of the

biological effect of isoflavonoids in humans. Several reports indicate

that the effect of isoflavonoids genistein, daidzein, and glycitein are at

the level of inhibition of signaling pathways that are related to the

proliferation and cell invasion like EGFR, Akt, MAPK, and MMP-2

(Figure 4). Furthermore, there is transcriptional regulation in genes

involved in cell invasion and metastasis at the transcriptional level.

Considering the findings found in the different study models, these

data give us the guideline to consider these isoflavonoids as a pharma-

cological promise in treating invasive cancer.
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