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Introduction

Rivers and streams present growing contamination 
problems produced by anthropic activities (mining 
and agriculture) (Batista et al., 2016; Ibeh & Umeham, 
2018; Silveira et  al., 2018). The sediments of these 
aquatic ecosystems have environmental relevance due 
to their capacity to accumulate chemical agents such 
as metals and pesticides in concentrations greater than 
those found in the water (García-Alonso et  al., 2015; 
Geffard et al., 2007; Ortíz-Ordoñez et al., 2016; Zhang 
et al., 2016). Chemical agents can be released to sur-
face water from the sediments through biological and 
chemical processes and provoke toxic effects in aquatic 
organisms (Xiao et al., 2019; Mondal et al., 2017). A 
relation has been found between metal concentrations 
in sediment and the aquatic fauna as a result of bioac-
cumulation and biomagnification. Due to this, there is 
growing interest in evaluating the toxicity of sediments 
of aquatic ecosystems (Biruk et  al., 2017; García-
Alonso et  al., 2015; Guimarães et  al., 2019; Zhang 
et al., 2016). There has also been an increase in toxic-
ity studies of elutriates, which are the aqueous fraction 
of the sediments (Garmendia et al., 2009; Haring et al., 
2010; Jardim et al., 2008; Ortíz-Ordoñez et al., 2016; 
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Ramírez & Mendoza, 2008). Jardim et al. (2008) found 
bioavailable metals (Cu, Zn, Cr, Cd, Pb) in sediments 
of the Río Corumbataí in Brazil in concentrations that 
caused acute and chronic toxicity in Daphnia magna 
and D. similis. Míguez et  al. (2010) reported toxicity 
associated with metals and organic compounds with 
elutriates of sediments of the Río Uruguay in larvae of 
Pimephales promelas, neonates of Ceriodaphnia dubia 
and in Phosphobacterium leioghnati. Morais et  al. 
(2013) found chronic toxicity in sediments of the Río 
Ribeira de Iguape in Brazil—where there was mining 
activity in the area from 1918 to 1995—to Daphnia 
similis; however, they did not find toxicity of individu-
als exposed to superficial water of the same river. This 
study suggests that, in spite of being in a restoration 
process, the recovery of sediment quality is not as great 
as that of the water, due to the accumulation capacity 
of the chemical agents present in the sediments.

Determining the exposition to the individual 
concentrations of chemical agents is not enough by 
itself to predict their toxic effects, since there are 
environmental factors (i.e., pH, organic material, 
redox, etc.) that affect their bioavailability. Chemi-
cal agents in complex mixtures such as surface 
water, sediments, and elutriates may also have addi-
tive, antagonistic, or synergic interactions that affect 
their individual toxicity. For this reason, bioassays 
are used to evaluate the toxicity of these complex 
mixtures, since the response of the organisms meas-
ures the overall effect of the chemical agents present 
in the mixture (Barbosa et al., 2010; Castillo, 2004; 
Hassan et al., 2016). Allium cepa has been used to 
evaluate effects of chemical agents, because it is 
considered as an efficient bioindicator of genotoxic-
ity (Wijeyaratne & Wadasinghe, 2019). The bioas-
say with Allium cepa is an internationally validated 
method to evaluate the genotoxic potential of chem-
ical agents in the environment (Batista et al., 2016; 
Silveira et  al., 2018; Tedesco et  al., 2017). It is a 
rapid and low-cost method that has demonstrated 
high sensitivity to chemical agents and good corre-
lation with other bioassays. A. cepa also has good 
karyotype characteristics, since it has a low number 
of chromosomes (2n = 16) that are easily visualized 
under a microscope, which allows uncomplicated 
identification of chromosome alterations (Rainho 
et al., 2010; Bianchi et al., 2011; Biruk et al., 2017; 
Silveira et al., 2017).

Limache stream, located in the Región de Val-
paraíso in central Chile, is considered a category I 
priority site in the Regional Strategy for Biodiversity 
Conservation (CONAMA & PNUD, 2005); its water 
is stored in the Los Aromos reservoir, which is one 
of the main sources of water for human consumption. 
It is influenced by different anthropogenic activities, 
especially agricultural activity and the effluent dis-
charge from a treatment plant of residual urban water 
(Córdova et  al., 2009; Fuente et  al., 2014). Agricul-
tural activities may generate diffuse contamination 
due to the use of pesticides. These may reach water 
bodies due to runoff, infiltration, and erosion of soils 
where they were applied and by atmospheric trans-
port, contaminating water and sediments (Hernándes-
Antonio & Hansen, 2011). Although there have been 
studies of environmental quality of the water in the 
Limache stream, the bioavailability of potentially 
genotoxic agents in sediments is unknown. This 
study postulates that elutriates of the sediments in the 
Limache stream contain a complex mixture of chemi-
cal agents in bioavailable concentrations that provoke 
genotoxicity in A. cepa. The aim of this study was 
thus to evaluate the genotoxic effects of sediment elu-
triates of the Limache stream on Allium cepa.

Materials and methods

Sampling

The sampling was carried out in autumn, 2018. Five 
sampling sites were selected in the Limache stream 
(Fig. 1). The site selection criterion was the level of 
anthropization of the sector (agricultural, urban, and 
industrial). The sediments were extracted superfi-
cially, three replications per station and were trans-
ported in plastic containers and stored at −4 °C.

Sample preparation

Sediment elutriates were obtained according to 
Ramírez and Mendoza (2008). Sediment samples 
were dried at 60 °C to remove all humidity; then, the 
dry material was placed in 14-mL centrifuge tubes 
with distilled water in a 1:3 v/v relation. The tubes 
were agitated in a stirring rack for 1 h to generate a 
homogeneous mixture, then allowed to settle in a 
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refrigerator. Before performing toxicity tests, tubes 
were centrifuged for 15  min at 3000  rpm, and the 
aqueous supernatant (elutriate) extracted without re-
suspending the sediment.

Characterization of sediment and elutriates

The organic matter in the sediments was determined 
by weight loss after heating at 500 °C for 4 h. pH and 
redox potential were measured in situ. The granulom-
etry of the sediments was determined using six-sieve 
magnetic stirrer with the following aperture diame-
ters: 4750 μm (No. 4), 2000 μm (No. 10) for medium-
coarse sand, 425  μm (No. 40) for medium sand, 
250 μm (No. 60) for fine sand, 106 μm (No. 140) for 
medium-fine sand, and 75 μm (No. 200) for silt, and 
analyzed with the GRADISTAT software. Phosphate 
and nitrate in the elutriates were determined by col-
orimetry with a Hanna spectrophotometer model 
HI83399-02.

Bioassay with Allium cepa

Commercial seeds of Allium cepa were used from the 
same variety and lot. Seeds were scarified with 5% 
sodium hypochlorite for 15 min and washed with dis-
tilled water for 10 min. We prepared Petri plates with 
filter paper disks of the same diameter as the plates. 
Three milliliter distilled water was added, distributing 

it homogeneously and taking care that there were no 
air bubbles below the filter paper. Twenty seeds per 
plate were used for the analysis of germination and 
growth and 5 per plate for the genotoxic analysis, sep-
arated to insure adequate growth. Seeds were incu-
bated in an environment chamber at room tempera-
ture in total darkness until the roots reached a length 
of 2 mm. As2O3 at a concentration of 10 mg/L was 
used as positive control (PC) and distilled water as 
negative control (NC) (Ramírez & Mendoza, 2008; 
Silveira et al., 2018).

Determination of germination percentage and relative 
growth index

Germination percentage was estimated according 
to Njoku et  al. (2008), germination index (%G) and 
relative growth index (RGI) according to Biruk et al. 
(2017). When radicle length reached 2 mm, seedlings 
were treated with 3  mL of test solution (elutriates). 
Root length was measured every 24  h for five days. 
RGI and %G were calculated using the formulas:

RGI =
RLI

RLC

%G =
RLI × GSI × 100

RLC × GSC

Fig. 1   Location of sampling sites in the Limache stream. The sites had the following anthropic activities: (1) agricultural, (2) urban 
and agricultural, (3) road and urban, (4) agricultural, and (5) tourism
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RLI is the radicle length of seeds treated with elutriates, 
RLC is the radicle length of seeds of the negative control, 
GSI is the number of germinated seeds after treatment 
with elutriates, and GSC is the number of germinated 
seeds in the negative control. RGI values were placed in 
three categories according to the toxic effects observed:

•	 Inhibition of radicle elongation (I): 0 < RGI < 0.8
•	 No significant effects (NSE): 0.8 ≤ RGI ≤ 1.2
•	 Stimulation of radicle elongation (S): RGI > 1.2

Determination of genotoxicity

To determine genotoxicity, seedlings germinated to 
2-mm radicle length were treated with 3 mL of the test 
solution (elutriates) for 48 h. Then, roots were harvested 
and fixed in Carnoy’s solution, and stored at 4  °C for 
24  h. Roots were hydrolyzed in HCl for 9–10  min at 
60  °C to soften the tissues. Roots were stained with 2 
drops of lacto-propionic orcein. The meristematic region, 
the final 2 mm of the root was cut, placed on a slide and 
carefully squashed with the cover slip with a drop of 2% 
acetocarmine. Finally, the cover slip was sealed.

To estimate the percentage of mitotic phases and the 
mitotic index, we observed meristematic cells. Six slides 
were prepared for each trial per elutriate, and 1000 mer-
istematic cells were observed under a microscope per 
slide. The different stages of mitotic division (prophase, 
metaphase, anaphase, and telophase) were recorded. The 
mitotic index was calculated for each as

We also quantified the following chromosome 
aberrations (CA): micronuclei (MN), nuclear buds, 
anaphase bridges, chromosome fragmentation, and 
C-mitosis in 1000 cells. To estimate genotoxicity, we 
obtained the frequency of chromosome aberrations 
and micronuclei, using the following formula:

where A is the number of cells with the parameter 
analyzed (MN or CA) and B is the total mitotic cells 
analyzed (Bianchi et  al., 2011; Biruk et  al., 2017; 
Silveira et al., 2018).

Statistical analysis

ANOVA analysis followed by Tukey tests was per-
formed to compare variables between sediment elu-
triates, with a significance level of p < 0.05. Pearson 
correlation was used to relate variables. The statisti-
cal procedures and tests were performed in the soft-
ware Minitab 17.

Results and discussion

Table 1 shows that the pH was alkaline; similar val-
ues were reported by García-Alonso et  al. (2015) in 
the Segura River in Spain. This alkalinity could be 

MI =
Total cells in mitosis

Total cells counted
× 100

Frequency MN or CA =

(

A

B

)

× 100

Table 1   Physical and 
chemical parameters 
and granulometry of the 
sediments and elutriates

< LD below detection limit

Sampling sites

Parameter Unit 1 2 3 4 5

pH 8.9 8.8 8.8 9.0 8.8
Redox mV 234 229 195 145 114
Organic matter % 9.7 14.4 31.7 1.8 9.8
Phosphateselutriates mg/L 4.7 1.3 10.5  < LD  < LD
Nitrateselutriates mg/L 4.1 2.7  < LD  < LD 0.9
Gravel % 5.5 2.2 6.1 1.4 9.7
Sand % 94.5 97.8 93.9 98.6 90.3
Fine gravel % 0.7 0.5 1 0.1 4.4
Very fine gravel % 4.8 1.7 5.2 1.2 5.3
Medium sand % 71 57.6 52.4 84 56.5
Fine sand % 4.4 0.4 1.8 3.6 5.3
Very fine sand % 19.1 39.7 39.7 11.1 28.4
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to the presence of bicarbonates and the geological 
characteristics of the study area. The redox poten-
tial suggests a low tendency to formation of metal 
oxides, favoring the solubility of metal salts in the 
interstitial water of the sediments; similar values were 
reported by Gaete et  al. (2017). The greater amount 
of organic matter in the elutriate sediments of some 
sampling sites is due to the sedimentation of vegeta-
ble matter (Cogua et al., 2012), which may be favored 
by a decrease in flow, which in the study area varied 
from 0.01 to 0.76 m3/s (Carreño et al., 2018; Córdova 
et  al., 2009). This parameter is important since the 
amount of organic matter in the sediment influences 
the adsorption of metals in the aquatic ecosystem 
(Guimarães et al., 2019).

The concentrations of phosphates and nitrates, 
10.5  mg/L and 4.1  mg/L, respectively, suggest that 
they are an important source of the internal load of 
nutrients into the water body, which can accelerate 
the eutrophication process (Villalobos et  al., 2003). 
The variation in nutrient concentrations among sam-
pling sites may be associated with changes in soil use 
(Fuente et al., 2014; Córdova et al., 2009. The sam-
pling sites with greatest anthropic activity were sites 
1, 2, and 3, which showed the highest values for all 
parameters. The lower concentrations of nutrients in 
the other sites below the detection limit could be due 
to the dilution effect of the Lliu Lliu tributary stream.

Germination percentage was greater than 85% 
for all sediment elutriates. No significant differences 
were found in germination percentage, RGI, or %G 
between the sediment elutriates and the negative con-
trol (Table 2). This may be due to the nutrients favor-
ing development of the seedlings and plant growth, 
inhibiting the effects of chemical agents. It may also 
be due to the low sensitivity of Allium cepa to some 

chemical elements; Iannacone and Alvariño (2005) 
reported that vascular plants, especially Allium cepa 
and Raphanus sativus, have low sensitivity to heavy 
metals. Our results are similar to those of Biruk et al. 
(2017), who used seeds of Lactuca sativa exposed to 
different extracts of sediments of the Río Matanza—
Riachuelo, Argentina.

There was no significant difference in radicle length 
between the negative control and seedlings exposed 
to sediment elutriates (Table 2). This could be due to 
an antagonistic interaction between chemical agents, 
which inhibits the individual toxicity of the chemi-
cal agents in these complex mixtures. Iannacone and 
Salazar (2007) found that the binary mixtures Cd/Hg 
and Hg/Pb had antagonistic interactions on Chirono-
mus calligraphus. Gaete and Chávez (2008) assessed 
the toxic effect of binary mixtures of copper, zinc, 
and arsenic on Daphnia obtusa, finding that certain 
combinations of the binary mixtures had antagonistic 
interactions, such as the Zn/Cu mixture.

Sediment elutriates did not affect radicle length 
(Table  2). This suggests that this response variable 
is not sensitive to the chemical agents present in the 
mixtures. This agrees with the report of Silveira et al. 
(2017), who exposed seeds of Allium cepa and Lac-
tuca sativa to different chemical agents (SPL, cad-
mium, atrazine, and metal methanosulfonate). They 
did not find significant effects on radicle length in A. 
cepa, but did find differences for L. sativa; they con-
sidered A. cepa to be an insensitive model for phyto-
toxicity tests.

A decrease in the mitotic index was found for all 
sediment elutriates compared to the control (Table 3). 
There was a significant increase in chromosome 
aberrations, dominated by micronuclei (MN) and 
C-mitoses (Table  3, Fig.  2). The sediment elutriates 

Table 2   Mean germination percentage ( ±) standard deviation, inhibition percentage, germination index (%G), relative growth index 
(RGI), and radicle length in seeds of Allium cepa exposed to sediment elutriates

NC  negative control

Sampling sites % Germination % Inhibition Germination index 
(%G)

Relative growth 
index (RGI)

Radicle length 120 h

NC 96.7 ± 2.9 3.3 ± 2.9 100 1 3.2 ± 0.3
1 96.7 ± 5.8 3.3 ± 5.8 87.3 ± 12.4 0.9 ± 0.1 2.8 ± 0.1
2 88.3 ± 2.9 11.7 ± 2.9 93.7 ± 19.8 1.0 ± 0.2 3.2 ± 0.4
3 86.7 ± 2.9 13.3 ± 2.9 95.7 ± 11.3 1.1 ± 0.1 3.4 ± 0.4
4 90 ± 0 10 ± 0 98.6 ± 18,4 1.1 ± 0,2 3.4 ± 0.4
5 85 ± 13.2 15 ± 13.2 90.1 ± 55,6 1.0 ± 0.4 3.0 ± 1.0
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from sampling sites with more anthropic interven-
tion had higher frequencies of MN. This may be 
related to the pesticides and metals from agricultural 
activities in the Limache stream watershed. Similar 
result was reported by García-Alonso et  al. (2015), 
who found that the sediments of lower sectors of the 
Segura River basin caused genotoxicity in Saccha-
romyces cerevisiae. This suggests that micronucleus 
frequency allows detecting changes in environmen-
tal conditions and that there are chemical agents in 
sediment elutriates in bioavailable concentrations 
that produce genotoxic effects. This is similar to the 
report of Bianchi et al. (2011), who exposed seedlings 
of A. cepa to samples of the water of the Río Mon-
jolinho in Brazil, which has high levels of heavy met-
als; they found a significant presence of chromosome 

aberrations. The frequency of MN may be increased 
by the expulsion of extra genetic material in C-mitosis 
cells. It may also be the result of structural changes 
between sister chromatids or different chromosomes 
due to breaks and terminal deletions, or due to the 
adherence of ribosomes or nucleoli. At the end of cell 
division, chromosome bridges may break and produce 
fragments that are converted to MN in the daughter 
cells (Bianchi et  al., 2016, 2011). The mitotic index 
and chromosome aberrations were negatively corre-
lated (r = −0.67; p < 0.05), but there was not a signifi-
cant correlation between radicle growth (cm) and the 
expected mitotic index. Similar results were reported 
by Silveira et al. (2017). In conclusion, the sediments 
contain chemical agents in bioavailable concentrations 
that provoke genotoxic effects in A. cepa. Genotoxic 

Table 3   Mean ± standard deviation of the frequency of chro-
mosome aberrations and mitotic index in radicles of Allium 
cepa exposed to sediment elutriates. Different letters indicate 

significant differences (p < 0.05) between the sampling sites 
and negative (NC) and positive (PC) controls

Sampling sites Micronuclei Nuclear buds Anaphase bridges Chromosome 
fragmentation

C-mitosis Total aberrations Mitotic index

PC 1.3 ± 0.2BC 0.2 ± 0.0 0.3 ± 0.2 0.5 ± 0.1 1.9 ± 0.8 4.1 ± 0.8B 5.4 ± 0.2B

NC 0.4 ± 0.0c 0.1 ± 0.1 0.2 ± 0.1 0.1 ± 0.1 0.2 ± 0.1 0.9 ± 0.1A 11.6 ± 0.8A

1 3.5 ± 0.7AB 0.8 ± 0.1 0.4 ± 0.2 0.8 ± 0.1 1.0 ± 0.1 6.5 ± 0.2B 7.0 ± 1.4B

2 2.0 ± 1.3AB 0.6 ± 0.4 0.3 ± 0.3 0.4 ± 0.3 0.4 ± 0.2 4.5 ± 1.0B 5.7 ± 1.7B

3 1.6 ± 0.6ABC 0.4 ± 0.1 0.5 ± 0.3 0.4 ± 0.1 1.2 ± 0.4 4.1 ± 0.5B 7.4 ± 1.6B

4 2.4 ± 0.7ABC 0.7 ± 0.8 0.4 ± 0.2 0.2 ± 0.1 0.7 ± 0.3 4.3 ± 1.6B 4.4 ± 0.8B

5 3.6 ± 1.3A 0.4 ± 0.2 0.2 ± 0.1 0.3 ± 0.2 0.6 ± 0.1 5.1 ± 1.6B 5.3 ± 0.9B

Fig. 2   Chromosome aber-
rations found. A: Nuclear 
bud; B and C: Micronuclei; 
D: Anaphase bridge; E: 
Chromosome fragmentation 
and F: C – Mitosis
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variables are more sensitive than growth variables. 
Allium cepa test proved to be a sensitive indicator of 
genotoxic contaminants in sediment elutriates of the 
Limache stream in central Chile.

Data availability  The datasets generated during and/or ana-
lyzed during the current study are available from the corre-
sponding author on reasonable request.
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