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Identification of hemodynamic biomarkers for bicuspid aortic valve induced aortic dilation using 
machine learning  
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A B S T R A C T   

Recent advances in medical imaging have confirmed the presence of altered hemodynamics in bicuspid aortic 
valve (BAV) patients. Therefore, there is a need for new hemodynamic biomarkers to refine disease monitoring 
and improve patient risk stratification. This research aims to analyze and extract multiple correlation patterns of 
hemodynamic parameters from 4D Flow MRI data and find which parameters allow an accurate classification 
between healthy volunteers (HV) and BAV patients with dilated and non-dilated ascending aorta using machine 
learning. Sixteen hemodynamic parameters were calculated in the ascending aorta (AAo) and aortic arch (AArch) 
at peak systole from 4D Flow MRI. We used sequential forward selection (SFS) and principal component analysis 
(PCA) as feature selection algorithms. Then, eleven machine-learning classifiers were implemented to separate 
HV and BAV patients (non- and dilated ascending aorta). Multiple correlation patterns from hemodynamic pa-
rameters were extracted using hierarchical clustering. The linear discriminant analysis and random forest are the 
best performing classifiers, using five hemodynamic parameters selected with SFS (velocity angle, forward ve-
locity, vorticity, and backward velocity in AAo; and helicity density in AArch) a 96.31 ± 1.76% and 96.00 ±
0.83% accuracy, respectively. Hierarchical clustering revealed three groups of correlated features. According to 
this analysis, we observed that features selected by SFS have a better performance than those selected by PCA 
because the five selected parameters were distributed according to 3 different clusters. Based on the proposed 
method, we concluded that the feature selection method found five potentially hemodynamic biomarkers related 
to this disease.   

1. Introduction 

Bicuspid aortic valve (BAV) is the most common congenital cardiac 
defect [1] with a prevalence of 1–2% in the general population [2]. 
Clinical manifestations of BAV are aortic dilation, aneurysm, and 
dissection, which typically develop in the ascending aorta (AAo) [3,4] 
and often extend to the aortic arch (AArch) [5]. Current clinical man-
agement of aneurysms in BAV patients relies on quantifying aortic 
diameter, but its predictive capacity is limited [6]. Therefore, there is a 
need for new biomarkers to refine disease monitoring and improve pa-
tient risk stratification. 

The most common BAV leaflet fusion phenotype involves the right- 
left cusps and right-non-coronary cups, with a prevalence of around 
80% and 17%, respectively [3,7]. Recent studies have demonstrated that 
BAVs cause altered blood flow hemodynamic in the AAo, which implies 
increased flow asymmetry, helicity, and wall shear stress (WSS) over-
loads on the aortic wall [8]. The WSS abnormalities are associated with 
histological and proteolytic of the aortic wall damage demonstrating a 
role for hemodynamics in the etiology of BAV aortopathy [9–14]. 
Nevertheless, increased WSS is not a unique feature in BAV disease. 
Aortic valve stenosis can also subject the aortic wall to high WSS [15]. 
Furthermore, many other hemodynamic parameters beyond WSS can be 
used to study aortic blood flow in BAV patients, making it difficult to 
conclude which has more association to BAV aortopathy, especially with 
traditional statistical assessment. 

Artificial intelligence (AI) methods have gained increased attention 

in cardiology and cardiovascular imaging [16]. For instance, in cardiac 
magnetic resonance (CMR), AI methods have been applied to segment 
left and right ventricles and aorta to enable automatic cardiovascular 
volume assessment and enhance reproducibility in clinical assessments 
[17–21]. Pattern recognition, i.e., the automatic discovery of regular-
ities in data through machine learning (ML), has been recently applied 
to genomic data to stratify BAV patients, identify distinct patterns of 
aortopathy, and characterize their association with valve morphology 
[22–24]. The absence of clear associations between several hemody-
namics parameters has limited the use of a few uncorrelated parameters 
to characterize BAV pathology [25]. 

Assessing the impact of several hemodynamic parameters in BAV 
dilation is difficult due to extensive data. Different methods of feature 
selection (FS) can be used to reduce dimensionality and redundancy of 
data, which allows determining which features discriminate best be-
tween two or more classes. Given the increasing capacity to extract a 
large amount of data from images, FS methods have become essential to 
achieve effective classifications. FS selection method is mainly used to 
provide accurate classifier models for classification tasks [26]. 

This study aimed to identify hemodynamic biomarkers for BAV pa-
tients and their relationships with aortic dilation. For that purpose, we 
analyzed and extracted multiple correlation patterns of hemodynamic 
parameters, finding which showed high collinearity between them, 
which allows us to reduce their size to few variables. And finally, we 
applied machine learning algorithms to discriminate between healthy 
volunteers (HV) and BAV patients with and without ascending aorta 
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dilation. 

2. Methods 

2.1. Study population 

Data obtained from a previous prospective study [5] was used in this 
work. We included sixty-seven BAV patients with a fusion of right and 
left coronary cusps (67.16%) or right and noncoronary cusps, AAo di-
ameters were less or equal than 45 mm, and had no severe aortic valve 
disease (aortic regurgitation ≤ III, maximum aortic valve velocity <3 
m/s by echocardiography). Patients were recruited at the Hospital 
Universitari Vall d’Hebron (Barcelona, Spain). Other inclusion criteria 
include age >18 years; without any congenital heart disease, including 
aortic coarctation; no connective tissue disorders; no previous aortic 
surgery or aortic valve replacement; and no contraindication for CMR. 
Forty-eight healthy volunteers (HV) matched for age, sex, and body 
surface area (BSA) were also included. The local ethics committee 
approved the study, and informed consent was obtained from all 
participants. 

2.2. Cardiovascular Magnetic Resonance protocol 

Multi-slice two-dimensional balanced steady-state free precession (b- 
SSFP) and 4D Flow MRI using Vastly undersampled Isotropic Projection 
Reconstruction (VIPR) [27,28] were acquired in a clinical GE 1.5T 
scanner (Signa, General Electric Healthcare, Waukesha, Wisconsin, 
USA). MRI datasets of the thoracic aorta were acquired with retro-
spective ECG cardiac gating with free breathing and without adminis-
tration of an endovenous contrast agent. Acquisitions parameters were: 
velocity encoding of (VENC) 200 cm/s, a field of view of 400 × 400 ×
400 mm3, scan matrix of 160 × 160 × 160 (voxel size of 2.5 × 2.5 × 2.5 
mm3), flip angle of 8◦, repetition time between 4.2 and 6.4 ms, and echo 
time between 1.9 and 3.7 ms. The data were reconstructed offline with 
corrections for background phase, eddy currents, and trajectory errors 
[29] according to each patient’s nominal temporal resolution, which 
was ranged between 21 and 36 ms. 

2.3. Aortic diameters and valve morphotype 

BAV morphotype and aortic diameters were assessed using cine MR 
images [30]. The three aortic root cusp-to-commissure diameters were 
measured using double-oblique cine images at the aortic root level at 
end-diastole, and the maximum value was retained for the analysis. AAo 
diameter was measured at the level of the pulmonary artery bifurcation 
at the end-diastolic phase. To determine the existence of aortic root or 
ascending dilation, aortic diameters were adjusted with a logarithm 
transformation to calculate the z-score for both sinuses (zSoV) and AAo 
(zAAo) accounting for sex, age, and BSA as described by Campens et al. 
[31]. A z-core cut-off value was used to define the aortic dilation of two 
standard estimate errors. According to Della Corte’s classification, pa-
tients were categorized concerning the aorta segment predominantly or 
exclusively involved in dilation [32]. Therefore, patients were classified 
as non-dilated (NON-DIL BAV) (zSoV ≤2 and zAAo ≤2) and dilated (DIL 
BAV) (zAAo >2 and zAAo > zSoV) ascending aorta. Patients with only 
aortic root dilation were excluded from the study. 

2.4. 3D quantification of hemodynamics parameters 

A detailed description of methods used to quantify hemodynamics 
descriptors is described in previous publications [33–36]. We briefly 
explain the methods next. The quantifications were done through an 
in-house MATLAB toolbox (The MathWorks Inc., Natick, Massachusetts, 
USA) [37]. The thoracic aorta was semiautomatically segmented, and a 
segmentation mask was used to generate a tetrahedral mesh [38]. Af-
terward, we used cubic interpolation to compute the velocity vector at 

each mesh node. Thereafter, a finite-element least-squares projection 
method was used to obtain several continuous 3D maps, including ec-
centricity, velocity, forward velocity, backward velocity, velocity angle, 
regurgitation fraction, WSS, WSS axial, WSS circumferential, oscillatory 
shear index (OSI), vorticity, axial vorticity, axial circulation, helicity 
density, viscous dissipation, energy loss, and kinetic energy were 
generated. Finally, eight different regions were analyzed in the thoracic 
aorta, four for each segment in the AAo and AArch. In each region, we 
analyzed the mean value for each hemodynamic parameter at an aver-
aged peak systolic data, corresponding to the average at one time-frame 
before peak systole, one at peak systole, and one time-frame after to 
reduce noise in the data, except for regurgitation fraction and oscillatory 
shear index (OSI). These parameters were calculated using information 
along the entire cardiac cycle [30]. 

2.5. Hemodynamic parameters analysis: machine learning algorithm 

A machine learning model was designed to select hemodynamic 
parameters that differentiate among three classes: HV, NON-DIL BAV, 
and DIL BAV. The imaging process pipelines extract seventeen hemo-
dynamic features in each of the two segments of the aorta. Then, the 
classifiers assigned the extracted features from 4D-flow CMR to one of 
these classes. 

To build the classifiers, we firstly reduced the dimensionality of the 
data. For this purpose, hemodynamic parameters were selected using 
sequential forward selection (SFS) and principal component analysis 
(PCA). We chose five features using SFS with Fisher objective function 
and exhaustive search, as shown in Supplementary Table S1. We used 
singular value decomposition to perform PCA. PCA generates a set of 
new features; each being a linear transformation of the original ele-
ments. We decompose the data matrix X of n × p size, where n is the 
number of subjects and p the number of features, using singular value 
decomposition, i.e. 

X=USVT  

where U is a unitary matrix, S is the diagonal matrix of singular values si 
and V the right singular vector Therefore, we can write the covariance 
matrix as 

C=
1
n

XXT =
1

(n − 1)
VSUTUSVT =V

S2

(n − 1)
VT 

Meaning that the right singular vector V are principal directions and 
that singular values are related to the eigenvalues of covariance matrix 
C, via λi = s2

i /(n − 1). The principal components are defined by V =

USVTV = US. We selected only the dominant eigenvectors, representing 
95% of the data. Then, we took each vector’s norm in the new space and 
leveraged scores. Finally, we obtained the indices of the vectors with the 
largest leverage scores (see Supplementary Table S2) [39]. 

After features selection, we tested different classifiers. We used the 
following classifiers: k-nearest neighbors (KNN) with 5, 7, 9 neighbors, 
linear discriminant analysis (LDA), quadratic discriminant analysis 
(QDA), minimum distance, Mahalanobis distance, support vector ma-
chine (SVM) using both the linear and radial basis function kernel (RBF), 
neural network, and random forest. We used a neural network with 
multilayer perceptron architecture with one hidden layer that contains 
15 nodes. In our network, the activation function in the output layer was 
a “softmax” unit. Of note, in our experiments, this configuration ob-
tained the highest accuracy. We did not use individual decision trees to 
develop the random forest because they tend to overfit. To reduce the 
effects of overfitting and improve generalization, we used bootstrap- 
aggregated decision trees to combine the results of many decision 
trees. Therefore, to maximize the variance explanation of the dependent 
variable, a variable is selected at each spit/node. In each round of 
training, 1000 decision trees were generated with a maximum allowed 
tree depth of five. 

We used stratified cross-validation to evaluate the performance of 
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the classification. The holdout method was used to divide the data into 
ten folds (90% of the data were used for training and 10% for testing) 
because it has become the standard method in practical terms [37]. To 
evaluate the stability of the classifier, we repeated this experiment ten 
times, interchanging training and testing data. For each time, the per-
formance defined as the rate of samples correctly classified was 
computed as ηi, for i = 1, …, 10. A confusion matrix was constructed 
based on prediction results in each training and validation sample, and 
the corresponding accuracy, precision, sensitivity, and specificity were 
calculated as the mean of the ten percentages of the true classifications 
that are tabulated in each case: η = (η1 + … + η10)/10. In addition, the 
mean ROC area under the curve (AUC) and 95% confidence interval 
were computed [40]. 

To validate both the algorithms and hemodynamic features, the 
performance of different pattern recognition classifiers was measured to 
quantify the amount of variance between the three classes of subjects. 
High classification accuracy shows that the proposed system of algo-
rithms and features can be used to differentiate among the groups. 

On the other hand, we used t-Distributed Stochastic Neighbor 
Embedding (t-SNE) to visualize high-dimensional datasets (classifica-
tion with all features, SFS, and PCA features selected) [41]. 

The algorithms were implemented in MATLAB using Balu [42] and 
the Statistics and Machine Learning MATLAB Toolbox. 

2.6. Hemodynamic parameters analysis: hierarchical clustering 

In order to extract multiple correlation patterns from hemodynamic 
parameters and identify highly correlated data, we used the correlation 
matrix-based hierarchical clustering method. This method grants a 
dataset into a multilevel cluster tree or dendrogram. The distance 
(dissimilarity) is defined as one minus Pearson’s correlation coefficient. 
It expressed that if two U-fiber maps had a shorter distance, they are 
similar, i.e., the distance is 0, the correlation coefficient is 1. The vari-
able that quantifies an effective representation of the pattern dissimi-
larities in the dendrogram is the cophenetic correlation (the correlation 
between original and cophenetic distances). We used the average link-
age method to calculate the cophenetic distance to get an average inter- 
cluster distance that allows higher cophenetic correlations. It provided 
the dendrogram illustrating the correlation matrix’s hierarchical struc-
ture and derived the final cluster. At last, based on inconsistency co-
efficients, we broke down the dendrogram obtaining clusters visually 
differentiated by colors [43,44]. 

2.7. Statistical analysis 

The software GraphPad Prism version 6.0.1 (GraphPad Software Inc., 
San Diego, California, USA) was used for statistical analysis. In popu-
lation demographics, normal distribution was evaluated using the 
Shapiro-Wilk test. Student t-test and Mann-Whitney U test were applied 
to find differences between groups for continuous parameters with 
normal and non-normal distributions, respectively. For categorical 
variables we applied χ2 test. A p-value < 0.05 was considered statisti-
cally significant. 

3. Results 

3.1. Demographics 

Demographical and clinical data are described in Table 1. HV and 
BAV patients were matched in terms of age, sex, and body surface area. 
The BAV patients presented higher diameter and Z-score than HV at both 
the aortic root and AAo. Seventy-three percent of BAV patients had AAo 
dilation. We did not find any differences other than aortic diameters, 
and Z scores between patients with and without aortic dilation. 

3.2. Hemodynamic biomarkers selection with SFS and PCA 

From the seventeen hemodynamic features obtained, the five fea-
tures that best differentiated the three classes (HV, NON-DIL BAV, and 
DIL BAV) were selected using both SFS and PCA by eliminating highly 
correlated or constant features that maximized accuracy (see Supple-
mentary Table S1). 

Regarding SFS, Fig. 1 a. shows the maximum separability obtained 
by each of the seventeen hemodynamic features as assessed in both 
aortic regions. The five variables presenting with the lowest separability 
and resulting in the higher accuracy once used in the different classifiers 
(Supplementary Fig. 1) were retained. They correspond to velocity 
angle, forward velocity, vorticity, backward velocity in AAo, and hel-
icity density in AArch. Fig. 1 b. shows the 3D feature space obtained 
using three features (velocity angle in AAo, forward velocity in AAo, and 
helicity density in AArch) for visualization purposes, showing good 
separability among classes. Fig. 2 a. shows the two principal components 
of PCA. Dimension 1 explains 45.21% variation in the data while 
Dimension 2 explains 23.73% variation. Together they explain 68.94% 
of the variation. 

Regarding PCA, Fig. 2 b. shows PCA correlation circle that repre-
sented the quality of representation of the features on a factor map. The 
better its representation on the factor map, is the variable closer to the 
circle’s center. This means that variables located closer than to the 
center of the plot are less important. Finally, Fig. 2 c. shows a bar graph 
of the quality of representation of the variables on factor maps on all the 
dimensions. The five top-performing features were forward velocity, 

Table 1 
Demographical and clinical data for the healthy volunteers (HV) and BAV pa-
tients. Quantitative data are expressed as the mean ± SD. BSA, body surface 
area; DBP, diastolic blood pressure; EAo, aortic stenosis; SBP, systolic blood 
pressure; IAo, aortic insufficiency; and SoV, sinus of Valsalva. * indicates sta-
tistically significant differences (p < 0.05).   

HV BAV p-value BAV Dilation Group 

NON- 
DIL 

DIL p-value 

N 48 67  18 49  
Age (year) 48.71 

± 12.57 
47.74 
± 15.06 

0.998 46.68 
± 14.35 

48.28 
± 15.44 

0.698 

Sex 
(female: 
male) 

23:25 31:44 0.514 5:13 24:25 0.121 

Weight 
(kg) 

70.81 
± 10.53 

72.18 
± 13.25 

0.587 74.72 
± 13.05 

72.42 
± 13.59 

0.534 

Height 
(cm) 

171.23 
± 7.82 

169.45 
± 10.85 

0.364 172.33 
± 8.60 

168.69 
± 11.33 

0.221 

BSA (m2) 1.83 ±
0.16 

1.83 ±
0.21 

0.995 1.88 ±
0.20 

1.82 ±
0.22 

0.349 

IAo (%)   …   0.246 
None … 73.33  88.89 75.51  
Mild … 10.67  5.56 12.25  
Moderate … 16  5.56 12.24  
EAo (%)      0.359 
None … 89.55  94.44 87.76  
Mild … 5.97  5.56 6.12  
Moderate … 4.48   6.12  
SBP 

(mmHg) 
130.15 
± 18.85 

134.88 
± 17.55 

0.114 133.78 
± 18.12 

135.17 
± 17.05 

0.773 

DBP 
(mmHg) 

73.41 
± 10.09 

76.43 
± 8.73 

0.128 77.39 
± 6.99 

77.33 
± 9.03 

0.981 

Diameter 
SoV 
(mm) 

30.32 
± 3.9 

35.91 
± 4.69 

<0.001* 33.28 
± 3.74 

36.08 
± 4.41 

0.019* 

Diameter 
AAo 
(mm) 

27.89 
± 3.71 

39.37 
± 6.74 

<0.001* 32.72 
± 4.17 

42.82 
± 5.19 

<0.001* 

Z score 
SoV 

− 0.25 
± 1.18 

1.30 ±
1.30 

<0.001* 0.27 ±
0.82 

1.33 ±
1.05 

<0.001* 

Z score 
AAo 

− 0.14 
± 0.91 

2.89 ±
1.52 

<0.001* 0.98 ±
1.07 

3.71 ±
0.98 

<0.001*  
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velocity, velocity angle in AAo, and velocity and energy loss in AArch. 
The computational time of the feature selection is short (approxi-

mate 0.05s) because we are dealing with a small number of features. 

3.3. Classification results 

Both simple (e.g., minimum distance and linear discriminant anal-
ysis) and more complex (e.g., SVM and neural networks) classifiers were 
tested using as input either all features or the five selected by SFS or 

Fig. 1. (a): Feature selection using sequential forward selection (SFS). There are five selected features, and they correspond to velocity angle in AAo, forward velocity 
in AAo, helicity density in AArch, vorticity in AAo, and backward velocity in AAo (red rectangle). (b): Feature Space in 3D. 

Fig. 2. (a) The two principal components 
PCA. The distance between variables and the 
origin measures the quality of the variables 
on the factor map. Variables that are away 
from the origin are well represented on the 
factor map. (b) PCA correlation circle that 
represented the quality of representation of 
the features on factor map. The better its 
representation on the factor map, is the 
variable closer to the circle’s center. This 
means that variables located closer than to 
the center of the plot are less important (c) 
Bar graph of quality of representation. There 
are five selected features, and they corre-
spond to velocity in AArch, forward velocity 
in AAo, velocity in AAo, energy loss in 
AArch, and velocity angle in AAo (red 
rectangle).   
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PCA. 
First, we used t-SNE as a tool to visualize high-dimensional data, as 

showing in Fig. 3. Fig. 3 a. shows t-SNE with 34 features (17 parameters 
in each of the two segments). HV (red) and DIL BAV (blue) groups are 
separated, but few HV are located close to the DIL BAV group. Never-
theless, the NON-DIL BAV group is not clearly separated from the DIL 
BAV group, and two NON-DIL BAV subjects are grouped in the HV class. 
Fig. 3 b. shows t-SNE with five selected features from SFS. Three groups 
are visualized; still, a few NON-DIL BAV subjects are grouped into HV 
and DIL BAV groups, respectively. Finally, Fig. 3 c. shows t-SNE with five 
selected features from PCA. Their behavior is similar to SFS’s figure, but 
the distance in the three groups is lower, and more NON-DIL BAV sub-
jects can be classified as DIL BAV compared to SFS results. 

The best result was obtained by combining the five features selected 
by SFS in LDA, getting a 96.31 ± 1.76% classification accuracy on HV, 
NON-DIL, and DIL BAV datasets. Other classifiers, as KNN and SVM- 
Linear, resulted in an accuracy of over 86% and 91.34% using SFS 
(Supplementary Table 2). Using PCA as a feature selection, almost all 
classifiers were close to 90% accuracy. 

The second-best result was obtained by combining the five hemo-
dynamic features selected by SFS and random forest, with a 96.00 ±
0.83% accuracy. Actually, there were not statistical differences between 
random forest and the LDA in precision, sensitivity, and specificity in 
DIL BAV and HV classes, but in NON-DIL BAV class (Table 2). The LDA 
had a better overall performance in the NON-DIL BAV class. However, it 
showed a larger variance than random forest for precision, sensitivity, 
and specificity in the cross-validation experiment. A diagram is showing 
in Supplementary Fig. 1. Each node contains the feature ID and 
threshold used for splitting. The position of some features, e.g., the 
relative distance from the root, in the random forest reflects the strength 
of association between diameter and hemodynamic parameters and BAV 
disease. For example, backward velocity in AAo is the optimal splitting 
feature. The optimal splitting feature found for the subsets is forward 
and backward velocity in AAo in the second layer. We can measure the 
association between aortic dilation and hemodynamic parameters in 
BAV disease by summarizing each feature’s overall random forest based 
on these ranks. Moreover, we computed the predictor importance esti-
mates from the random forest that grows trees using all variables 
extracted, as showed in Fig. 4. Bar graph stores the increase in mean 
square error (MSE) averaged over all trees in ensemble and divided by 
the standard deviation taken over the trees for each feature. The bars 

with the highest values contain the information of the most important 
features. This suggests that velocity angle in AAo is the most important 
predictor, followed by backward velocity, eccentricity, axial circulation, 
and regurgitation in AAo. The average processing time for feature se-
lection and classification was 42s in a 2.3 GHz Intel i7 processor 
equipped with 8GB of RAM. 

Fig. 5 shows ROC curves for both combinations with the best per-
formance (LDA and random forest) using five features selected by SFS. 
We noted that the ROC curves for HV and DIL BAV classes are high 
similar, indicating that the methods can distinguish these classes. 
Nevertheless, the NON-DIL BAV class has lower results, and this class’s 
imbalance may jeopardize the results. These classification methods 
achieved the best ROC AUC, sensitivity, specificity, precision across 
training and validation samples, and stratified cross-validations 
(Table 2). 

Additionally, we performed another experiment to classify only two 
classes (NON-DIL BAV and DIL BAV groups). We applied the method-
ology previously described and used hemodynamic features in AAo and 
AArch. Feature selection algorithm SFS found their five-top performing 
features were: velocity angle in AAo, regurgitation fraction in AArch, 
eccentricity in AAo, backward velocity in AAo, and oscillatory shear 
index in AAo. PCA’s five best-performing features were: velocity in 
AArch, forward velocity in AArch, velocity in AAo, kinetic energy in 
AArch, and forward velocity in AAo. Using features selected by PCA, 
almost all classifiers get close to 86% accuracy. The best results were 
obtained by combining SFS-selected features using an LDA classifier 
with 96.18 ± 2.34% (see Supplementary Table S3). 

3.4. Hemodynamic parameters correlation 

Fig. 6 a. shows the Pearson correlation matrix among all hemody-
namic parameters for all regions and subjects. Supplementary Fig. 2 
shows p-values obtained by the linear regression between all hemody-
namic parameters. Several parameters show good correlations (e.g., 
eccentricity and WSS in AAo), which indicate that some hemodynamic 
parameters are highly correlated and can be divided into clusters. 

A total of three clusters were identified as shown in Fig. 6 b. All three 
clusters combine at a much higher dendrogram distance and can be 
treated as individual groups for analysis. Cluster 1 (green): OSI, regur-
gitation fraction, velocity angle, and eccentricity in all regions; and 
backward velocity in AAo. Cluster 2 (red): axial circulation, WSS 

Fig. 3. t-SNE: t-Distributed Stochastic Neighbor Embedding. (a) All features, five selected features by: (b) SFS, and (c) PCA. SFS and PCA results show a good 
separation of the groups. But PCA results show a lower distance between groups, and more NON-DIL BAV subjects can be classified as DIL BAV compared to 
SFS results. 
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circumferential, and axial vorticity in all regions; backward velocity in 
AArch; and helicity density, vorticity, viscous dissipation, and energy 
loss in AAo. Finally, cluster 3 (blue): kinetic energy, velocity, WSS, WSS 
axial, and forward velocity in all regions; and energy loss, viscous 
dissipation, vorticity, and helicity density in AArch. This analysis shows 
high collinearity between the variables, which would allow us to reduce 
their size to a few variables. 

According to hierarchical cluster analysis, we determined the clus-
tering corresponding to each feature selected by SFS and PCA. SFS: 
cluster 1(green): velocity angle and backward velocity in AAo, cluster 2 
(red): vorticity in AAo; and cluster 3 (blue): forward velocity and 

helicity density in AAo and Aarch, respectively. PCA: cluster 1(green): 
velocity angle in AAo, cluster 2 (red): velocity in AAo, and cluster 3 
(blue): forward velocity in AAo, energy loss, and velocity in AArch. 
Hence, we can assume that features by SFS have a better performance 
than those selected by PCA because it has a wide representation of each 
clustering. 

Since most parameters were selected from the AAo, we repeated the 
methodology previously described, by selecting only three features from 
SFS and PCA in the AAo, by eliminating highly correlated or constant 
features that maximized accuracy. Each classification experiment is 
shown in Supplementary Tables S4 and S5. The best result was obtained 
with the QDA classifier using three features selected by SFS: cluster 1 
(green): velocity angle, cluster 2 (red): vorticity, and cluster 3 (blue): 
forward velocity, achieving an average of 94.90 ± 2.05% classification 
accuracy. 

4. Discussion 

Using ML, we have devised a differentiation algorithm for BAV with 
aortic dilation based on hemodynamic parameters derived from 4D flow 
CMR. After comparing multiple ML methods, the results showed that the 
accuracy gained with feature selection vs. all features in the final clas-
sifiers used is not that considerable [9–15]. Nevertheless, considering 
the large number of flow descriptors proposed to classify BAV patients 
with aortic dilation., the use of feature selection algorithms allows for 
the reduction of the number of input variables used to develop a pre-
dictive model without losing accuracy. Therefore, we found that 
combining five hemodynamic features selected by SFS and applying 
them to the LDA classification algorithm achieves the best performance 

Table 2 
Accuracy, precision, specificity, and sensitivity of different combinations of classifiers and all features, and five features selected by SFS and PCA. Each experiment was 
done using 10-fold cross-validation and repeated 10 times with confidence interval 95%. Bold type means statistically significant between the LDA and random forest 
for all features, SFS, and PCA, respectively (p-value < 0.05).   

LDA Random Forest 

All features SFS PCA All features SFS PCA 

HV class Precision (%) 100.00 ± 0.00 100.00 ± 0.00 100 .00 ± 0.00 98.01 ± 1.19 99.49 ± 1.12 99.09 ± 1.30 
Specificity (%) 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.05 ± 0.81 99.45 ± 0.84 100.00 ± 0.93 
Sensitivity (%) 94.17 ± 2.01 97.49 ± 6.51 97.48 ± 7.44 95.39 ± 1.51 94.22 ± 1.30 97.13 ± 1.62 

NON-DIL BAV class Precision 69.38 ± 48.42 88.42 ± 32.40 63.49 ± 4.80 67.44 ± 9.45 78.02 ± 4.16 79.83 ± 9.80 
Specificity (%) 96.49 ± 5.51 98.41 ± 4.15 95.33 ± 7.51 94.32 ± 1.53 96.39 ± 0.65 96.43 ± 1.70 
Sensitivity (%) 80.36 ± 37.39 86.03 ± 22.05 78.42 ± 4.29 80.39 ± 6.41 99.40 ± 2.71 95.02 ± 9.57 

DIL BAV class Precision 92.48 ± 7.02 93.01 ± 1.38 94.01 ± 1.00 95.50 ± 3.22 100.00 ± 0.75 99.03 ± 2.84 
Specificity (%) 95.32 ± 9.80 96.44 ± 7.12 96.43 ± 7.71 97.09 ± 2.19 100.00 ± 0.55 99.44 ± 2.09 
Sensitivity (%) 98.05 ± 6.33 99.59 ± 2.60 93.29 ± 1.10 93.44 ± 2.70 97.04 ± 1.32 95.32 ± 2.70 

Accuracy (%) 93.86 ± 2.24 96.31 ± 1.76 91.05 ± 2.29 92.00 ± 1.80 96.00 ± 0.83 96.00 ± 2.70  

Fig. 4. Predictors’ importance estimation from random forest. The five top- 
performing features were: velocity angle, backward velocity, eccentricity, 
axial circulation, and regurgitation fraction in AAo (red rectangle). 

Fig. 5. The ROC – curve for LDA and random forest with five features selected by SFS, displaying for the three classes in the mean ± SD. The NON-DIL BAV class has 
lower results in both classifiers, and this class’s imbalance may jeopardize the results. 
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with an accuracy of 96.31 ± 1.76%, which is higher than the accuracy of 
random forest (96.00 ± 2.70%). 

Both classification tasks with LDA and random forest showed better 
performance when including AAo and AArch than only features in AAo 
(SFS reaching 93.27 ± 2.34% accuracy and random forest resulting in 
94.00 ± 2.00% accuracy). This result suggests that for the classification 
it is important to include parameters in AAo and AArch. Further, both 
classifiers did not show significant differences, but in the NON-DIL BAV 
class. For this class, the LDA was sensitive to the selected test data as 
showed large variance for precision, sensitivity, and specificity in the 
cross-validation experiment. 

Feature selection algorithm SFS found five-top performing features 
including: velocity angle, forward velocity, vorticity, backward velocity 
in the AAo, and helicity density in the AArch. PCA’s five best-performing 
features were: velocity angle, forward velocity and velocity, in the AAo, 
and velocity and energy loss in the AArch. Interestingly, the most 
important parameters found by Random Forest were velocity angle, 
backward velocity, eccentricity, axial circulation, and regurgitation all 
of them localized in the AAo. Thus, algorithms consistently identify 
velocity angle as key descriptors of BAV hemodynamics, a result in line 
with previous research, and most of them highlighted the importance of 
forward and backward velocity components and the role of rotational 
flow descriptors, such as helicity, circulation and vorticity [11,45]. 

Notably, the algorithms did not select WSS or its components, all 
previously related cross-sectional and longitudinal data with dilation in 
BAV. This may have resulted from averaging these biomarkers over 
aortic wall regions or reflect their relatively lower reproducibility than 
bulk flow measures. Furthermore, the present WSS assessment may be 
limited in evaluating the spatiotemporal complexity of this biomarker 
[46]. Alternatively, the Eulerian method to analyze WSS topological 
skeleton by identifying and classifying WSS fixed points and manifolds 
in complex vascular geometries can increase the chance of finding 
mechanistic explanations to clinical observations as presented by Mazzi 
et al. [47], analysis that may be added in the ML classification algo-
rithms in future works. 

The structure and information of bootstrap-aggregated decision trees 
were extracted to count and analyze the extent of the influence of 
various hemodynamic parameters on BAV dilation to determine the 
parameters most closely related to the dilation of the aorta in this dis-
ease. This suggests that velocity angle in AAo is the most important 
predictor, followed by backward velocity, eccentricity, axial circulation, 
and regurgitation in AAo. These variables align with those identified in 
previous studies, which related high asymmetrical shear stresses with 
aortic dilation in BAV disease [48]. However, a decision tree further 
allows for the identification of the relative importance of each flow 
descriptor in the classification task, showing how velocity angle and 
flow eccentricity, two descriptors of asymmetric flow, backward veloc-
ity and axial circulation, and regurgitation bringing information of flow 

rotation are the dominant factors. The proposed decision tree model 
could differentiate the three classes with 96.00 ± 0.83 accuracy using 
five features selected by SFS. Nevertheless, this decision tree was our 
second-best result and appeared to be most helpful in determining HV 
and DIL BAV classes. Instead of the LDA that ascertains better the three 
classes, including the NON-DIL BAV class. 

Aortic stenosis in BAV patients has been reported that increased with 
the patient’s age [49,50]. Therefore, the patient’s age can be a possible 
confounding factor in the classifiers. We executed another experiment, 
including age as an input parameter. However, features selection algo-
rithms, SFS and PCA, did not find age as their top-best performing fea-
tures (see Supplementary Table S6). 

In this study, the hierarchical clustering method provided an alter-
native for reliable correlation between hemodynamic parameters from 
4D-flow CMR. By classifying them into three different clusters according 
to their similarities, the resulting dendrogram provides a good repre-
sentation of the relationship of various parameters in two aorta regions. 
According to hierarchical cluster analysis, we can assume that features 
by SFS have a better performance than those selected by other feature 
selection algorithms because it has a wide representation of each clus-
tering: cluster 1(green) velocity angle and backward velocity in AAo, 
cluster 2 (red) vorticity in AAo; and cluster 3 (blue): forward velocity 
and helicity density in AAo and AArch, respectively. When statistical 
modeling is used to pursue a predictive aim, Gregorich et al. showed that 
two highly correlated independent variables will lead to high variance in 
the predictions, even if both variables are relevant for prediction. In 
small samples, it may then be beneficial to omit one of the pair to 
decrease that variance, even if this incurs some new bias in the pre-
dictions [51]. Further, O’Brien shows that multicollinearity is not a 
sufficient reason to eliminate variables from a model. A more important 
criterion to consider when contemplating dropping a variable from 
model is ‘model influence’ [52]. Although, we studied the correlation 
and clustering of the features, this information was not used to intervene 
in the ML model since the latter selects the features automatically. 
Instead, we used the cluster information to explain the relation of the 
features selected by ML and the localization of these parameter across 
the different clusters. 

One of the strengths of our study is that it provides a comprehensive 
overview of the relative performance of different ML algorithms for BAV 
aortopathy classification. These results can be used to guide researchers 
in the selection of an appropriate ML algorithm for their studies. Hence, 
non-linear interactions can be associated with the selected features that 
better identify HV and BAV patients. 

4.1. Limitations 

Considering the small number of subject data, we did not explore the 
use of advanced deep learning algorithms. Instead, we used classical ML 

Fig. 6. (a) Correlation matrix obtained by the linear regression, (b) dendrogram and hierarchical clustering result based on average linkage method, for all he-
modynamic parameters of HV and BAV patients, in AAo and AArch regions. 
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algorithms such as random forest and SVM. However, with both 
methods, we achieved a high classification accuracy. Deep networks 
require extremely large datasets to achieve high performance. In future 
studies, we will include more data in our dataset to perform advanced 
deep learning methods and compared them with classical ML algorithms 
results. Another limitation of the current study is the small number of 
NON-DIL BAV types, which unbalanced the analyzed classes. However, 
the cross-validation assessment aimed to reduce the effect of this issue in 
the classification output. 

Additionally, from the acquisition point of view, the movement of 
the aorta along the cardiac cycle was not considered in this study since 
technical limitations in 4D-flow CMR acquisitions, as poor contrast and 
low signal-to-noise ratio, make it challenging to obtain a time-resolved 
segmentation of the aorta. 

Further, in this study, we averaged parameters along the circum-
ference of each region, which can induce a sub-estimation of local 
values. Nevertheless, assessing the local impact of all hemodynamic 
parameters for classification would require more patients from a sta-
tistical point of view, as there would be more parameters than subjects. 

Finally, another limitation is the absence of longitudinal data. Per-
forming a similar study would elucidate if the parameters that best 
classify BAV patients with and without aortic dilation would also be the 
best predictor for aortic dilation in those patients. A paper with longi-
tudinal outcomes was recently published; however, only WSS was 
assessed as a predictor for dilation in that study [15]. 

5. Conclusions 

The main contributions of the paper are twofold. On the one hand, 
we analyzed and extracted multiple correlation patterns of hemody-
namic parameters, finding which parameters showed high collinearity 
between them, which allows us to diminish their size to a few variables. 
Also, we defined five hemodynamic features that best classify HV and 
BAV with and without aortic dilation using SFS: velocity angle, forward 
velocity, vorticity, and backward velocity in AAo, and helicity density in 
AArch. The best-performing methods were with features selected by SFS 
in LDA and random forest classifiers with 96.31 ± 1.76% and 96.00 ±
0.83%, respectively. Moreover, we found five features by SFS: velocity 
angle, eccentricity, backward velocity, and oscillatory shear index in 
AAo, and regurgitation fraction in AArch, that best classified BAV pa-
tients’ groups (NON-DIL BAV and DIL BAV classes) using LDA classifier 
with 96.18 ± 2.34% accuracy. 
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Summary 

Background: Recent advances in medical imaging have demon-
strated the existence of altered hemodynamics in bicuspid aortic valve 
(BAV) patients. Therefore, there is a need for new hemodynamic bio-
markers to refine disease monitoring and improve patient risk 
stratification. 

Objective: This research aims to analyze and extract multiple cor-
relation patterns of hemodynamic parameters from 4D Flow MRI data 
and find which parameters allow an accurate classification between 
healthy volunteers (HV) and BAV patients with dilated and non-dilated 
ascending aorta using machine learning. 

Methods: 4D flow MRI data of 48 healthy volunteers (HV) and 67 
BAV (73% with AAo dilation) patients were acquired in a 1.5T GE-MR 
Signa Scanner and using the VIPR technique. We obtained the velocity 
gradient from 4D flow data using a finite-element least-squares projec-
tion. Sixteen hemodynamic parameters (e.g., velocity, wall shear stress, 
vorticity) were calculated in the ascending aorta (AAo) and aortic arch 
(AArch) at peak systole. Then, a machine learning model was designed 
to select hemodynamic parameters that adequately separate HV and 
BAV patients (non- and dilated ascending aorta). A sequential forward 
selection (SFS) and principal component analysis (PCA) were used to 
reduce the dimensionality of the data as input for the classifiers. We used 
the following classifiers: minimum distance, linear discriminant analysis 
(LDA), k-nearest neighbors (KNN) with 5, 7, 9 neighbors, quadratic 
discriminant analysis, Mahalanobis distance, support vector machine in 
both its linear and radial basis function kernel, neural network, and 
random forest. The performance of the classifiers was evaluated using 
cross-validation with ten folds and repeated ten times for each classifi-
cation. Additionally, the Pearson correlation method was used to 
calculate the correlation matrix between all the hemodynamic param-
eters. Hierarchical clustering was then applied to classify its rows/col-
umns into different groups. 

Results: The LDA and random forest are the best performing clas-
sifiers, using five hemodynamic parameters selected with SFS (velocity 
angle, forward velocity, vorticity, and backward velocity in AAo; and 
helicity density in AArch) a 96.31 ± 1.76% and 96.00 ± 0.83% accu-
racy, respectively. Hierarchical clustering revealed three groups of 
correlated features. On the other hand, hierarchical clustering revealed 
three groups of correlated features. According to this analysis, we 
observed that features selected by SFS have a better performance than 
those selected by PCA because the five selected parameters were 
distributed according to 3 different clusters: cluster 1: velocity angle and 
backward velocity in AAo, cluster 2: vorticity in AAo, and cluster 3: 
forward velocity and helicity density in AAo and AArch, respectively. 

Conclusions: We present an algorithm based on machine learning 
that characterizes HV from BAV patients with and without aortic dila-
tion using hemodynamic parameters from 4D-flow MRI. Based on the 
proposed method’s performance, it can be concluded that the feature 
selection method found five potentially hemodynamic biomarkers 
related to this disease. 
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