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Abstract—Long-term changes in synaptic transmission between neurons in the brain are considered the cellular
basis of learning and memory. Over the last few decades, many studies have revealed that the precise order and
timing of activity between pre- and post-synaptic cells (‘‘spike-timing-dependent plasticity; STDP”) is crucial for
the sign and magnitude of long-term changes at many central synapses. Acetylcholine (ACh) via the recruitment
of diverse muscarinic receptors is known to influence STDP in a variety of ways, enabling flexibility and adaptabil-
ity in brain network activity during complex behaviors. In this review, we will summarize and discuss different
mechanistic aspects of muscarinic modulation of timing-dependent plasticity at both excitatory and inhibitory
synapses in the hippocampus to shape learning and memory.
This article is part of a Special Issue entitled: SI: Synaptic plasticity. � 2020 IBRO. Published by Elsevier Ltd. All rights

reserved.
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INTRODUCTION

Changes in synaptic strength such as long-term

potentiation or depression (LTP or LTD, respectively)

are thought to be the cellular substrate of the initial

stage of learning and memory (Dan and Poo, 2004;

Malenka and Bear, 2004; Poolos and Jones, 2004). Cel-

lular mechanisms for plasticity have been proposed to

involve functional modification of existing synapses and

neurons, as well as physical rewiring of circuits due to

synapse formation, elimination and morphological

changes, increasing the range of ways by which neurons

can modify their synaptic connections (Feldman, 2012).

At the functional level, synaptic efficacy is dependent on

many factors, including the presynaptic transmitter

release machinery, postsynaptic receptors and signal

transduction pathways, gene activation and synthesis of

new proteins (Malenka and Bear, 2004; Nicoll, 2017).

Experimental data and computational models indicate

that the precise timing and the temporal order of pre-

and postsynaptic action potentials can drive changes in

synaptic strength, collectively called spike-timing-

dependent plasticity (STDP) (Dan and Poo, 2006;

Buchanan and Mellor, 2010; Feldman, 2012). This form
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of synaptic plasticity is an attractive mechanistic explana-

tion of behavioral learning due to its associative nature. In

addition, STDP is sensitive to the actions of numerous

neuromodulatory transmitters that signal in the brain dur-

ing behavior (Sjöström et al., 2003; Seol et al., 2007; He

et al., 2015; Cui et al., 2018; Brzosko et al., 2019). Among

the different neuromodulatory transmitters, acetylcholine

(ACh) is a well-known regulator of cognitive function

(Buño and Velluti, 1977; Givens and Olton, 1990;

Fuenzalida et al., 2016; Haam and Yakel, 2017), presum-

ably by influencing the function of neurons, including

depolarization of the membrane potential (Cole and

Nicoll, 1984), modulation of neurotransmitter release (de

Sevilla et al., 2002; Drever et al., 2011; Ahumada et al.,

2013) and long-term synaptic plasticity (Shinoe et al.,

2005; Mitsushima et al., 2013; Morales-Weil et al.,

2020). Growing evidence suggests that ACh also shapes

timing-dependent synaptic plasticity in the hippocampus

to regulate complex behaviors such as learning and mem-

ory (Pitler and Alger, 1992; Behrends and ten

Bruggencate, 1993; Brzosko et al., 2019). These actions

of ACh appear to be mainly mediated by muscarinic

receptors (Segal and Auerbach, 1997; Seeger, 2004;

Drever et al., 2011; Fernández de Sevilla et al., 2020).

In the present review, given the importance of the hip-

pocampus in learning and memory, we discuss works that

demonstrate the important role of muscarinic ACh recep-

tors in the control of hippocampal STDP.
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SPIKE-TIMING DEPENDENT PLASTICITY

In accordance with the associative nature of synaptic

plasticity, Hebb proposed that ‘‘when an axon of cell A
is near enough to excite cell B or repeatedly or

persistently takes part in firing it, some growth process
or metabolic change takes place in one or both cells
such that A’s efficiency, as one of the cells firing B, is

increased” (Hebb, 1949). Over the last few decades,

experimental evidence has shown that the temporal coin-

cidence between the firing of presynaptic action potential

and a strong depolarization of the postsynaptic neuron is

important for the induction of plasticity at excitatory and

inhibitory synapses throughout the brain (Magee and

Johnston, 1997; Markram et al., 1997; Bi and Poo,

1998; Debanne et al., 1998). Given its temporal charac-

teristics, this form of associative synaptic plasticity has

been called STDP (Abbott and Nelson, 2000; Song

et al., 2000; Dan and Poo, 2004, 2006). At many

synapses, the canonical STDP is bidirectional and Heb-

bian in origin, where pre-before-post (pre-post) pairing

induces synaptic strengthening known as timing-

dependent long-term potentiation (t-LTP), whereas post-

before-pre (post-pre) pairing leads to timing-dependent

long-term depression (t-LTD). Most forms of STDP are

restricted by precise temporal windows (10 to 100 ms

time scale) and the temporal rules of STDP vary with

brain region, cell, and synapse type (Markram et al.,

1997; Bi and Poo, 1998; Fuenzalida et al., 2007; Larsen

et al., 2010). Anti-Hebbian forms of STDP where pre-

post and post-pre pairing leads to t-LTD and t-LTP,

respectively, have also been reported (Wittenberg and

Wang, 2006; Lamsa et al., 2007). The multiplicity of timing

rules across different neuronal circuits in the brain

enables flexibility and synapse-specificity in learning and

memory.

Since its discovery, STDP has attracted much interest

in experimental and computational neuroscience. It is a

favored mechanism for experience- and activity-

dependent changes in neural circuits (Abbott and

Nelson, 2000; Dan and Poo, 2006; Feldman, 2012;

Froemke, 2015) and is observed in diverse neuronal

types and in numerous brain regions. In addition to exci-

tatory synapses onto principal neurons, STDP has also

been demonstrated at excitatory synapses onto interneu-

rons and at inhibitory synapses onto principal neurons

(Tzounopoulos et al., 2004, 2007; Ormond and Woodin,

2009; Ahumada et al., 2013; Huang et al., 2013;

Takkala and Woodin, 2013). Moreover, its physiological

relevance has been assessed using in vivo recordings

in the hippocampus (Fung et al., 2016) as well as at

retinotectal (Zhang et al., 1998; Mu and Poo, 2006),

somatosensory (Jacob et al., 2007) and corticospinal

synapses (Nishimura et al., 2013). Importantly, studies

using intact animals provide a direct link between STDP

at the synaptic level and altered sensory representations

induced in vivo through precisely timed sensory stimuli

(Yao and Dan, 2001; Froemke and Dan, 2002; Fu et al.,

2002).

Biochemically, t-LTP results when NMDA receptor

activation optimally coincides with backpropagation of

action potentials (BAPs) to trigger fast and strong
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intracellular calcium rise in the dendrites of the

postsynaptic neuron, whereas t-LTD relies on more

moderate calcium changes (Magee and Johnston, 1997;

Karmarkar et al., 2002; Sjöström and Nelson, 2002;

Rubin et al., 2005) or is triggered when activation of

voltage-gated calcium channels precedes that of postsy-

naptic metabotropic glutamate receptors (mGluRs) to

engage retrograde endocannabinoid signaling (Bender

et al., 2006; Nevian and Sakmann, 2006). Thus, BAP tim-

ing and dendritic excitability play active roles in associa-

tive synaptic modifications (Stuart and Sakmann, 1994;

Stuart and Spruston, 1998; Paulsen and Sejnowski,

2000) by titrating intracellular calcium. By altering the

underlying calcium dynamics, numerous neuromodula-

tory systems, including cholinergic circuits, are known to

modify the induction threshold and the temporal require-

ments for STDP (Pawlak et al., 2010; Ahumada et al.,

2013; Huang et al., 2013; Brzosko et al., 2019). Below,

we discuss how ACh influences both pre- and postsynap-

tic elements via disparate muscarinic receptors to regu-

late STDP in the hippocampus.

Muscarinic modulation of STDP at excitatory
synapses

Cholinergic projections to the hippocampus arise mainly

from the medial septum and the diagonal band of Broca

complex (Hasselmo, 1999) to activate both muscarinic

(mAChRs) and nicotinic (nAChRs) receptors in pyramidal

neurons and GABAergic interneurons (Cea del Rio et al.,

2010). mAChRs are metabotropic and transduce their sig-

naling through activation of heterotrimeric G proteins, link-

ing ACh activity to a variety of intracellular biochemical

signaling cascades (Thiele, 2013). There are five mAChR

encoding genes that can be split into two main subgroups:

M1, M3 and M5 receptors are all coupled to Gq/11-proteins

and activate phospholipase C, thereby increasing intra-

cellular calcium via IP3 signaling. M2 and M4 receptors

are negatively coupled to adenylate cyclase via Gi/o- pro-

teins (Fig. 1; Wess, 2003), resulting in inhibition of cAMP

production and protein kinase A signaling. nAChRs are

ionotropic and act by permeating non-selective cations

in response to ACh binding to directly depolarize neurons

(Dani and Bertrand, 2007). Both mAChRs and nAChRs

have been shown to influence synaptic function, with

nAChR effects being faster and shorter-lived than

mAChRs (Picciotto et al., 2012; Ballinger et al., 2016).

Because of the large amount of in vivo and in vitro exper-

imental data demonstrating a key role of ACh and

mAChRs in the induction and expression of activity-

dependent synaptic plasticity (Segal and Auerbach,

1997; Fuenzalida et al., 2016; Palacios-Filardo and

Mellor, 2019; Fernández de Sevilla et al., 2020), we will

focus on muscarinic signaling on STDP in this review.

For detailed discussions on muscarinic regulation of con-

ventional synaptic plasticity and network dynamics, we

refer readers to other excellent reviews (Picciotto et al.,

2012; Dannenberg et al., 2017; Fernández de Sevilla

et al., 2020).

Activation of mAChRs can either facilitate (Huerta and

Lisman, 1995; Shimoshige et al., 1997; Shinoe et al.,

2005) or directly induce LTP in the hippocampus
lasticity in the Hippocampus. Neuroscience (2020), https://doi.org/10.1016/j.neuroscience.2020.08.015
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Fig. 1. Subclassification of muscarinic receptor based in G-protein

and downstream signaling (modified from Santiago and Abrol, 2019).
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(de Sevilla et al., 2008; de Sevilla and Buño, 2010; Dennis

et al., 2016). In particular, activation of M1 receptors

(M1Rs) are known to trigger an IP3-dependent release

of calcium from the endoplasmic reticulum to regulate

the induction of conventional frequency-dependent LTP

in CA1 pyramidal neurons (de Sevilla et al., 2008; de

Sevilla and Buño, 2010; Dennis et al., 2016). Similar mod-

ulation of LTP has been reported in the dentate gyrus,

where M1Rs regulate the excitability of granule cells by

a direct modulation of M-type potassium (K+) and canon-

ical transient receptor potential (TRPC) channels (Carver

and Shapiro, 2019). By influencing both excitatory and

inhibitory synaptic function and plasticity (de Sevilla and

Buno, 2010; Ahumada et al., 2013; Dennis et al., 2016;

Fuenzalida et al., 2016), ACh plays an important role in

the processing of information needed to regulate several

cognitive tasks such as exploration, REM sleep and learn-

ing and memory (Dennis et al., 2016; Dannenberg et al.,

2017; Niwa et al., 2018). Moreover, cholinergic transmis-

sion in vivo has been shown to control the timing and

coordination of brain oscillations in the hippocampus

(Buzsáki, 2002; Somogyi and Klausberger, 2005). For

instance, cholinergic stimulation at the depolarizing peak

of the theta cycle is known to facilitate LTP (Huerta and

Lisman, 1995). A similar relationship was found for oscil-

lation in the beta-gamma band in the cerebral cortex

(Wespatat et al., 2004). Taken together, these findings

suggest that brain oscillations provide a region-specific

temporal structure of pre- and postsynaptic activity that

allows ACh to determine the strengthening or weakening

of synaptic contacts.

The role of ACh and specific mAChR subtypes in

regulating t-LTP and t-LTD has been less explored.

Cholinergic control of timing and coordination of STDP at

the synaptic level has been described (Blokland, 1995;

Benchenane et al., 2010; Zhao and Tzounopoulos, 2011;

Teles-Grilo Ruivo and Mellor, 2013). mAChR activation

can induce small changes in the latency of firing of
Please cite this article in press as: Fuenzalida M et al. Muscarinic Regulation of Spike Timing Dependent Synaptic
pre- and postsynaptic neurons, altering their relative timing

to make the difference between t-LTP or t-LTD induction.

At the cellular level, ACh through activation of cholinergic

receptors can boost BAPs or reduce spike attenuation dur-

ing high-frequency bursting (Hoffman and Johnston, 1998;

Johnston et al., 1999). By enhancing presynaptic depolar-

ization and BAPs, ACh can profoundly facilitate the induc-

tion of STDP and broaden the coincidence window for

synaptic modification. Moreover, the temporal window for

t-LTP can be narrowed by a reduction of the amplitude

and decay time constant of the glutamate-evoked excita-

tory postsynaptic potential (EPSP). This can be seen dur-

ing slow afterhyperpolarization (sAHP), when membrane

conductance are increased due to the activation of

calcium-dependent potassium channels (Fuenzalida

et al., 2007). Activation of mAChRs can decrease mem-

brane conductance (Benardo and Prince, 1982; Dasari

and Gulledge, 2010; Dasari et al., 2017), consequently

reducing sAHP and increasing the amplitude and decay

of EPSPs to ultimately facilitate the induction of t-LTP. In

addition, mAChR activation promotes action potential

backpropagation in CA1 pyramidal dendrites (Tsubokawa

and Ross, 1997) and enhances IP3-mediated calcium

release provoked by BAPs (Nakamura et al., 2000), which

can also lower the threshold of t-LTP induction. Moreover,

a STDP protocol applied during a slowmuscarinic-induced

EPSP enhances t-LTP and prevents t-LTD (Sugisaki et al.,

2011). This form of t-LTP is abolished by mAChR antago-

nists and by prolonged application of theACh receptor ago-

nist carbachol, likely due to desensitization of postsynaptic

mAChRs (Adams et al., 2004).

Muscarinic activation can also suppress t-LTP and

favor t-LTD. In CA1 pyramidal dendrites, activation of

mAChRs activates an inwardly rectifying potassium

conductance, thereby reducing EPSPs and presumably

the amount of synaptically evoked intracellular calcium

increase (Seeger and Alzheimer, 2001). In addition, bath

applied ACh converts a normally Hebbian pre-post pairing

protocol into an anti-Hebbian one (Brzosko et al., 2019,

2017). The ability of ACh to turn t-LTP into t-LTD is

blocked by mAChR antagonist atropine (Brzosko et al.,

2017), suggesting that ACh might facilitate t-LTD by

broadening the timing window into the pre-post regime.

Given the diverse signaling pathways of different

mAChRs, whether muscarinic activation promotes or sup-

presses synaptic strengthening most likely depends on

the receptor subtype recruited and the synapse in

question.

The role of specific muscarinic receptors in STDP

remains to be clarified. In the stratum radiatum,

mAChRs, particularly M1Rs, can augment NMDA

receptor-mediated responses (Markram and Segal,

1990; Marino et al., 1998; Zwart et al., 2018). Moreover,

activation of M1Rs and M3Rs induces rhythmic bursting

of action potentials by regulating potassium channels,

such as the small conductance calcium activated potas-

sium channels (SK channels (Robert et al., 2020). Since

NMDA-dependent dendritic spikes are suppressed by

these potassium channels (Bock and Stuart, 2016), their

inhibition by M1Rs (Giessel and Sabatini, 2010; Tigaret

et al., 2018) can also boost NMDAR signaling in dendritic
Plasticity in the Hippocampus. Neuroscience (2020), https://doi.org/10.1016/j.neuroscience.2020.08.015
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spines. Interestingly, the induction of t-LTP at distal den-

drites requires dendritic spikes (Kampa et al., 2007;

Buchanan and Mellor, 2010, 2007; Brandalise et al.,

2016) that may arise from NMDAR-dependent temporal

summation of EPSPs (Wang et al., 2003; Makara and

Magee, 2013). Thus, M1R-mediated disinhibition of

NMDA receptors would potentiate synaptic potentials

and calcium influx in dendrites spine for the induction of

t-LTP in hippocampal pyramidal neurons. Indeed, M1R

activation has been recently shown to be required for t-

LTP induced by place-cell firing patterns during explo-

ration (Tigaret et al., 2018).

The precise role of other muscarinic receptors in the

induction and expression of STDP (t-LTP or tLTD) at

excitatory synapses within the hippocampus remains to

be elucidated. However, their effects on conventional

frequency-dependent synaptic plasticity may provide

some insights. M2Rs can promote excitatory LTP at the

associational/commissural fiber-CA3 synapses, while

reduce the magnitude of LTP at mossy fiber-CA3

synapses (Zheng et al., 2012), indicating that synapse-

specific rules within the CA3 area of the hippocampus exist

for the modulation of mAChR. At Schaffer collateral-CA1

synapses, activation of M2Rs is involved in the enhance-

ment of LTP (Shimoshige et al., 1997). It is thought that

activation of presynaptic M2 autoreceptors may restrict

cholinergic release and thus differentially engage high

affinity receptors like postsynaptic M2Rs and M4Rs (Bujo

et al., 1988; Bräuner-Osborne et al., 1996). However, it

remains unclear how M2R- and M4R-mediated signaling

would lead to LTP. Antagonism of M2/4Rs in vivo, presum-

ably acting to augment ACh release, can induce LTP in

CA1 that requires activation of M1/3Rs (Li et al., 2007).

Interestingly, activation of presynapticM3Rs has also been

reported to reduce excitatory synaptic transmission (deVin

et al., 2015), complicating the dissection of specific roles of

distinct muscarinic receptors.

While excitatory synapses onto principal cells express

classical Hebbian forms of t-LTP that are NMDAR-

dependent (Caporale and Dan, 2008; Fuenzalida et al.,

2010; Feldman, 2012), excitatory t-LTP in hippocampal

GABAergic interneurons are NMDAR-independent and

requires the activation of calcium permeable AMPARs

(CP-AMPARs) in CA1 stratum oriens (Lamsa et al.,

2007) and parvalbumin-positive (PV+) interneurons (Le

Roux et al., 2013). This anti-hebbian form of t-LTP in

interneurons is induced postsynaptically and can be

expressed presynaptically by an increase in glutamate

release probability or postsynaptically, by an increase in

postsynaptic receptor number or unitary conductance

(Le Roux et al., 2013). Because GABAergic inhibition

can gate long-term plasticity at glutamatergic synapses,

changes in excitatory drive onto hippocampal interneu-

rons have been suggested to have an essential role in

stabilizing network excitability and preserving the fidelity

of spatio-temporal processing in the brain (Nicholson

and Kullmann, 2014).

Muscarinic modulation of STDP of inhibition

Through feedforward or feedback inhibition, GABAergic

circuits can control the input–output function of
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pyramidal neurons by adjusting the precise spike timing

required to induce STDP (Pouille and Scanziani, 2001;

Maccaferri, 2005). CA1 inhibitory interneurons also

receive cholinergic innervation from the medial septum-

diagonal band of Broca (Dutar et al., 1995) that activates

both mAChRs and nAChRs to modulate interneuron activ-

ity (Behrends and ten Bruggencate, 1993; Cea del Rio

et al., 2011; Yi et al., 2014). Pharmacological activation

of M1Rs reportedly increases the excitability of PV+

interneurons and enhances perisomatic inhibition onto

pyramidal cells (Yi et al., 2014), whereas activation of

M1Rs in OLM interneurons increases dendritic inhibition

onto CA1 and entorhinal cortical neurons (Haam et al.,

2018). Recent evidence using optogenetic activation of

cholinergic projections reveal an M3R-mediated increase

in inhibitory interneuron excitability that decreases CA3-

CA1 glutamatergic transmission (Goswamee and

McQuiston, 2019). Although the identity of the interneu-

rons was not determined, the requirement for metabotro-

pic GABAB receptors and inwardly rectifying potassium

channels on CA1 pyramidal cells suggests the involve-

ment of GABAergic cells that primarily mediate slow inhi-

bition (Szabadics et al., 2007; Fuentealba et al., 2008;

Price et al., 2008).

mAChR activation can also directly act at

hippocampal GABAergic synapses, exhibiting

heterogeneous effects depending on mAChR subtype,

presynaptic interneuron identity, hippocampal subregion

and age (Dannenberg et al., 2017). Muscarinic receptors

were initially shown to depress GABA release in CA1

(Pitler and Alger, 1992; Behrends and ten Bruggencate,

1993), but recent evidence dissecting mAChR subtypes

demonstrate a facilitating effect of presynaptic M2/4Rs

and M3/5Rs in GABA release via IP3 signaling

(Gonzalez et al., 2014). In the CA3 subfield, activation

of M2Rs reportedly reduces the amplitude of inhibitory

currents from fast-spiking basket and axo-axonic cells

(Szabó et al., 2010), although whether M2Rs were presy-

naptically located was not examined. Moreover, mus-

carinic signaling can have complex circuit-wide

influences to powerfully regulate local network activity.

Activation of mAChRs indirectly induces depolarization

of a specific type of GABAergic interneurons that express

vasoactive intestinal peptide (VIP) and specifically inhibit

other interneurons by increasing the inhibitory tone onto

PV+ interneurons, thereby disinhibiting principal cells

that target VIP+ cells (Bell et al., 2015). When combined

with repetitive depolarization, M1Rs induce strong LTP of

GABAergic synaptic inputs onto CA1 pyramidal cells

(Domı́nguez et al., 2014). Like M1Rs, evidence also indi-

cates that M3Rs are expressed in hippocampal basket

cell interneurons (Cea del Rio et al., 2010) whose activa-

tion can regulate the GABAergic efficacy (Lawrence et al.,

2006).

Like excitatory synapses, plasticity at inhibitory

synapses in the hippocampus can be induced by

repetitively pairing pre- and postsynaptic activity

(Ormond and Woodin, 2009; Kullmann and Lamsa,

2011). Depending on the induction protocol, plasticity

may be expressed presynaptically (Ahumada et al.,

2013) or postsynaptically (Ormond and Woodin, 2011).
lasticity in the Hippocampus. Neuroscience (2020), https://doi.org/10.1016/j.neuroscience.2020.08.015
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Near coincident pre- and postsynaptic activity (±1 ms)

reduces the strength of GABAergic responses by chang-

ing the chloride driving force in hippocampal pyramidal

neurons (Ormond and Woodin, 2009) and its induction

efficacy is sensitive to whether GABAergic postsynaptic

responses are hyperpolarizing or depolarizing (Balena

et al., 2010). Furthermore, this form of STDP at GABAer-

gic synapses can increase the magnitude of glutamater-

gic synaptic transmission and is referred to as

disinhibition-mediated LTP (Ormond and Woodin, 2009;

Takkala and Woodin, 2013). Activation of mAChRs pre-

vents timing-dependent attenuation of GABAergic inhibi-

tion and the consequent disinhibition-mediated LTP

(Takkala and Woodin, 2013). The underlying mechanisms

are unclear but may involve a reduction in GABA release

via presynaptic M2-type mAChRs. Interestingly, M2-type

mAChRs on GABAergic terminals are critical in another

form of inhibitory STDP. In this case, Hebbian pre-post

pairing of activity triggers t-LTD at GABAergic synapses

in rat CA1, that is accompanied by a decrease in GABA

release (Ahumada et al., 2013). This t-LTD of inhibition

requires type 1 cannabinoid receptors (CB1Rs) and M2-

type mAChRs that synergistically regulate presynaptic

cAMP/PKA signaling, providing a novel mechanism by

which cholinergic activity regulates GABAergic synaptic

plasticity.

Coordinated interplay between mAChRs and other G

protein-coupled receptors may be a common theme in

neuromodulation of synaptic plasticity. We recently

demonstrated that activation of mAChRs primes

mGluR-dependent inhibitory LTP at CA1 GABAergic

synapses (Morales-Weil et al., 2020). The cooperative

action of mAChRs and mGluRs in the induction of inhibi-

tory LTP is dependent on consecutive activation of

M1Rs and mGluR1/5, which may be related to the gen-

eration and synchronization of brain oscillation patterns

in different behavioral states. Similar synergism of

mGluRs and M1Rs in the induction of LTP at excitatory

synapses onto stratum oriens interneurons has also

been demonstrated (Duigou et al., 2015). mAChRs and

mGluRs can also cooperatively participate in a long-

term enhancement of burst firing in the subiculum

(Moore et al., 2009), which may have subsequent effects

on spike-timing dependent plasticity. In the neonatal hip-

pocampus, repetitive pre and postsynaptic depolarization

transiently depresses GABA release that was dependent

on both mGluR and mAChR activation (Taketo and

Matsuda, 2017). Other neuromodulatory systems can

also interact with cholinergic signaling to regulate

timing-dependent synaptic plasticity. For example, acti-

vation of dopamine (DA) receptors, via cAMP pathways,

can convert mAChR-dependent t-LTD (Brzosko et al.,

2019, 2017), as well as conventional LTD (Brzosko

et al., 2015), into potentiation. Thus, ACh and DA may

act in opposing manners to regulate the directionality

of activity-dependent synaptic plasticity, which may opti-

mize reinforcement learning in dynamic environments,

by reducing and potentiating synapses linked to negative

and rewarding outcomes, respectively (Zannone et al.,

2018).
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Wired vs volume transmission for cholinergic
signaling

Cholinergic neurons project widely and diffusely

throughout the brain. The anatomical mismatch between

ACh release sites and receptor locations suggests that

ACh signaling occurs via volume transmission rather

than via traditional synapses (Descarries et al., 1997;

Mechawar, 2008). However, the high expression of ACh

esterase points to a highly efficient clearing of ACh from

the synaptic cleft (Zimmerman and Soreq, 2006). For

instance, inhibition of ACh esterase has been a key

manipulation for uncovering cholinergic influences in

brain function and synaptic plasticity. Moreover, ACh

has also been shown to act on a rapid timescale in behav-

ioral tasks that require sub second reactivity (Parikh et al.,

2007; Letzkus et al., 2011).

Notably, ACh release can occur in two modes, tonic

and phasic, to serve different cognitive functions (Sarter

et al., 2009; Teles-Grilo Ruivo and Mellor, 2013). While

slowly changing tonic levels of ACh is associated with

arousal and brain state transitions, rapid phasic ACh

release mediates precisely defined cognitive operations

such as signaling reinforcement to guide behavioral learn-

ing (Hangya et al., 2015). At the cellular level, tonic and

phasic modes of cholinergic transmission may differen-

tially engage distinct subsets of ACh receptor subtypes,

each with differing affinities, desensitization characteris-

tics, and cellular localizations. These differences are crit-

ical for the control and specificity of cholinergic actions on

synapses at the local microcircuit level. However, work

examining muscarinic influences on brain plasticity has

mostly relied on pharmacological approaches and medial

septal lesions that disturb normal ACh levels and dynam-

ics. Stimulation of cholinergic afferents in vivo has yielded

both facilitatory and suppressive influences on hippocam-

pal synaptic plasticity (Newlon et al., 1991; Markevich

et al., 1997), highlighting the complexity of cholinergic

actions in the hippocampus. Future work taking advan-

tage of modern developments to selectively monitor and

manipulate neuronal activity and molecular signaling

pathways in vivo will be necessary to clarify how mus-

carinic activity modulates diverse forms of synaptic plas-

ticity to guide adaptive behavior.
FUTURE DIRECTIONS

Over the past decade, STDP has been increasingly

demonstrated at both excitatory and inhibitory synapses

within the hippocampal formation. Essential properties

of STDP point out to synapse-specificity learning rules

to coordinate pre- and postsynaptic activity to induce

persistent changes in synaptic connections across

different synapses types (i.e. EXCITATORY vs Inhibitory

synapses). In this review, we have highlighted a

diversity of mechanisms by which the cholinergic

system particularly mAChR can affect the induction and/

or expression of long-term changes at both excitatory

and inhibitory synapses (Fig. 2). The emerging evidence

of cooperative and dynamic interaction between ACh
Plasticity in the Hippocampus. Neuroscience (2020), https://doi.org/10.1016/j.neuroscience.2020.08.015
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Fig. 2. Schematic representation illustrating the localization and function of mAChRs in the induction of hippocampal short- and long-term plasticity

at glutamatergic (left) and GABAergic (right) synapses. mAChRs are expressed in both the pre- and postsynaptic sites and are grouped into M1/M3/

M5 or M2/M4 subtypes. At GABAergic synapses, activation of cholinergic neurons and retrograde signaling mediated by endocannabinoids act

cooperatively to regulate activity-dependent synaptic plasticity.
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and other neuromodulatory system to regulate the

directionality of the activity-dependent synaptic plasticity

suggests complex and intricate neuromodulatory

mechanisms of synapse regulation. Whether the

plasticity rules and neuromodulatory interaction

described in vitro apply to activity-dependent synaptic

modification in vivo requires future investigation.

Similarly, how these forms of activity-dependent

synaptic plasticity and its modulation by cholinergic

system are modified during development and/or

pathological conditions need to be determined. We are

only beginning to unravel the essential cellular and

physiological mechanisms by which the cholinergic

system confers an immense computational capability to

the hippocampal network in complex cognitive

processing such as learning and memory.
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Debanne D, Gähwiler BH, Thompson SM (1998) Long-term synaptic

plasticity between pairs of individual CA3 pyramidal cells in rat

hippocampal slice cultures. J Physiol 507:237–247. https://doi.

org/10.1111/j.1469-7793.1998.237bu.x.

Dennis SH, Pasqui F, Colvin EM, Sanger H, Mogg AJ, Felder CC,

Broad LM, Fitzjohn SM, Isaac JTR, Mellor JR (2016) Activation of

Muscarinic M1 acetylcholine receptors induces long-term

potentiation in the hippocampus. Cereb Cortex N Y NY

26:414–426. https://doi.org/10.1093/cercor/bhv227.

Descarries L, Gisiger V, Steriade M (1997) Diffuse transmission by

acetylcholine in the CNS. Prog Neurobiol 53:603–625. https://doi.

org/10.1016/S0301-0082(97)00050-6.

Domı́nguez S, Fernández de Sevilla D, Buño W (2014) Postsynaptic

activity reverses the sign of the acetylcholine-induced long-term

plasticity of GABAA inhibition. Proc Natl Acad Sci U S A 111:

E2741–E2750. https://doi.org/10.1073/pnas.1321777111.

Drever BD, Riedel G, Platt B (2011) The cholinergic system and

hippocampal plasticity. Behav Brain Res 221:505–514. https://doi.

org/10.1016/j.bbr.2010.11.037.

Duigou CL, Savary E, Kullmann DM, Miles R (2015) Induction of anti-

Hebbian LTP in CA1 stratum oriens interneurons: interactions

between group I metabotropic glutamate receptors and M1

Muscarinic Receptors. J Neurosci 35:13542–13554. https://doi.

org/10.1523/JNEUROSCI.0956-15.2015.

Dutar P, Bassant MH, Senut MC, Lamour Y (1995) The

septohippocampal pathway: structure and function of a central
Plasticity in the Hippocampus. Neuroscience (2020), https://doi.org/10.1016/j.neuroscience.2020.08.015

https://doi.org/10.1016/j.neuron.2010.05.013
https://doi.org/10.1016/j.neuron.2010.05.013
https://doi.org/10.1523/JNEUROSCI.0176-06.2006
https://doi.org/10.1523/JNEUROSCI.0176-06.2006
http://refhub.elsevier.com/S0306-4522(20)30524-8/h0055
http://refhub.elsevier.com/S0306-4522(20)30524-8/h0055
http://refhub.elsevier.com/S0306-4522(20)30524-8/h0055
https://doi.org/10.1016/0165-0173(95)00016-X
https://doi.org/10.1016/0165-0173(95)00016-X
https://doi.org/10.1152/jn.01047.2015
https://doi.org/10.1152/jn.01047.2015
https://doi.org/10.1038/ncomms13480
https://doi.org/10.1016/0014-2999(96)00501-8
https://doi.org/10.1016/0014-2999(96)00501-8
https://doi.org/10.1016/j.neuron.2019.05.041
https://doi.org/10.7554/eLife.09685
https://doi.org/10.7554/eLife.09685
https://doi.org/10.7554/eLife.27756
https://doi.org/10.3389/fnsyn.2010.00011
https://doi.org/10.1113/jphysiol.2007.142984
https://doi.org/10.1016/0014-5793(88)80346-6
https://doi.org/10.1016/0014-5793(88)80346-6
https://doi.org/10.1016/0031-9384(77)90035-X
https://doi.org/10.1016/S0896-6273(02)00586-X
https://doi.org/10.1146/annurev.neuro.31.060407.125639
https://doi.org/10.1146/annurev.neuro.31.060407.125639
https://doi.org/10.1523/JNEUROSCI.1781-18.2018
https://doi.org/10.1523/JNEUROSCI.1781-18.2018
https://doi.org/10.1113/jphysiol.2010.199422
https://doi.org/10.1113/jphysiol.2010.199422
https://doi.org/10.1523/JNEUROSCI.5040-09.2010
https://doi.org/10.1523/JNEUROSCI.5040-09.2010
https://doi.org/10.1016/0006-8993(84)90434-7
https://doi.org/10.3389/fncel.2018.00182
https://doi.org/10.3389/fncel.2018.00182
https://doi.org/10.1016/j.neuron.2004.09.007
https://doi.org/10.1016/j.neuron.2004.09.007
https://doi.org/10.1152/physrev.00030.2005
https://doi.org/10.1152/physrev.00030.2005
https://doi.org/10.3389/fncir.2017.00102
https://doi.org/10.3389/fncir.2017.00102
https://doi.org/10.1152/jn.00686.2010
https://doi.org/10.1113/JP273627
https://doi.org/10.1523/JNEUROSCI.1848-10.2010
https://doi.org/10.1113/jphysiol.2002.029165
https://doi.org/10.1113/jphysiol.2002.029165
https://doi.org/10.1523/JNEUROSCI.2723-07.2008
https://doi.org/10.1523/JNEUROSCI.2723-07.2008
https://doi.org/10.1016/j.brainres.2015.10.031
https://doi.org/10.1111/j.1469-7793.1998.237bu.x
https://doi.org/10.1111/j.1469-7793.1998.237bu.x
https://doi.org/10.1093/cercor/bhv227
https://doi.org/10.1016/S0301-0082(97)00050-6
https://doi.org/10.1016/S0301-0082(97)00050-6
https://doi.org/10.1073/pnas.1321777111
https://doi.org/10.1016/j.bbr.2010.11.037
https://doi.org/10.1016/j.bbr.2010.11.037
https://doi.org/10.1523/JNEUROSCI.0956-15.2015
https://doi.org/10.1523/JNEUROSCI.0956-15.2015
https://doi.org/10.1016/j.neuroscience.2020.08.015


8 M. Fuenzalida et al. / Neuroscience xxx (2020) xxx–xxx
cholinergic system. Physiol Rev 75:393–427. https://doi.org/

10.1152/physrev.1995.75.2.393.

Feldman DE (2012) The spike-timing dependence of plasticity.

Neuron 75:556–571. https://doi.org/10.1016/j.

neuron.2012.08.001.
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