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A B S T R A C T   

We addressed comprehensively the performance of Shortest-Path HARP Refinement (SP-HR), SinMod, and 
DENSEanalysis using 2D slices of synthetic CSPAMM and DENSE images with realistic contrasts obtained from 
3D phantoms. The three motion estimation techniques were interrogated under ideal and no-ideal conditions 
(with MR induced artifacts, noise, and through-plane motion), considering several resolutions and noise levels. 
Under noisy conditions, and for isotropic pixel sizes of 1.5 mm and 3.0 mm in CSPAMM and DENSE images 
respectively, the nRMSE obtained for the circumferential and radial strain components were 10.7 ± 10.8% and 
25.5 ± 14.8% using SP-HR, 11.9 ± 2.5% and 29.3 ± 6.5% using SinMod, and 6.4 ± 2.0% and 18.2 ± 4.6% using 
DENSEanalysis. Overall, the results showed that SP-HR tends to fail for large tissue motions, whereas SinMod and 
DENSEanalysis gave accurate displacement and strain field estimations, being the last which performed the best.   

1. Introduction 

The myocardial strain is a regional biomarker of the cardiac function 
that has been assessed for several cardiovascular diseases [1–3]. One of 
the main advantages of strain measurements over global measurements, 
as ejection fraction or stroke volume, is its significant sensitivity to 
detect early changes in cardiac function [4]. 

Several non-invasive Magnetic Resonance (MR) imaging techniques 
have been used to estimate myocardial strain. Among them, Tagging MR 
imaging has been intensely used for the evaluation of strain [5,6], 
considering the conventional tag analysis (i.e., following the in-
tersections of the tag lines) the current gold-standard MR method for the 
estimation of heart deformation [7]. One of the most used Tagging 
modalities is Complementary Spatial Modulation of Magnetization 
(CSPAMM) [8], which uses two complementary SPAMM acquisitions to 
generate a new image with better relaxation properties. Another tech-
nique for quantifying strain is Displacement Encoding with Stimulated 
Echoes (DENSE) [9], which encodes the displacement of the tissue into 

the phase of the magnetization vector. In the last case, a phase-cycling 
approach (based on the same principle that CSPAMM) can be 
employed to isolate the stimulated echo [10]. DENSE imaging has 
recently been considered the new gold standard for estimating motion 
and strain from MRI [11,12]. 

In CSPAMM and DENSE, the motion of the tissue cannot be directly 
estimated from the image, and other postprocessing methods need to be 
applied. Some well-known methods are Shortest-Path HARP Refinement 
(SP-HR) (an improved version of the Harmonic Phase analysis (HARP) 
[13,14]) and Sine-Wave Modeling (SinMod) [15], which extract har-
monic peaks from the k-space using bandpass filters. In DENSE, the 
motion is estimated by isolating the stimulated echo from k-space 
[16,17], which contains information about the displacement of the 
tissue. 

Several articles have evaluated the behavior of Tagging and DENSE 
imaging techniques under different acquisition parameters [18–22], 
illustrating the importance of an appropriate imaging protocol. Recent 
works have compared different postprocessing methods for Tagging MR 
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images using synthetic images [23–25], giving insights about the dif-
ferences between SinMod and HARP methods. The estimation of motion 
and strain with both Tagging and DENSE images have also been 
compared against feature tracking [26,27], providing a picture of the 
reproducibility and differences in the estimation of radial, circumfer-
ential, and longitudinal strain components from each imaging modality 
[27–29]. Furthermore, the estimation of motion and strain using con-
ventional methods from SPAMM and DENSE images has also been 
studied under controlled conditions on in-silico, in-vitro, and in-vivo 
experiments [30], showing comparable performances in all cases 
except for radial strain, where analysis of DENSE images showed best 
results. However, most of these works suffer from a lack of analytical 
solutions or controlled experiments and have excluded variables such as 
the cardiac motion, pixel sizes, noise level, and tag periods, among other 
relevant parameters. 

Although there is a consensus about the expected performance of 
motion and strain metrics estimated from each imaging modality, the 
ultimate performance depends on the acquisition parameters and the 
postprocessing strategy used. This work aims to analyze the precision 
and accuracy in estimating both motion and strain from images sub-
jected to several noise and resolution levels, compared against simulated 
values, using SP-HR, SinMod, and DENSEanalysis; three different auto-
mated postprocessing tools used on CSPAMM and DENSE images. The 
study firstly uses images from 2D phantoms with only in-plane motion 
and under ideal acquisition conditions. Secondly, under non-ideal con-
ditions, considering a cartesian acquisition (i.e., adding EPI-like arti-
facts, k space cropping, and k space filtering). Finally, the sensitivity 
analysis in estimating the three-dimensional cardiac motion and arti-
facts is performed using 3D data sets (see Fig. 1). To achieve these goals, 
we developed a multi-platform open-source Python [31] library to 
generate numerical phantoms of CSPAMM and DENSE MR images, 
which can be used to simulate different physiological motion conditions. 

It is essential to clarify that this work compares the estimations of 
motion obtained with SP-HR, SinMod, and DENSEanalysis as processing 
tools rather than CSPAMM and DENSE as imaging sequences. 

2. Materials and methods 

2.1. Image generation 

A 3D phantom consisting of millions of isochromats randomly 
distributed in space is generated and limited to the cardiac geometry 
(see Fig. 1). We defined the idealized cardiac geometry as a cylinder 
whose in-plane motion is determined by a set of parameters and ex-
pressions given in [32]. Additionally, we added a third motion compo-
nent in the through-plane (Z) direction to achieve a displacement from 
base to apex up to 20 mm [33], which is given by: 

ΔZ = 20×
(

Z̃ − 1
)
[mm] (1)  

where Z̃ is a normalized coordinate that varies from 0 to 1 from base to 
apex and ΔZ the through-plane displacement. To emulate the clockwise 
and anticlockwise rotation of the LV at the basal and apical levels [33], 
we added a scaling factor which changes the rotation of the isochromats 
depending on its longitudinal position, defined by: 

αϕ = 1+ Z̃
(

ϕapex
en

ϕbase
en

− 1
)

(2) 

where αϕ denotes the scaling, ϕen
apex the imposed end-systolic endo-

cardial rotation at the apex, and ϕen the end-systolic endocardial rota-
tion at the base. In all our simulations ϕen

apex > 0 and ϕen
base < 0. 

To generate the MR images, we assigned a complex magnetization to 
every isochromat, which was transferred to the images using a distance- 

Fig. 1. Representation of the synthetic geometry and 
slices used to generate the images. (a) The geometry 
in the undeformed state was used to place the basal, 
mid, and apical slices. (b) As the geometry moves 
with a clockwise and counterclockwise rotation at the 
base and apical levels, the isochromats moves in and 
through the plane of each slice. (c) The displacement 
field observed in (b) of the isochromats is shown in 
the same slices, showing the amount of in- and 
through-plane motion. (d) To estimate the voxel-wise 
signal, all the isochromats located inside the voxel 
are identified and used to define weights based on 
their distance with respect to the voxel center (red 
sphere). Blue spheres denote the set of isochromats 
inside the voxel. (For interpretation of the references 
to color in this figure legend, the reader is referred to 
the web version of this article.)   
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weighted sum (with respect to the voxel centers). We modified the FOV 
and resolution of images to emulate the k space sampling of the MR 
scanner. Finally, the images with the user’s specifications were obtained 
by filtering, zero-filling, and correcting the oversampling of the gener-
ated k space. 

2.2. CSPAMM magnetization 

CSPAMM images were built by adding two complementary SPAMM 
images [8]. During each SPAMM pre-pulse, a position encoding gradient 
G is placed between two radiofrequency (RF) pulses with tip angles 
(+β,+β) and (+β, − β). In both combinations, the last RF pulse stores the 
magnetization in the longitudinal direction ±Z (depending on its po-
larity) to avoid T2 relaxation. With this into consideration, both com-
plementary SPAMM magnetizations at the time tn are given by [8]: 

MSPAMM(tn) = M0cos2(β)sin(α)exp
(

−
tn

T1

)

+M0sin(α)cosn(α)
(

1 − exp
(

−
tn

T1

))

±

{
M0

2
sin(α)cosn(α)sin2(β)exp

(

−
tn

T1

)

exp( − ikeX)

+
M0

2
sin(α)cosn(α)sin2(β)exp

(

−
tn

T1

)

exp(+ ikeX)
}

(3)  

where M0 represents the magnetization at the thermal equilibrium, i =
̅̅̅̅̅̅̅
− 1

√
the complex unit, α the imaging flip angle, X the material position 

of the tissue, and ke the encoding frequency. The sign of the last term in 
Eq. (3) depends on RF pulses polarity during the preparation step. Thus, 
if two complementary SPAMM images ISPAMM

A and ISPAMM
B are acquired, 

their difference leads to the CSPAMM magnetization expression [8]: 

MCSPAMM(tn) = IA
SPAMM − IB

SPAMM

= M0sin(α)cosn(α)sin2(β)exp
(

−
tn

T1

)

exp( − ikeX(tn) )

+M0sin(α)cosn(α)sin2(β)exp
(

−
tn

T1

)

exp(+ ikeX(tn) )

(4)  

2.3. DENSE magnetization 

The DENSE acquisition sequence encodes the displacement of the 
tissue directly on the phase of the magnetization. The preparation pulse 
is the same as SPAMM, but the acquisition sequence differs due to an 
additional gradient with the same magnitude applied in the preparation 
step, which rephases the static spins. In this sequence, the magnetization 
is also stored in the longitudinal direction to avoid T2 relaxation. Thus, 
the magnetization expression at the time tn for the DENSE technique 
becomes [17]: 

MDENSE(tn) = ±
M0

2
sin(α)cosn(α)exp

(

−
tn

T1

)

exp( − ikeΔx)

±
M0

2
sin(α)cosn(α)exp

(

−
tn

T1

)

exp{ − ike(2X +Δx) }

+M0sin(α)cosn(α)
{

1 − exp
(

−
tn

T1

)}

exp{ − ike(X +Δx) }

(5)  

where Δx represents the displacement of the tissue and ke the encoding 
frequency and the sign of the two first terms depends on the polarity of 
RF pulses during the preparation step. Thus, similarly to CSPAMM, if 
two complementary DENSE images IDENSE

A and IDENSE
B are acquired, their 

difference leads to: 

MCDENSE(tn) = IA
DENSE − IB

DENSE = M0sin(α)cosn(α)exp
(

−
tn

T1

)

exp( − ikeΔx)

+M0 sin(α)cosn(α)exp
(

−
tn

T1

)

exp{ − ike(2X +Δx) } (6) 

The last step is also called phase-cycling [10]. 

2.4. Numerical experiments 

2.4.1. 2D analysis 
We generated a synthetic dataset using SPAMM and DENSE 

magnetization expressions given in Eqs. (3) and (5), where a different 
image was generated for each RF pulse polarity to obtain, after sub-
traction, the CSPAMM and phase-cycled DENSE images. The dataset 
consisted of 100 - 2D slices of a short-axis view of an idealized left- 
ventricle with only in-plane motions with a FOV of 100×100×8 mm3 

and isotropic (in-plane) pixel sizes of 1.0, 1.5, 2.0, 2.5, and 3.0 mm. For 
this experiment only mid-level slices were considered. The number of 
isochromats used in each data was around 22/mm3 (this density de-
pends on LV volume rather than slice volume), which means that smaller 
voxels contained a smaller number of isochromats (a voxel of 1 × 1 × 8 
mm3 that belongs completely to the LV contained 176 isochromats, 
while a voxel of 3 × 3 × 8 mm contained 1584). This number was 
arbitrarily defined and only depends on the computational capacity, the 
signal requirements, and the time available for the generation. 

For the SPAMM images, we used encoding frequencies of 0.79, 0.63, 
0.52, 0.45, and 0.39 rad mm− 1 to achieve tag periods of 8, 10, 12, 14, 
and 16 mm respectively. Here, it must be noticed that the tag period is 
effectively one period of the sinusoid given in Eqs. (3) and (4) and not 
half of the period as usually reported as tag spacing in magnitude image. 
Additionally, to make a fair comparison with DENSE and avoid adding a 
unwanted DC component, we decided to work with complex CSPAMM 
data. A fixed encoding frequency of 0.75 rad mm− 1 was chosen for 
DENSE images to achieve suitable echoes for phase-cycling correction 
and avoid large phase wrapping artifacts. The imaging flip angle for both 
images was chosen as 15◦ (constant through the cardiac phases), and a 
tissue T1 relaxation of 0.85 s was used to emulate the relaxation prop-
erties of the myocardium at 1.5 T [8]. 

We randomly choose the physiological parameters, which controls 
the geometry and motion, according to Gilliam et al. [32], i.e., we 
choose different physiology for each synthetic data. In our case, we used 
a set of parameters defining 50 cases with normal deformation patterns 
(normal cardiac function) and 50 with abnormal patterns (regionally 
reduced function) [32] to interrogate the three methods under different 
levels of motion at end-systole. For the analysis of the results, both types 
of deformation patterns were equally considered for the estimation of 
the error metrics and no differences were made between them. The 
displacement field of the defined motion is defined by 

Δrn(t) = Γ(t)
(
rES

n − rED
n

)
, (7) 

Where Γ(t) ∈ [0,1] is a piece-wise continuous function, which 
mimics the standard left-ventricular volume diagram (the expression 
defining Γ(t) [34], which weights the maximum end-systolic displace-
ment, and rnES and rnED the end-systolic and end-diastolic position of the 
LV, respectively is given in Appendix A). rnED is defined by the initial 
geometry of the phantom (for all the 2D data, we used a cylinder height 
of 8 mm as only in-plane motion was considered), whereas rnES depends 
on several parameters uniformly distributed, such as the end-diastolic 
endocardial radius, end-diastolic wall thickness, end-systolic endocar-
dial and epicardial twist, and end-systolic endocardial and area scaling, 
among others [32]. The expressions and parameters defining the motion 
patterns and the geometry of the synthetic LV are given in Appendix A. 

We performed a resolution and noise sensitivity analysis to the 
estimation of displacements and strain obtained from CSPAMM and 
DENSE MR images using SP-HR, SinMod, DENSEanalysis. 

H. Mella et al.                                                                                                                                                                                                                                   



Magnetic Resonance Imaging 83 (2021) 14–26

17

The resolution sensitivity analysis considered several pixel sizes and 
tag periods for both imaging modalities, whereas, for the noise experi-
ment, we used the tag periods that performed better in the first exper-
iment using the following rule: given fixed pixel size and for all the tag 
periods, the tag period used for the noise analysis was that one that 
minimizes the error on the circumferential strain component. The idea 
behind this selection is to test just those cases which performed better in 
the estimation of circumferential strain due to the clinical relevance of 
this biomarker. 

Real and imaginary Gaussian noise with zero mean was added to the 
image k-spaces. The standard deviation (SD) of the noise was estimated 
to achieve certain SNRs at early systole and late diastole only on 3 × 3 
mm2 phase-cycled DENSE images, as described in Table 1. However, the 
noise was added separately before phase-cycling. The same SD was used 
for images with smaller pixel sizes as the signal is reduced during the 
generation process (fewer isochromats are inside the voxels). The best 
and the worst noise scenario can be commonly found on standard car-
tesian cine [20] and undersampled [19] cine DENSE acquisitions with a 
constant flip angle. The noise SD was estimated as a fraction of the 
maximum magnitude of the stimulated echo in the k space, which at 
t = 0 shares the same magnitude as the spectral peaks of the cosine 
modulation (see Eqs. (3) and (5)), and therefore can also be used in 
SPAMM images. 

2.4.2. 3D analysis 
In this case, just one set of physiological parameters was chosen (see 

Table 2) to generate slice-following versions of the CSPAMM and DENSE 
images [33,35]. For both imaging techniques, the slice thickness of the 
selective excitation was 8 mm with offsets of 12 and 6 mm for slices at 
basal and mid cardiac levels, whereas the imaged thickness was 30, 25, 
and 20 mm for slices at basal, mid, and apical cardiac levels respectively 
[35–38]. The encoding frequency used for SPAMM was 0.39 rad mm− 1 

(tag period of 16 mm) and for DENSE 0.75 rad mm− 1. Both images also 
shared the same FOV of 350 × 350 mm2, and were generated using 
imaging matrices of 256 × 128 for SPAMM and 128 × 64 for DENSE 
with an oversampling factor of 2 in the measurement direction. A con-
stant flip angle of 15◦ was used to simulate the acquisition of 20 cardiac 
phases. The dimensions of the cylinder emulating the LV geometry are 
given in Table 2. The same density of isochromats used for the 2D 
generation was used in this experiment, i.e., the number of isochromats 
contained in the cylinder was 4 millions. 

Additionally, as we simulated a cartesian acquisition and added 

multi-shot EPI-like artifacts considering a “top-down” acquisition with a 
receiver bandwidth of 64 KHz, echo-train length of 9, and off-resonance 
frequency of 115 Hz, as described in [39]. This setup generates a shifting 
artifact in the reconstructed image due to the linear accumulation of 
phase across the k space. Also, complex Gaussian noise was added to 
achieve the SNRs given by the NL1 in Table 1. The previously described 
EPI artifact and noise were added to each SPAMM and DENSE acquisi-
tions used to generate CSPAMM and complementary DENSE images. 

The imaging parameters were chosen according to standard values 
given in the literature. Pixel sizes, slice-thicknesses, tag periods, acqui-
sition matrices, number of cardiac phases, and flip angles were similar to 
that described in [36,40,41] for the acquisition of CSPAMM and slice- 
following CSPAMM images in volunteers, while similar DENSE imag-
ing parameters, including the given encoding frequency, have been used 
in [16,17,42] for in-vivo studies. 

The set of physiological parameters used in this study (following the 
notation of Gilliam et al. [32]), which defines the motion at the basal 
level, are presented in Table 2. 

A summarized description of the 2D and 3D experiments is shown in 
Fig. 2. 

2.5. Image processing 

In Eq. (5), the three terms (in order of appearance) are often called 
Stimulated, Complex Conjugate, and Relaxation echoes (see Fig. 3b), 
centered at (0,0), (2ke,0), and (ke,0) respectively. By using the phase- 
cycling approach, the relaxation echo is canceled (see Eq. (6)). How-
ever, depending on the pixel size (i.e., k space bandwidth), energy from 
the complex-conjugate echo could be partially or entirely sampled, 
leading to severe artifacts [17]. To correct these artifacts, we applied a 
Butterworth filter [43] of 10-th order and fixed cutoff frequency was 
applied to every DENSE image. 

Table 1 
Noise levels and corresponding Signal to Noise Ratios in the noise sensitivity 
analysis images.  

Name Noise level Early-systolic SNR (×α) Late-diastolic SNR (×α) 

NL0 0 noise-free noise-free 
NL1 1 33.6 8.4 
NL2 2 27.6 7.0 
NL3 3 21.4 5.5 

The noise level has the same standard deviation throughout the cardiac cycle. 
However, from early-systole to late-diastole, the SNR decreases due to the signal 
model given in Eqs. (4) and (6). The reported SNR has adimensional units. 
α: scaling factor to consider the signal decay due to the reduction of the voxel 
size. For an in-plane isotropic pixel size (and constant slice thickness) of 3, 2.5, 2, 
1.5, and 1 mm the associated factors are 1, 0.69, 0.44, 0.25, 0.11, respectively. 

Table 2 
physiological parameters used for the generation of images with 3D motion patterns.  

Ren τ H σ Sar Sen ϕen ϕen
apex ϕep Ψ χ tA tB tB 

25 10 100 4.0 0.7 1.1 − 8.0 20 − 4.0 0.0 0.5 0.15 0.35 0.5 

Ren: endocardial radius (mm), τ: LV thickness (mm), H: long axis height (mm), σ: the skew factor which moves motion towards epicardial (σ > 1) or endocardial motion 
(σ < 1), Sar: end-systolic area scaling, Sen: end-systolic endocardial scaling, ϕen: end-systolic endocardial twist (◦), ϕep: end-systolic epicardial twist (◦), Ψ: the direction 
in which the motion is reduced (◦), χ: motion reduction factor, tA, tB, tC: time modulation times (s). 

Fig. 2. Using the 2D data, displacement and strain fields are estimated for 
every resolution and noise level described in the Experiments section. Then, the 
error metrics given in Eqs. (8a)–(8c) are evaluated. For the 3D data, displace-
ment and strain fields are estimated and the error metric given in Eq. (9) 
is evaluated. 
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2.6. Motion estimation 

Using motion estimation techniques (specified below), we tracked 
the CSPAMM and DENSE images to a reference domain at end-diastole. 
Once the displacement field U(X) was estimated, we calculated the 
Lagrangian strain tensor E [1,3]. In this study, we evaluated the 
circumferential (ECC) and radial (ERR) components of the tensor, which 
are usually used to evaluate strain in short-axis views. As our imple-
mentations of SP-HR, SinMod, and DENSE analysis only allowed 2D 
motion estimation, the longitudinal strain component of the tensor E 
was not evaluated. 

Motion from CSPAMM images was obtained using a free version of 
the SP-HR algorithm provided by the Image Analysis and Communica-
tion Lab at Johns Hopkins University [41], and a self-made imple-
mentation of SinMod as described by the developers in Arts et al. [15]. In 
contrast, for DENSE images, the MATLAB toolbox DENSEanalysis 
[16,44] was used. 

In the case of SinMod analysis, no frequency windowing was applied, 
and resulting displacements were corrected using the quality model 
proposed by the authors [15] with a weighting matrix with 8 in the 
exponent. In both cases, SP-HR and SinMod, the same bandpass filter 
was used, as described by Arts et al. [15]. 

When using DENSEanalysis, a temporal fitting of a 10th-degree 
polynomial was applied [45], and displacement resampling was done 
using the implementation of the gridfit function given in DENSEa-
nalysis [32,44], with a triangular interpolation scheme with a smooth-
ing factor of 0.8 for noisy data. The same temporal fitting procedure was 

used for SP-HR and SinMod displacements. 
From the 3D results, mean strains were estimated from the base, mid, 

and apical cardiac levels using the segmentation defined by the Amer-
ican Heart Asociation [46,47]. As the motion used in this experiment did 
not contain regional differences, the right-ventricular insertion point 
was arbitrarily chosen and used as the reference to evaluate each 
segment. The segmentation used for the regional strain estimation is 
shown in Fig. S1. 

2.7. Statistical analysis 

The error was measured using the Normalized Root Mean Square 
Error (nRMSE) and Directional Error (DE), defined as [48]: 

nRMSEa(%) = 100×
1

max
i
|ae

i |

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑N

i=1
|ai − ae

i |
2

√

(8a) 

nRMSEu(%) = 100×
1

max
i
‖ui

e‖2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1
‖ui − ui

e‖
2
2

√

(8b) 

DE(%) =
180
πN

∑N

i=1
arccos

(
|ui⋅ui

e|

||ui||⋅||ui
e||

)

(8c)  

where N represents the number of masked pixels in the image, 
nRMSEa(%) and nRMSEu(%) are the nRMSE for scalar and vectorial 
quantities respectively, ai is any pixelwise scalar quantity at the pixel i 
(e.g., circumferential and radial strains), and ui is the displacement field 
at the pixel i. The superscript ( )e denotes the exact value. The three 

Fig. 3. k-space and reconstructed images for (a) 
SPAMM and CSPAMM, and (b) DENSE and phase- 
cycled DENSE of a mid-level short-axis slice. The 
frames 1, 4, 7, 10, 13, and 19 of an acquisition of 20 
frames equally distributed in a cardiac cycle of 1 s are 
shown. In the case of SPAMM and CSPAMM, the 
image shows the reconstructed magnitude, whereas 
for DENSE and phase-cycled DENSE, the recon-
structed phase. For the image simulation, a multi- 
shot EPI acquisition was used in all cases, with half 
of the lines sampled in the phase direction.   
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previous error metrics were evaluated for SP-HR, SinMod, and DEN-
SEanalysis results at end-systole, where displacements have maximum 
amplitude. 

The error metrics defined in Eq. (8) characterized the mean value of 
the pixelwise error for just one data. However, the error metrics pre-
sented in the next section are the mean value across the whole dataset 
(N = 100) of the metrics estimated using (8). 

Finally, to quantify the error in the estimation of regional strain 
throughout the entire cardiac cycle, we introduce another metric given 
by: 

Errorseg = 100×
1

Nfr

∑Nfr

n=1

⃒
⃒
⃒E(tn) − Ee

(tn)

⃒
⃒
⃒

max
n

⃒
⃒
⃒Ee

(tn)

⃒
⃒
⃒

(9)  

where the overline denotes the mean value across all the segments, E(tn)
and Ee

(tn) the estimated and exact mean strains at the time tn, and Nfr the 
number of frames (cardiac phases). 

3. Results 

3.1. Sensitivity analysis in 2D: resolution 

Fig. 4 shows the mean nRMSE and DE values across all the analyzed 
data without noise. In the absence of noise, smaller pixel sizes improve 
the estimation of displacements and strain using the three techniques. 
Regarding the displacement field evaluation, the best performance was 
achieved by DENSEanalysis, and almost always SP-HR performed better 
than SinMod (see Fig. 4a and b). For standard resolutions of DENSE and 
CSPAMM images (in-plane isotropic voxel sizes around 3.0 and 1.5 mm 
respectively (8, 16)), the differences in the performance of DENSEa-
nalysis and SP-HR become a bit smaller, whereas with SinMod results 

always showed larger errors. 
A similar tendency occurs for the estimation of strain. For almost 

every pixel size, results obtained with DENSEanalysis postprocessing 
were better than SP-HR and SinMod (see Fig. 4c and d). Although the 
nRMSE of the ECC obtained with SP-HR growths for tagging periods of 8, 
10, and 12 mm, in general terms, SP-HR performed better than SinMod 
in most of the cases. Additionally, the error ECC did not follow a clear 
trend for the spacing of 8 mm. A similar behavior was observed for the 
ERR component, although the nRMSE increased with the three post-
processing techniques, with errors rising to around 31% with SP-HR, 
33% with SinMod, and 20% with DENSEanalysis (see Fig. 4d). 

Fig. 5 shows the mean values and standard deviations (between data) 
of the most favorable cases of the analysis presented in Fig. 4, i.e., 
combinations of tag periods and pixel sizes where the nRMSE of the ECC 
component reached the minimum value of all the curves (see Fig. 4c). 
With SinMod, the best results were obtained using a fixed tagging period 
of 10 mm for every pixel size, while with SP-HR, the best performance 
was achieved using a tag period of 10 mm for pixel sizes of 1, 1.5, and 
2 mm, and 14 mm for pixels of 2.5 and 3 mm. Despite the difference in 
the errors between the three methods, all of them shared similar 
deviations. 

3.2. Sensitivity analysis in 2D: noise 

Fig. 6 shows the error metrics calculated from the noisy data using 
the tagging spacings given in Fig. 5. As the noise level increases, the 
overall performance of three motion estimation techniques become 
worse (as expected). Moreover, the gap between noise levels becomes 
higher for smaller pixel sizes as the images with larger k space band-
width are noisier (see the SNR scaling in Table 1). At any noise level and 
resolution, the displacement fields were better estimated using DEN-
SEanalysis (see Fig. 6a and b). However, the difference was more evident 

Fig. 4. Results for the resolution sensitivity analysis. Mean errors in (a) magnitude, (b) direction of the displacement field, (c) ECC, and (d) ERR strain components. 
The left plot of each case shows the results obtained using SP-HR and to the right using SinMod. The results from DENSEanalysis are shown on all the plots. Each color 
denotes a different tag period (s). Overall, the estimation obtained from DENSE images performed better than the other techniques, whereas using CSPAMM images, 
better results were obtained for smaller pixel sizes and wavelengths. 
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Fig. 5. Mean errors and standard deviations for the best performing combination of tag periods and pixel sizes of the results given in Fig. 4, for (a) magnitude, (b) 
direction of the displacement field, (c) ECC and (d) ERR strain components. Each color represents a different tag period (s). The three methods showed similar results in 
terms of mean errors and deviations (except in the displacement field magnitude, where deviations obtained with DENSEanalysis remain low). 

Fig. 6. Results for the noise sensitivity analysis for an end-systolic cardiac phase. Mean errors in (a) magnitude, (b) direction of the displacement field, (c) ECC, and 
(d) ERR strain components. The left plot of each metric shows the results obtained using SP-HR and to the right using SinMod. The results from DENSEanalysis are 
shown in all the figures. Each color denotes a different SNR (see Table 1). SP-HR gave the most significant sensitivity to noise in every case, whereas DENSEanalysis 
showed the smallest. 
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for the magnitude rather than the direction. For NL3 case and standard 
isotropic in-plane pixel sizes of 1.5 and 3 mm for CSPAMM and DENSE 
images, the nRMSE in magnitude and DE were approximately 
6.2 ± 2.4% and 6.7 ± 5.3◦ for SP-HR, 9.2 ± 2.6% and 7.0 ± 4.8◦ for 
SinMod, and 3.4 ± 1.4% and 4.4 ± 3.9◦ for DENSEanalysis. Although the 
estimations made with DENSEanalysis showed the best performance, the 
results obtained with SP-HR and SinMod were comparable with 
DENSEanalysis. 

In terms of strains, the behavior of the three methods was similar 
between the ECC and the ERR components. The errors showed less 
sensitivity to noise at bigger pixel sizes in both cases, with an increasing 
trend as the pixel size decreases. However, the error obtained using 
SinMod showed less sensitivity to noise than SP-HR and DENSEanalysis 
at any pixel size for both strain components. 

For the same pixel sizes and noise level previously mentioned, the 
nRMSE obtained for the ECC and ERR components were 10.7 ± 10.8% and 
25.5 ± 14.8% using SP-HR, 11.9 ± 2.5% and 29.3 ± 6.5% using SinMod, 
and 6.4 ± 2.0% and 18.2 ± 4.6% using DENSEanalysis. These results 
showed a substantial increase in the error variability with SP-HR, which 
means that the noise highly impacted the motion estimation under 
different contraction conditions. As in the previous section, the esti-
mation of the ERR component was worse than the ECC component for all 
the tested postprocessing methods but was better captured using DEN-
SEanalysis for all noise levels. 

For small motions, i.e., early systolic cardiac phases, the error met-
rics for estimating displacement and strain are presented in Fig. 7. At 
lower motion levels, both motion and strain calculation were worse than 
at end-systolic cardiac phases. The gap in the error of displacement 
estimation decreased, and in the case of strain, SP-HR and SinMod 
performed better than DENSEanalysis for the ECC and partially better for 
the ERR. That suggests that DENSEanalysis is more sensitive to noise for 
lower motion levels. 

3.3. 3D experiment 

Fig. 8 shows the ECC and ERR strain curves obtained from basal, mid, 
and apical short-axis slices of the phantom shown in Fig. 1. In this 
experiment, the performance of the three methods was interrogated 
through the whole cardiac cycle. SP-HR showed the most unfavorable 
performance, especially in the apical region, where the torsion was 
augmented. The three methods were imprecise in estimating the ERR 
component, but DENSEanalysis was closer to the reference values. In 
contrast, SinMod and DENSEanalysis gave very accurate estimations of 
the regional ECC through the whole cardiac cycle and at any cardiac 
level, while SP-HR correctly behaved at basal and mid-levels. 

In Table 3, the errors estimated using the metric proposed in Eq. (9) 
are presented, which measures the difference between strain curves. 
Differences calculated from the strain curve estimated with SP-HR 
increased as the slice moved from base to apex. However, the previous 
statement is no longer valid for SinMod and DENSEanalysis. SinMod did 
not exhibit any differences, whereas DENSEanalys showed decreasing 
and increasing trends from base to apex. The similarity between the 
reference and the estimated curves was minimal, and no significant 
differences were observed between SinMod and DENSEanalysis. How-
ever, we noted more significant discrepancies in terms of error for the 
ERR component, where DENSEanalysis accomplished the best execution 
(see Table 3). 

4. Discussion 

The tag analysis from Tagging MR images has been considered the 
gold standard for the estimation of myocardial strain. Several ap-
proaches have been developed to estimate motion from these images, 
being SinMod and SP-HR two of the most used methods [27]. On the 
other hand, the analysis of DENSE images using processing tools as 

Fig. 7. Results for the noise sensitivity analysis for an early-systolic cardiac phase. Mean errors in (a) magnitude, (b) direction of the displacement field, (c) ECC, and 
(d) ERR strain components. The left plot of each metric shows the results obtained using SP-HR and to the right using SinMod. Each color denotes a different noise 
level. As the displacement is small at the beginning of the cardiac cycle, the impact of noise on the phase of harmonic and stimulated echo images becomes more 
prominent. As a consequence, worse results were achieved for all the error metrics. 
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DENSEanalysis has become a powerful tool for estimating displacements 
and strain. Nevertheless, tagging and DENSE techniques remain a 
research tool [27], and discussion about their accuracy and precision 
continues. 

The three methods gave accurate estimations of displacements and 
strains (see Fig. 4) in the absence of noise. As the pixel size decreases, 

DENSEanalysis showed a slight decay in the error metrics of magnitude, 
direction, and ECC, whereas for the ERR component, the nRMSE increases 
with smaller pixel sizes. A similar behavior was observed with SP-HR 
and SinMod for almost any tag period and also for the ERR component. 
Concerning the tag periods, there was a clear tendency for both SP-HR 
and SinMod. As the tag period increases, the estimation of displace-
ment and strain deteriorates, obtaining the most significant errors with a 
tag period of 16 mm. However, for SP-HR, the smallest tag period did not 
work adequately for any pixel sizes. We can explain this behavior by 
comparing the pixel size, tag period, and amount of motion [13,14], 
which says that HARP-based techniques tend to fail for motions larger 
than the tag period. Additionally, for this tag period and the imaging 
parameters used, the spectral peak containing motion information was 
too close to the k space bandwidth, leading to information loss. 

We decided not to include field inhomogeneities in the generation of 
the images because we did not observe considerable differences in the 
error metrics and their behavior. This was tested in the same experiment 
used to evaluate the behavior of the three techniques under noise-free 
conditions, but adding a smooth and spatially-varying phase to each 
acquisition given in Eqs. (3) and (5). Moreover, the average increase in 

Fig. 8. Regional strains at basal, mid, and apical levels. Each column shows the strain estimated using SP-HR, SinMod, and DENSEanalysis. Gray lines with triangle 
markers denote the reference curves, while black lines with square markers denote the estimations made with the three processing techniques. Every point in the 
curves represents the mean regional strain across the segments defined by the AHA [46,47]. Analysis of CSPAMM images using SP-HR tends to fail for cardiac phases 
in the diastolic part of the cardiac cycle, resulting from the signal decay. 

Table 3 
Errorseg (%) for the results of the 3D experiment.   

Cardiac level Postprocessing method 

SP-HR SinMod DENSEanalysis 

ECC Base 3.8 3.1 0.9 
Mid 4.3 2.4 0.7 
Apex 18.4 2.5 0.6 

ERR Base 19.7 31.0 12.8 
Mid 27.5 30.1 19.2 
Apex 46.0 34.8 17.9 

Results show how far the regional strains estimated with the three methods are 
from the reference values. From base to apex, the synthetic phantom rotation 
increases, and higher errors were found using SP-HR and SinMod. 
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the error metrics for both displacement and strain was around 2%, while 
keeping their behavior observed in Fig. 4. The results obtained from 
noise-free data with field inhomogeneities are presented in Fig. S2 (see 
supplementary material). 

Although several pixel sizes were considered for the analyses, the 
impact of this parameter on the estimations was small in terms of dis-
placements (see Fig. 4a and b). This could be explained by the band-
width of the bandpass filters used in both CSPAMM and DENSE images. 
For a fixed encoding frequency, the pixel size only changes the band-
width of the k-space while the filtered spectral peaks keeps its position 
and distance with respect to the k-space center. Therefore, the true 
resolution of the filtered harmonic images and displacement maps ob-
tained from CSPAMM and DENSE is given by the bandwidth of the filter 
rather than the resolution of the image. 

In our experiments, estimations made from DENSE images showed a 
better behavior than SP-HR and SinMod for the quantification of dis-
placements and strain from noisy data. For the range of pixel sizes 
usually acquired in DENSE images (2.5–3 mm), DENSEanalysis was less 
sensitive to noise than SP-HR and SinMod, for the range of resolutions 
usually acquired in CSPAMM images (1.5 mm) (see Fig. 6). This 
behavioral dependency on the voxel size is explained with the SNR 
reduction as the voxels become small, i.e., the kspace bandwidth be-
comes bigger. Additionally, the bandpass filters used in SP-HR and 
SinMod did not remove completely the high-frequency noise as they are 
centered at a higher frequency than the filter used to remove the 
remaining energy of the complex-conjugate echo in DENSE images (e.g., 
a bandpass filter of bandwidth BW applied at a frequency (k_e, 0) let pass 
frequencies of k_e + BW, in which noise have more presence than if it 
would beus at (0, 0)). 

In this study, the resolution and noise sensitivity analysis were per-
formed mainly at the end of systole, where the displacement and strain 
have maximum amplitude. However, due to the signal decay and the low 
phase SNR in both CSPAMM and DENSE images, the estimation can be 
biased during early systolic and late diastolic cardiac phases, which 
could be determinant when smaller strains need to be measured [3]. 
Fig. 7 shows the errors in the estimation of displacement and strain at 
early systole. Compared with Fig. 5 (results at end-systole), the three 
methods showed a worse performance, leading to higher errors in the 
estimation of motion and strain with increased noise sensitivity. How-
ever, SP-HR and SinMod gave better results than DENSEanalysis for the 
estimation of strain, showing that at smaller motion levels, SP-HR and 
SinMod, are more accurate and less sensitive to noise. 

Although the three methods were able to estimate accurately the 
regional ECC component during the whole cardiac cycle (see Fig. 8) at 
any cardiac level, neither SP-HR, SinMod, and DENSEanalysis were able 
to estimate appropriately the ERR component (see Figs. 6–8), differing 
severely between techniques even in the absence of noise (see Fig. 4). 
The last finding has been previously reported as an issue shared by many 
motion estimation techniques [27] and needs to be further studied. 

When tested under realistic acquisition and motion conditions, the 
motion estimated with SP-HR failed in apical levels, where the torsion of 
the phantom was larger than the basal and mid-levels. Torsion 
augmentation implies an increment of relative displacement between 
frames, causing more errors in HARP-based methods [41]. This behavior 
was observed in either SinMod and DENSEanalysis. Additionally, the 
three methods estimated accurately the mean regional ECC strain 
component (except for SP-HR at the apex) but not the ERR (see Fig. 8). 
Furthermore, the estimation of the ERR made using SP-HR and SinMod 
differed severely from the reference values, while DENSEanalysis 
worked significantly better. 

The estimation of the ERR strain component and its reproducibility 
has been under discussion in the past years [28,49,50]. The inaccuracy 
in the estimation of the radial strain component is generated mainly by 
the lack of resolution and the small number of pixels in the radial di-
rection of the LV. This is even worsened by the bandpass filters applied 

to the images to isolate the harmonic part in CSPAMM, and remove the 
remaining energy of the complex-conjugate echo in DENSE. However, in 
this study we found that the radial strain estimated from DENSE images 
using DENSEanalysis gave the most accurate estimations, which is in 
corcondance with [50] and could be explained by the direct encoding of 
the displacement into the images (the number of the intermediate steps 
needed to recover the motion field is minimized). 

As a side product of this study, we developed an open-source and 
flexible Python library to generate synthetic CSPAMM and DENSE im-
ages from 3D phantoms. Our library also include variables such as field 
inhomogeneities, dynamic flip angles, and EPI-like artifacts (among 
others) to each imaging mode. Another feature is that it can be easily 
modified to add new imaging techniques. In our case, as we are inter-
ested in studying the estimation of motion and strain, future work is the 
implementation of the Strain-Encoded (SENC) MRI sequence [51]. 
PyMRStrain is freely available at github.com/hmella/pymrstrain. 

Although it is out of the scope of this paper, the current approach 
could also be used to interrogate feature tracking techniques applied to 
images acquired in standard MRI protocols (i.e., bSSFP images). With 
the current framework, spatially varying isochromats density or tissue 
properties could be used to introduce features to the images to make it 
suitable for these techniques. 

The estimation of motion from both CSPAMM and DENSE images 
was chosen to consider its similarities related to the MR pulse sequence. 
Although the DENSE sequence is not yet available across all platforms, 
its development as a research tool has converted it into a powerful 
technique for estimating motion. We chose SP-HR, SinMod, and DEN-
SEanalysis as postprocessing techniques because they have imple-
mentations freely distributed, and therefore, have been widely used in 
the MR community [52]. Regarding the postprocessing techniques, 
although SinMod was implemented following as exact as possible, the 
steps and algorithms proposed by the developers, the possibility of some 
variability between our implementation and available OsiriX and Horos 
plugins should be considered. 

A limitation of the current study was the lack of tissue surrounding 
the LV, which can impact negatively the motion estimation. In such case, 
any method can suffer from artifacts at the interfaces due to differences 
in tissue properties, discontinuities in the motion field, and loss of signal. 
Due to the partial volume effect, the three issues described before can 
bias the motion maps estimated with any technique, introducing un-
likely displacements. By construction, SinMod can deal better with these 
issues because it corrects unlikely displacements using a quality model 
[15], while phase-based postprocessing techniques such as SP-HR and 
DENSEanalysis relies on the local information of each pixel. In this 
investigation, only the loss of signal was considered in the framework. 

In conclusion, SinMod and DENSEanalysis showed excellent and 
comparable results for the estimation of displacements and ECC strain 
from CSPAMM and DENSE data when we used typical image resolutions 
and imaging parameters. In contrast, SP-HR tends to fail for large 
amplitude motions, although it worked well in any other case. Addi-
tionally, we showed that the three techniques could not accurately es-
timate the radial strain component, even when motion estimated from 
DENSE images using DENSEanalysis showed the best performance. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.mri.2021.07.001. 
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Appendix A. Motion model 

The two-dimensional motion model of the idealized left-ventricle (LV) used in the experiments was introduced in [Gilliam paper] and depends on 
several parameters defining both the geometry and its behavior. Let t ∈ [0,1] denote the time during the cardiac cycle. The position of the deformed LV 
tissue is given by the polar pair (r,θ): 
[

r(t)
θ(t)

]

=

[
rED
θED

]

+

[
ur(t)
uθ(t)

]

, (A1)  

where (r,θ) denotes the position of the deformed tissue at the time t, (rED,θRD) the end-diastolic position of the tissue (the reference position at t = 0), 
and (ur,uθ) the radial and angular displacement of the tissue at the time t which are defined through the set of parameters [dep,φep] and [den,φen] via:

Fig. A1. Modulation function used to weight the cardiac motion.  
[

ur(t)
uθ(t)

]

= Γ(t)
[
(1 − μ)dep + μ den
(1 − μ)φep + μ φen

]

, (A2) 

where Γ(t) is a modulation function used to emulate the cardiac cycle (see Fig. A1) given by: 

Γ(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

1.005 − 1.005e−
5(t− tA)
tB − tA

if t < tA

if tA ≤ t < tB

1

e− 11(t− tC)

if tB ≤ t < tC

if t ≥ tC

(A3) 

The μ parameter given in Eq. (A2) is calculated as: 

μ =

[
Rep − rED

Rep − Ren

]σ

, (A4)  

where Rep represents the epicardial radius, Ren the endocardial radius, and σ ∈ [0, ∞ [ a parameter that skews the motion towards the epicardial (σ > 1) 
or endocardial (σ < 1) wall. Thus, the end-systolic position of the LV is obtained using: 
[

rES
θES

]

=

[
rED
θED

]

+

[
(1 − μ)dep + μ den
(1 − μ)φep + μ φen

]

(A5) 

For patient data, the displacement given in Eq. (A2) is slightly modified to obtain an abnormal motion pattern using: 
[

up
r (t)

up
θ(t)

]

= Γ(t)
(

Ψ(θED)

[
rES
θES

]

−

[
rED
θED

])

,Ψ(θ) = 0.5χ(1 − cos(θ − ψ) ), (A6)  

where Ψ is a weighting function that reduces the tissue motion in the direction ψ ∈ [0,2π] by a factor χ ∈ [0,1]. 
The set of parameters used in this study are presented in Table A1.  

Table A1 
Set of parameters used to generate the synthetic geometries and motion 
patterns.  

Parameter name Parameter symbol and value 

End-diastolic endocardial radius Ren~U(10,30) mm. 
End-diastolic wall thickness τ~U(7.5,12.5) mm 
End-systolic endocardial scaling Sen~U(0.6,0.8) 

(continued on next page) 
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Table A1 (continued ) 

Parameter name Parameter symbol and value 

End-systolic area scaling Sar~U(0.6,0.8) 
End-systolic endocardial twist φen~U(− 10◦,10◦) 
End-systolic epicardial twist φep~0◦

Γ(t) parameters (Fig. A1) tA~U(0.05,0.15) 
`tB~U(0.35,0.45) 
tC~U(0.50,0.60) 

Abnormal angle (if present) ψ~U(0◦,360◦) 
Abnormal scale (if present) χ~U(0.5,1.5) 
Motion skew parameter σ~U(0.5,1.7) 

The notation x~U(a,b) means that for every simulation, the variable x was 
selected from a uniform distribution on the range (a,b). The epicardial radius 
is calculated using Rep = Ren + τ, den = (1 − Sen)Ren, and dep was calculated to 
obtain the change in left-ventricular area imposed by Sar. 

For the three-dimensional simulations, the through plane component of the motion is completely described in the article. 
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