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Abstract.

Background: Alzheimer’s disease (AD) is the most prevalent form of dementia worldwide. This neurodegenerative syndrome
affects cognition, memory, behavior, and the visual system, particularly the retina.

Objective: This work aims to determine whether the 5XFAD mouse, a transgenic model of AD, displays changes in the
function of retinal ganglion cells (RGCs) and if those alterations are correlated with changes in the expression of glutamate
and gamma-aminobutyric acid (GABA) neurotransmitters.

Methods: In young (2—-3-month-old) and adult (6-7-month-old) 5xXFAD and WT mice, we have studied the physiological
response, firing rate, and burst of RGCs to various types of visual stimuli using a multielectrode array system.

Results: The firing rate and burst response in 5XFAD RGCs showed hyperactivity at the early stage of AD in young mice,
whereas hypoactivity was seen at the later stage of AD in adults. The physiological alterations observed in 5XFAD correlate
well with an increase in the expression of glutamate in the ganglion cell layer in young and adults. GABA staining increased
in the inner nuclear and plexiform layer, which was more pronounced in the adult than the young 5xFAD retina, altering the
excitation/inhibition balance, which could explain the observed early hyperactivity and later hypoactivity in RGC physiology.
Conclusion: These findings indicate functional changes may be caused by neurochemical alterations of the retina starting at
an early stage of the AD disease.
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INTRODUCTION

Alzheimer’s disease (AD) is the most prevalent
form of dementia worldwide and is becoming a global
public health problem [1]. Its main symptoms are
memory loss, cognitive impairment, and behavioral
alterations [2—5]. Although the complete etiology of
AD remains unknown, several hypotheses have been
put forward to explain the mechanisms of the disease
[6]. One dominant hypothesis, supported by research
on transgenic mice expressing familial mutations
of the human amyloid-f3 protein precursor (ABPP),
involved cellular dysfunctions such as cell growth,
survival, and repair [7, 8]. The accumulation and
deposition of amyloid-B (AB) leads to alterations in
neuronal plasticity, astrogliosis, oxidative injury, the
formation of neurofibrillary tangles, cell death, and
neurotransmission alterations in brain areas, which
are responsible for the cognitive dysfunctions in AD
[5, 6]. Although the precise mechanism by which
accumulation of A3 oligomers causes synaptic dys-
function remains unclear [9], their presence affects
synaptic function in vitro [10], producing reactive
oxygen species [11, 12], and also alters cognitive
function [13]. In brief, AD involves a multiagent and
multifunctional network failure in which diverse mol-
ecular [14] and physiological agents participate [10].

Transgenic mice are useful to study the effect of
genetic variants of AD [15-17]. For example, the
increase in expression of A3 peptides, mainly on
the temporal, parietal lobe, frontal cortex, and cin-
gulate gyrus [18] has been associated with cognitive
deficits in animals [19]. Moreover, the visual sys-
tem, particularly the retina, is also affected during AD
[20, 21]. The retina is an accessible part of the brain
which presents advantages for conducting experi-
ments in physiology, biochemistry, and imaging and
allows following the course of neurodegeneration
[22]. The retina, organized in stratified nuclear and
synaptic layers with significant diversity at the molec-
ular and cellular levels, produces multiple parallel
neuronal pathways [23-25], which are differentially
vulnerable during neurodegenerative processes [26].
The interplay between AD etiology and its effect
on vision [16, 27] has been reviewed extensively
[28-31]. Human and animal studies have linked the
presence of AP plaques, neurofibrillary tangles, and
neurovascular deregulation with neurodegeneration
of retinal ganglion cells (RGCs), the retinal nerve
fiber layer (RNFL), and the ganglion cell layer (GCL)
[21, 27, 32-36] leading to visual dysfunction [32,
37-50]. The quest for early retinal AD biomarkers,

as reported in human AD and the APP-PS1 mice,
has been based on detection of AP plaques [51].
Clinical biomarkers include retinal thickness mea-
surements: in humans with severe cases of AD, the
RNFL decreases in the macular area upper quadrant
[52], with approximately 25% loss of RGCs [38, 39].
In contrast, the lower quadrant is affected at the early
stages of AD [39, 42], which correlates with cognitive
deficits [42]. Similarly, the loss of RGCs observed in
transgenic mice during aging correlates well with the
accumulation of AP peptide [21, 34, 35, 51, 53-57].
Although there are an important number of studies on
retina morphological and molecular changes in AD
in humans and mice [21], little is known about the
effect on retinal function and its physiology.

Observed changes in neuronal excitability corre-
spond well with important manifestations of nervous
system dysfunction. For example, the hippocampus
of the APP-PS1 mice, where there are pathologi-
cal levels of A peptides, presents with episodes of
neural hyperactivity during early stages of cognitive
impairment [58—62] and is associated with GABA
decrease [59, 60, 63]. Brain hyperactivity is also
present in Mild Cognitive Impairment patients, where
the administration of antiepileptic drugs decreased
cognitive impairment and increased their memory
performance [64].

Neural hyperactivity is observed in the degenerat-
ing retina [26] and in the rd10 mice, is modulated by
blocking retinal gap junctions, which also improves
light sensitivity [65]. Furthermore, in the rdl mice
[66, 67], hyperactivity involves 70% of RGCs and
amacrine cells [26], where carbenoxolone, a gap
junction blocker, compensates by reducing 30% of
this hyperactivity. Hyperactivity affecting ON-type
RGCs has been observed in 3-4-month-old diabe-
tic mice, and seems to be a common mechanism in
AD [68]. Not all retinal pathways are affected simi-
larly, and depending on the neurodegenerative model
studied [26], retinal dysregulation affects different
neuromodulators (e.g., glutamate, nitric oxide, dop-
amine, GABA). Recently, changes in the GABA and
glutamate neurotransmitters were shown to moderate
AP and to determine functional connectivity in AD
in humans [69] and animal models [59, 60]. Interesti-
ngly, the modulation of A and glutamate has been
associated with retinal dystrophy in AD models, wh-
ere GABA inhibition prevented neurotoxicity [70].

Here, we study the RGC physiological alterations
and neurotransmitters levels in the retinal layers of
the 5xFAD mouse, both during asymptomatic and
symptomatic AD stages [51, 53, 71, 72].
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MATERIAL AND METHODS
Animals

5XxFAD (Jackson laboratory, Bar Harbor, ME,
USA) is a transgenic mouse model of AD that exp-
resses mutant forms of the human ABPP and PSEN1
genes and develops amyloid plaque accumulation,
loss of neurons and synapses, and has cognitive
dysfunction in an age-dependent manner [19]. B6S
JLF1/J is the background strain to the 5XFAD and
these mice were used as wild-type (WT) control.
These animals were maintained in the animal facility
at Universidad de Valparaiso, under a 12:12 light/dark
cycle in a controlled temperature environment, with
water and food ad libitum. The animals were grouped
by age and strain into young (2-3-month-old), when
they start to accumulate A3 peptide in the brain, and
adults (6—7-month-old) at the beginning of cognitive
impairment. In our analysis, we observed no differ-
ences between gender and therefore collected data
were pooled together. The number of animals used in
this study is displayed in Table 1. All experimental
procedures followed bioethics protocols approved by
Universidad de Santiago de Chile (approval bioethics
committee #457) following international guidelines
on animal handling and manipulation and the Chilean
National Agency for Research and Development
(ANID) bioethics and biosecurity standards.

Electrophysiological recordings of the RGCs
using MEA

The experimental protocol for electrophysiologi-
cal recordings has been described in our previous
publications [73, 74]. Briefly, a Multi-Electrode
Array (MEA) (USB256, Multichannel Systems Gm
bH, Reutlingen, Germany) with 252 electrodes and
sampling at 20 kHz was used to record RGCs from a
small piece of the isolated retina. All the recordings
were stored in a computer for offline analysis. Before
the experiments, the animals were dark-adapted for
30min and then profoundly anesthetized with

Table 1
Total number of animals, sex, and total number of RGCs evaluated
in this study

Group Animals Male Female # Total
(n) (n) (n) cells
WT Young 9 animals 6 animals 3 animals 1,145
WT Adult 8 animals 4 animals 4 animals 780
5xFAD Young  9animals 2 animals 7 animals 673
5xFAD Adult 10 animals 5 animals 5 animals 1,192

Number of retinal cells evaluated in this work.

Isofluorane (Baxter, Deerfield, IL, USA) and euth-
anized. Eyes were quickly enucleated under dim red
light, and eyecups were prepared immersed in Ames
medium with bicarbonate buffer (Sigma-Aldrich, St.
Louis, MO, USA) at 32°C and pH 7.4 continuously
oxygenated in a mixture of 95% O» & 5% CO,. Small
pieces of the retina were gently separated from the
retinal pigment epithelium and positioned on a ring of
dialysis membrane (MWCO-25000, Spectrumlabs,
Rancho Dominguez, CA, USA), covered with polyly-
sine (Product P4707, Sigma-Aldrich, St. Louis, MO,
USA) to facilitate contact between the RGCs side of
the retina and the surface of the MEA.

Visual stimulation of the retina

Different visual stimuli were build using MAT-
LAB software (Natick, MA, USA) and delivered to
the retina using a conventional LED projector (PB
60G-JE, LG, Seoul, South Korea). A custom-made
optical bench was used to adjust and focus the sti-
muli onto the photoreceptor layer while placed on an
inverted microscope (Eclipse T200, Nikon, Minato,
Tokyo, Japan). The average irradiance of each stim-
ulus was 70 nW/mm? (Newport Corporation, Irvine,
CA, USA). At 460 nm and 520 nm, the spectral emi-
ssion was calibrated using a USB4000 spectropho-
tometer (Ocean Optics Inc, Dunedin, FL, USA). All
the visual stimuli were of the same size (pixel~4 p.m)
and fully covered the~2x2mm retinal sample at
the MEA array. The visual stimulation protocol was:
20 min of white noise (WN), 5 min of a sequence of
natural images (NI), 5 min of scotopic activity (SA),
and 5 min of photopic activity (PA). The image tim-
ing was controlled using custom-built software based
on Psychtoolbox for MATLAB (Fig. 1).

Electrophysiological data analysis

The electrical activity at the RGCs level, generated
by spontaneous conditions, response to darkness,
or in response to light, white noise, and natural im-
ages was collected. The Mc-Rack software
(Multichannel ~ Systems GmbH, Reutlingen,
Germany) was used to acquire the data and
a hard disk to store it for later analysis.
A spike sorting software (SS) [75] was used to
calculate the number of RGCs recorded on each
retina patch. The SS algorithm considers the raw data
passed through a high pass filter of 300 Hz and detects
spike waveforms to identify and isolate cells from the
full register. This study considered all cells passing a
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Fig. 1. A schematic drawing of the setup for MEA recordings from the retina. A piece of the retina is mounted on the MEA array, where
the RGCs, in the GCL, are in direct contact with the electrodes. The various stimuli (top) are precisely focused on the photoreceptor layer.
ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer; WN,
white noise; NI, natural images; SA, scotopic activity; PA, scotopic activity.

signal/noise criterion and interspike interval viola-
tion of <2.5%. A signal/noise criterion was applied
to measure how well a cell responded to the stimuli,
and it is defined as

Var [(C) r]t

ol = Varcinr

where C is a matrix to the response of time samples
(t) and stimulus repetitions (r) and ( )x and []Jx denote
the mean and variance across the indicated dimension

(more details in [30]). Cells with a QI > 0.25 were
selected for this study. The number of cells reg-
istered in each retina varied depending on the
dissection procedure and the electrical contact with
the electrode array. Nevertheless, the individual
spike/physiological activity of every RGCs does not
depend on the number of cells recorded. For each
RGCs, its firing rate (FR) and bursts (B) are quanti-
fied using the Neuroexplorer software (Plexon, Inc,
Dallas, TX, USA).
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Post-embedding immunogold staining of the
retina

Retinas were fixed in 4% paraformaldehyde with
0.01% glutaraldehyde for 1 h and washed in PBS
before the immunohistochemistry procedure. The tis-
sue was then embedded in resin before cutting it
into 500nm thickness sections using an ultrami-
crotome. The primary antibodies, anti-L glutamate
1:5000 (Abcam; Ab9440) and anti-GABA 1:500
(Abcam; Ab9446), were used and were detected
using a 1.4 nm Nanogold conjugated secondary anti-
body (Nanogold-IgG Goat anti-Rabbit IgG) diluted
1:100 in the buffer. Silver intensification was used
over the nanogold staining as previously described
[76, 77]. The images were acquired with a Leica
DM RA2 microscope (Leica Microsystems, Wet-
zlar, Germany), using a 40x objective and converted
into a 16-bit binary image using ImageJ software
(NIH). The intensity of the pixels (PI) was normalized
against the image background pixel value. The PI was
assessed in vertical retinal sections, with ten measures
for each retinal image and in 4 specific layers or loca-
tions of the retina: bipolar cells (BCs), amacrine cells
(ACs), inner plexiform layer (IPL), and GCL. Statis-
tical differences between WT and the SXFAD mice
were evaluated by paired comparison of PI values.
Finally, the images were made into figures using Pho-
toshop CS6 software (Adobe Systems Incorporated,
San José, CA, USA).

Statistical analysis

Data are displayed as median and 25%—75% per-
centile. A normality distribution tested was done for
all data (Shapiro-Wilk normality test, p <0.0001). A
Mann-Whitney test (unpaired, two-tailed) was used
to compare WT and SxFAD mice groups differences
(The significance level used in statistical test were
p<0.0001, p<0.001, p<0.01, and p <0.05). The sta-
tistical analyses and fitting methods were performed
using GraphPad Prism software (GraphPad Software
Inc, San Diego, CA).

RESULTS

RGC functional changes

The electrical activity of 3790 RGCs from different
retinas (WT Young: 1145 cells, 5XFAD Young: 673
cells, WT Adult: 780 cells, SXFAD Adult: 1192 cells)

Table 2

The median (M) and 25%-75% percentile to firing rates (FR) values of RGCs elicited by each stimulus (S). All the values are displayed in Hz. WN, white noise; NI, natural image; SA, scotopic

activity; PA, photopic activity; n.s., non-significant; MW, Mann Whitney (p <0.0001, p <0.001, p<0.01, p<0.05)

5xFAD Young Statistical Youngs WT Adult 5xFAD Adult Statistical Adults

WT Young

(n=1192)

(n=780)

(n=673)

(n=1145)

%Change

Mw (p)
p<0.0001
p<0.0001
p<0.0001

75
5.

P25
0.55
0.95
0.23
0.26

P75
8.16
9.34
5.85
5.58

P25

%Change

MW (p)

P75
11.23
14.57

P25
1.35

P75
11.02

14.01

P25
1.18
1.41
0.31
0.30

1 30%
131%
1 47%
1 43%

57

2.15
2.53
1.08
1.33

3.11
3.69
2.04
1.39

0.70

1 16%
1 36%
1 66%
157%

n.s.
p<0.05
p<0.01

5.11
6.58
3.02
291

4.39
4.81

WN

5.93
3.

1.08

0.41

1.84
0.55
0.50

NI

82

8.44
9.

7.02
6.83

1.81
1.85

SA
PA

n.s.

4.63

0.23

p<0.001

96

Firing rates values of RGCs under illumination conditions.
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Fig. 2. Representative raster plot graph, obtained after spike sorting showing the activity of 60 RGCs stimulated with a natural images (NI)
for 200s. A) WT young retina, B) 5XFAD young retina, C) WT adult retina, D) 5XFAD adult retina.

using various illumination conditions was obtained
and recorded. The analysis only considered RGCs
recordings with a good quality index response as
per the experimental paradigm (see methods) which
resulted in a variable number of RGCs per group.
Figure 2 shows representative raster plots for RGCs
obtained in response to natural images from young
and adult WT and 5xFAD retina. Young retinas dis-
played high spike activity compared to adult WT or
5xFAD, which displayed low spike activity. Figure 3
and Table 2 show the FR responses for the experi-
mental groups using different visual stimuli. Firstly,
we noticed that the FR depended on the type of stim-
ulus: higher for WN and NI than for SA and PA at all
ages and conditions (WT versus 5XFAD comparison).
These results could be explained by the stimuli com-
plexity: SA or PA activate either OFF or ON RGCs
population separately, while WN and NI activate both
ON and OFF retinal pathways in a dynamic way. Sec-

ondly, young 5xFAD had significatively higher FR
values (hyperactivity) than WT for all stimuli except
WN, and adult 5xFAD had significatively lower FR
values (hypoactivity) than adult WT for all stim-
uli except PA (Fig. 3A, Table 2). In general, adults
tended to have lower FR response than young ani-
mals to all stimuli, except for the FR response to SA
inthe WT. Similarly, the young SXFAD and WT retina
showed higher accumulated frequency response val-
ues than the adult, whereas 5XFAD had the lowest
values, except for PA (Supplementary Figure 1 and
Supplementary Table 1).

The burst response analysis is summarized in
Fig. 3B and Table 3. Young 5xFAD and WT reti-
nas had significantly higher burst values than SxXFAD
adults in response to WN and NI stimulus. The young
5xFAD had significantly higher burst values than the
WT (Fig. 3B) except for the response to WN stimu-
lus (Table 3). The adult 5XFAD had the lowest burst



Table 3

The median (M) and 25%—75% percentile (P25 and P75 respectively) to Burst values of RGCs elicited by each stimulus (S). WN, white noise; NI, natural image; SA, scotopic activity; PA, photopic
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activity; n.s., non-significant; MW, Mann Whitney (p <0.0001, p<0.001, p<0.01, p <0.05)

5xFAD Young Statistical Youngs WT Adult 5xFAD Adult Statistical Adults

WT Young

(n=1192)

=780)

(n

(n=673)

(n=1145)

%Change

Mw (p)

75
0.

P25

0.02

0.07
0.009

P75
0.35
0.45
0.28
0.25

P25

%Change

MW (p)

P75

P25
0.04
0.12
0.02
0.01

P75
0.53
0.70
0.24
0.24

P25
0.04
0.09
0.01
0.01

1 18%
131%
1 50%
1 42%

p<0.01

24
34
13
16

0.09
0.16
0.04
0.04

0.11
0.21
0.08
0.07

0.02

152%
1 36%
1 50%
1 50%

n.s.
p<0.05
p<0.01

0.45
0.74
0.28
0.28

0.18
0.34
0.09
0.09

Burst values of RGCs under illumination conditions.

0.19
0.29
0.06
0.06

WN

<0.001
p<0.0001
p<0.0001

0.

0.07

NI

0.

0.01

SA
PA

0.

0.009

0.01

p<0.05
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Fig. 3. Representative FR response and Burst in 5XFAD and WT
at different ages and using various stimuli. A) FR values are shown
in a violin plot. B) Number of Bursts. WN, white noise; NI, natural
image; SA, scotopic activity; PA, photopic activity. Mann-Whitney
test: *p<0.05, **p<0.01, **p <0.001, ***p <0.0001.

values, for all stimuli, compared to WT (Fig. 3B,
Table 3). Consequently, the accumulated frequency
response shows the adult 5XFAD had significantly
lower values when compared to the WT and for all
stimuli (Supplementary Figure 2 and Supplementary
Table 2). Furthermore, the young 5xFAD retina had
the highest accumulated frequency response to NI,
PA, and SA compared to the WT retina.

Interestingly, the most complete and complex stim-
uli we used here is the natural stimuli NI (a short
movie with a natural sequence of images, including
movement, stops, intensity, and contrast variation)
and is the one that best discriminates RGC responses
among our experimental groups.

In brief, young retinas tended to have higher FR
response than adults, and young 5xFAD had higher
FR and burst values than the WT, strongly suggesting
physiological hyperactivity in early stages of AD neu-
rodegeneration. Conversely, adult 5XFAD had lower
FR and burst values than the WT, suggesting phys-
iological hypoactivity at this later stage of the AD
disease. We conclude that both hyperactivity and
hypoactivity support the idea of functional alterations
in RGCs in the 5XFAD retina. These alterations are
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Fig. 4. Glutamate labeling in 5SXFAD and WT retinas. A) Young WT has a strong labeling pattern in the INL (black arrows) and weaker in
GCL (black arrowhead). C) Young 5XxFAD with strong labeling in the GCL (head of red arrows) and weak in INL (red arrows). E) Adult
WT labeling in the INL (arrows black) and GCL (black arrowhead). G) Adult 5XFAD showed labeling in the INL (red arrows) and intense
labeling in GCL, like the young S5xFAD retina (arrowheads). B, D, F, and H show the retinal average pixel value plot. These panels indicate
the intensity of Glutamate staining in all layers of the retina. The average and standard deviation of the measurements are displayed. AU,

arbitrary unit. Scale bar 15 wm.

dependent on the disease stage and the visual stimuli
used (e.g., NI).

Changes in glutamate and GABA levels

To understand the neurochemical mechanisms un-
derlying the electrophysiological results, we analy-
zed the labeling pattern of glutamate and GABA
neurotransmitters, both essential for excitatory/inhi-

bitory balance. We analyzed the presence of gluta-
mate and GABA neurotransmitters in different retinal
layers by comparing the WT and 5xFAD labeling
patterns.

Figure 4 and Table 4 show glutamate labeling in
the retinal layers. In young WT (Fig. 4A, B), gluta-
mate labeled the whole retina. However, it was more
pronounced in the inner nuclear layer (INL), more
intense among the BCs in the outer part of the INL
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Glutamate quantification obtained from sampled cells and retina layers (values are median (M) and 25%-75% percentile of Pixel Intensity).
BCs, bipolar cells; ACs, amacrine cells; IPL, inner plexiform layer; GCL, ganglion cell layer; n.s., non-significant; MW, Mann Whitney Test
(p<0.0001, p<0.01)

Glutamate WT Young 5xFAD Young Statistical WT Adult 5xFAD Adult Statistical
Youngs Adults
P25 M P75 P25 M P75 MW(p) P25 M P75 P25 M P75 MW (p)
BCs 061 072 083 022 029 0.34 p<0.0001 048 0.60 0.69 048 0.56 0.61 p<0.01
ACs 065 069 076 047 048 0.57 p<0.0001 052 055 057 042 045 0.48 p<0.0001
IPL 036 038 047 045 050 0.56 p<0.0001 040 048 0.55 050 058 0.65 p<0.0001
GCL 0.07 020 036 0.10 034 0.75 p<0.0001 0.10 029 036 038 040 0.78 p<0.0001

Glutamate quantification in the retina.

and weaker in the inner part of the INL, where ACs
are located. Labeling was also observed in the IPL,
with the weakest labeling seen in the GCL. Retinas of
adult WT (Fig. 4E, F) showed a similar labeling pat-
tern than the young WT, displaying intense labeling
in the INL and weaker labeling in the GCL. On the
other hand, young 5xFAD retinas (Fig. 4C, D) showed
weaker labeling in the INL, but intense labeling
was observed at the level of the GCL. Moreover,
in the adult 5XFAD, intense labeling was observed
in the GCL (Fig. 4G, H). For better visualization of
Glutamate labeling in the retina, see Supplementary
Figure 3 that has larger retinal images.

In the young 5XxFAD and WT retinas, GABA label-
ing was intense in the IPL while weak in the GCL; see
Fig. 5 and Table 5. In young WT retinas (Fig. 5A, B),
GABA was observed in the inner part of the INL, cor-
responding to the ACs area. Strong labeling was also
observed in the IPL, while it was weak in the GCL.
The retinas of adult WT (Fig. 5E, F) showed a similar
GABA labeling pattern than young WT. The young
5xFAD (Fig. 5C, D) had a pattern of labeling similar
to the young WT, but labeling was more intense in
the internal part of the INL and the IPL. In the adult
5xFAD (Fig. 5G, H), intense labeling was seen in the
INL and in the IPL. However, weak or no GABA
labeling was observed among cells in the GCL. For
better visualization of GABA in the retina, Supple-
mentary Figure 4 contains larger retinal images.

DISCUSSION

The 5xFAD mouse has been used in many stud-
ies to understand the progress of AD. An exciting
and critical part of the nervous system is the retina
for its accessibility and functionality, where the role
of genes, molecules, and the physiology of neu-
ral networks can be tested. Here, we compared the
response of RGCs in the 5xFAD and WT mice dur-
ing the course of aging and neurodegeneration. It

has already been reported that the accumulation of
AP peptide starts during an asymptomatic stage of
AD in humans followed by a clinical-stage with
cognitive alterations [4]. The later has an equiva-
lent in the adult SXFAD transgenic mice [19]. We
observed that changes in the RGCs in the 5XxFAD
started in the young mice, which showed neuronal
hyperactivity compared to WT. Hypoactivity was
observed in the adult, comparable to the clinical
stage of AD in humans. When those electrophysi-
ological results were compared to the Glutamate and
GABA neurotransmission levels during aging, a good
correlation was obtained (Fig. 6). We observed that
the high FR of RGCs (hyperactivity) in the young
5xFAD correlated well with a significant glutamate
increase in the GCL layer. Moreover, GABA was sli-
ghtly higher in young 5xFAD compared to young WT.

On the other hand, the FR in the adult 5SXFAD dec-
reased (hypoactivity) considerably compared to the
young 5xFAD. Glutamate levels in adult 5xFAD in-
creased only slightly compared with young 5xFAD.
However, GABA significantly increased in the adult
5xFAD. This alteration of glutamate and GABA
levels observed in 5xFAD, contribute to important
changes in excitation-inhibition balance, which could
explain the hyperactive and hypoactive physiological
states of RGC.

As the retina is a neural network formed by genet-
ically, molecularly and structurally diverse neurons,
it is not expected in AD to see generalized damage,
because not all neuronal circuits are affected equally
by, for example, A3 deposition during aging and neu-
rodegeneration. In the rd10 and rd1 transgenic mouse
model of retinal neurodegeneration, there is aberrant
neural hyperactivity [26], which can be specifically
modulated using gap junction blockers to improve
light sensitivity. On the other hand, there is evidence
supporting the origin of RGCs aberrant hyperactivity
in ACs and BCs associated with an imbalance
in excitatory and inhibitory signals [26]. Further-
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YOUNG

ADULT

Fig.5. Strong GABA labeling in the INL in 5XFAD retinas. A) Young WT retina showed specific labeling in the internal INL (black arrow), in
the IPL and the GCL (black arrowhead). C) Young S5XFAD showed a strong signal in the INL (red arrow), IPL, and the GCL (red arrowhead).
E) Adult WT showed labeling in the INL (black arrow), in the IPL and the GCL (black arrowhead). G) Adult 5XFAD showed strong labeling
in the INL (red arrow), IPL, but there was reduced labeling in the GCL (head of red arrow). B, D, F, and H, show the average pixel value
for the corresponding retinal layers. The average and standard deviation of the measurements are displayed. AU, arbitrary unit. Scale bar

15 pm.

more, hyperactivity is supported by dysregulation of
neuromodulators (nitric oxide, dopamine) or gap jun-
ctions in glaucoma mice models [78]. Neuronal
hyperactivity also affects diabetic mice, particularly
ON-type RGCs, suggesting the functional changes is
similar to what is observed in the AD model [68].
During aging, the P23H transgenic rat has a dec-
rease in the size of RGCs receptive field, with an

increase in response latency (from P37 to P600)
compared to WT. Although ON RGCs usually
respond to light, the spontaneous spike firing activ-
ity was decreased [79]. In our study, both adult WT
and 5xFAD show a functional decrease of RF com-
pared to young mice, which can be associated to the
changes in glutamate and GABA levels. Young WT
showed an increase in glutamate levels in BCs and
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Table 5

S15

GABA quantification obtained from sampled cells and retina layers (values are median (M) and 25%-75% percentile of Pixel Intensity). ACs,
amacrine cells; IPL, inner plexiform layer; GCL, ganglion cell layer; n.s., non-significant; MW, Mann Whitney Test (p <0.0001, p <0.05).

GABA WT Young 5xFAD Young Statistical WT Adult 5xFAD Adult Statistical
Youngs Adults

P25 M P75 P25 M P75 MW (@{p) P25 M P75 P25 M P75 MW (p)

ACs 047 052 054 050 052 0.55 n.s. 033 046 050 044 052 0.61 p<0.0001

IPL 053 056 059 055 0.63 0.65 p<0.05 039 047 053 056 0.71 0.77 p<0.0001

GCL 037 039 040 046 049 0.51 p<0.0001 033 035 037 011 0.20 0.23 p<0.0001

GABA quantification in the retina.
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Fig. 6. Proposed model comparing the firing rate in 5XFAD and
WT response to a natural stimulus (NI). Dashed and continuous
lines are a fitted function to the indicated parameters. All the data
were normalized to the maximum % value to fit a Gaussian dis-
tribution. Glu, glutamate; FR, fire rate; GCL, ganglion cell layer;
IPL, inner plexiform layer.

ACs and lower levels in the IPL. and GCL compared
to the 5XxFAD. Those values decreased in BCs and
ACs in the adult WT but increased in the 5xFAD,
whereas the IPL and GCL levels increased in adult
WT and 5XxFAD. In the 5XxFAD retina, GABA showed
increased labeling in INL and IPL with age. We
suggest that a differential expression of the gluta-
mate neurotransmitter in different retinal neurons and
layers during aging influences the observed RGC
response in this transgenic AD model. In particular,
the activation of Miller and astrocyte cells, which
are described to be involved in AD mice [80, 81],
correlates well with the observed transition from
hyperactivity to hypoactivity.

Interestingly, when we compared the FR and burst
activity with glutamate and GABA levels during
aging, we observed a good correlation with the retinal
physiology and neurochemical change, particularly
with the RGCs in the GCL. Hyperactivity observed
at a preclinical stage and hypoactivity at a clinical
stage suggest good biomarkers to determine the stage
and severity of neurodegeneration during the course

of aging and AD. In this work, we have not evaluated
the presence of AP peptides in the retina, but other
reports have indicated that the accumulation of pep-
tides in the retina, in animal models or AD patients,
causes changes in synaptic transmission by activation
of GABA receptor [21, 82]. In conclusion, we sug-
gest distinct functional and molecular changes in the
retina at different stages AD: RGC hyperactivity is
an early pre-clinical biomarker and hypoactivity is a
late-stage biomarker of the progressive neuropathol-
ogy of AD.
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