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Polynomial degeneracy

for the first m energy levels

of the antiferromagnetic Ising model

Andrea Jiménez1

Abstract. In this work, we continue our investigation on the antiferromagnetic Ising model

on triangulations of closed Riemann surfaces. On the one hand, according to R. Moess-

ner and A. P. Ramirez [11], the antiferromagnetic Ising model on triangulations exhibits

geometrical frustration, a well-studied concept in condensed matter physics. Typical geo-

metrically frustrated systems present an exponential ground state degeneracy. On the other

hand, the dual graph of a triangulation of a closed Riemann surface is a cubic graph. Cu-

bic bridgeless graphs have exponentially many perfect matchings [3, 5], which implies in

the case of planar triangulations, an exponential ground state degeneracy. However, this

phenomenon does not persist for triangulations of higher genus surfaces.

A possible explanation for a geometrically frustrated system with a low ground state

degeneracy is that exponentially many states exist at a low energy level. In this work,

we constructively show that this explanation does not match with the behavior of all

triangulations of closed Riemann surfaces. To be more specific, for each integer m � 1, we

construct a collection of triangulations ¹Tnºn>N.m/ of a fixed closed Riemann surface with

the property that the degeneracy of each of the first m energy levels of Tn is a polynomial

in the order n of Tn.
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1. Introduction

In this work, all graphs considered are simple; namely, loopless and without

multiple edges. A triangulation T of a closed Riemann surface S is an embedding

of a graph .V; E/ in S such that each facial boundary is a 3-cycle of .V; E/ and each

edge belongs to exactly two facial boundaries. Triangulations are fundamental

objects of study in topological graph theory [12], computer science [13], and

quantum geometry and statistical physics [1, 2], among others.

Let T D .V; E; F / be a triangulation of a closed Riemann surface, where F

is the set of facial boundaries given by the embedding of .V; E/ in the surface. In

the Ising model, values +1 and -1 are typically called spins and a spin-assignment

on U � V is a function � W U ! ¹+1; -1º. A state on T is a spin-assignment on

U D V . For every state � on T , the energy of � in the antiferromagnetic Ising

model is given by the following expression

H.�/ D
X

uv2E

�u�v: (1)

States that provide the lowest possible energy are known as ground states and the

number of distinct pairs �; -� of ground states is called ground state degeneracy.

The ground state degeneracy is a vastly studied parameter [6, 10]. In general,

its asymptotic behavior determines the entropy of the system, which helps to

comprehend physical phenomena associated with order and stability [15, 16].

In this work, we refer to an edge e D uv 2 E as frustrated by a spin-

assignment � on U � V , with u; v 2 U , if �.u/ D �.v/. Note that a given

state � on T is a ground state if and only if it frustrates the lowest possible number

of edges. Geometrical frustration is a very broad and important concept from con-

densed matter physics [4, 11, 14]. A general definition is that a system exhibits ge-

ometrical frustration when a certain type of local order condition cannot be prop-

agated through the system [14]. According to R. Moessner and A.P. Ramirez [11],

the antiferromagnetic Ising model on triangulations T is a geometrically frustrated

system because every state frustrates at least one edge of each face boundary of T .

Further, the ground state degeneracy in a system that exhibits geometrical frus-

tration is predicted to be very large in the size of the system [4, 11]. In fact,

ground state degeneracy of the antiferromagnetic Ising model on triangulations

of the plane is exponential, since it is equal to the number of perfect matchings

of cubic bridgeless planar graphs [3, 8, 9]. Though the number of perfect match-

ings of general cubic bridgeless graphs is exponential [5], we have shown [7] that,

in general, ground state degeneracy of the antiferromagnetic Ising model on tri-

angulations does not have an exponential growth. In a personal communication,

M. Mezzard explained to us that there might be geometrically frustrated systems
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with a non-highly degenerate ground state, in which case one would expect that,

there are exponentially many states which provide low energy. In this work, we

prove that triangulations of closed Riemann surfaces do not behave as expected in

a very strong sense. We make this formal in the next paragraphs.

An energy level of the antiferromagnetic Ising model on a triangulation T is

any integer ! satisfying that there is a state � on T such that ! D H.�/. For every

integer k � 0, the k-th energy level is defined to be the (k)th smallest energy level.

Moreover, a state � is said to be at the k-th energy level if H.�/ equals the k-th

energy level. A ground state is at the 0-th energy level. The number of distinct

pairs �; -� of states at a specific energy level is known as the degeneracy of the

energy level.

In this work, and in the context of the antiferromagnetic Ising model, we prove

that for each integer m � 1 there exists a collection of triangulations of a fixed

closed Riemann surface such that, the degeneracy of each of its first m energy

levels is a polynomial. More precisely, we establish the following.

Theorem 1. For each m 2 N, there exist n0; g.m/ 2 N; and a collection of

triangulations ¹Tm;nºn>n0
of the surface of genus g.m/ D O.mlog2 3/ such that

the degeneracy of each of its first m energy levels is a polynomial in n, where n is

the number of vertices of Tm;n.

Theorem 1 completely generalizes our previous result [7], where we obtained

the same conclusion for m D 5. In order to prove Theorem 1, in Section 2 we

describe the construction of the collection ¹Tm;nºn>n0
. Along this paper, we use

some definitions and terminology introduced in [7], however, these are repeated

here in order to make this document self-contained.

2. Construction of the collection ¹Tm;nºn>n0

The building blocks used to construct the triangulations of Theorem 1 are of

three distinct types: (i) root triangulations, (ii) inner triangulations, and (iii) leaf

triangulations. In order to describe them and establish their main properties, we

need to introduce the notion of punctured triangulations.

Punctured triangulations. A Riemann surface with holes S 0 is a surface ob-

tained from a closed Riemann surface S by removing a finite number of disjoint

open discs; the boundaries of the open disc are not necessarily disjoint. A punc-

tured triangulation of a Riemann surface with holes S 0 is an embedding of a graph

in S 0 such that each face boundary is a 3-cycle of the graph and each hole of S 0

is circumscribed by a 3-cycle of the graph. On the one hand, if every hole in a
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punctured triangulation of S 0 is filled with an open disc, then we obtain a triangu-

lation of S . On the other hand, a punctured triangulation can be naturally obtained

from a triangulation by removing a set of faces. In general, each term defined for

triangulations is naturally adapted to punctured triangulations. In Figure 2 this

concept is illustrated.

The construction of the triangulations of Theorem 1 consists on two steps.

Roughly speaking, in the first step we obtain a large punctured triangulation with

exactly one hole by taking union of building blocks, which in turn are punctured

toroidal triangulations. The description of each building block is in Subsection 2.1

and they are put together in Subsection 2.3.1. In the second step, we cover the

hole of the large punctured triangulation obtained in the first step with a special

type of planar triangulation referred to as strip of triangles, which is described in

Subsection 2.2. The construction is completed in Subsection 2.3.2.

2.1. Description of the building blocks: root, inner and leaf triangulation.

Each building block in our construction is a punctured triangulation obtained from

the toroidal triangulation depicted in Figure 1. Though the building blocks in our

construction do not differ much in structure, they perform very different tasks.

While in the root triangulation is decided whether the current energy level has

an exponential degeneracy or not, inner triangulations replicate the information

encoded in the root triangulation and in the leaf triangulations the energy level is

determined.

The names given to each of the building blocks are a natural consequence of

the structure of the triangulations Tm;n of Theorem 1: each Tm;n can be seen as a

rooted tree where the root triangulation is the root vertex, the inner triangulations

are the inner vertices and the leaf triangulations are the leaves of the tree.

We now describe the three building blocks. We refer to the toroidal triangula-

tion depicted in Figure 1 as main triangulation and use the labellings of its vertices

as drawn in the same figure. Let us now agree on some terminology. In what fol-

lows, T 0 denotes a punctured triangulation obtained from the main triangulation

by removing a subset of its faces, not necessarily non-empty. The subset of ver-

tices ¹x; y; zº of V.T 0/ is called main triangle of T 0, and the subsets of vertices

¹z; y; w1º; ¹w2; z; xº; ¹w3; y; xº of V.T 0/ are called transfer triangles of T 0.

A root triangulation (and also, an inner triangulation) is a punctured triangu-

lation obtained from the main triangulation by removing four of its faces: the face

bounded by the main triangle and the three faces which are bounded by a transfer

triangle. A leaf triangulation is a punctured triangulation obtained from the main

triangulation by removing the face bounded by the main triangle. See Figure 2.
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Figure 1. On the left hand side we find the main triangulation and the labeling of its vertices

used throughout the paper. On the right hand side is depicted the standard spin-assignment

on the vertices of the main triangulation.
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Figure 2. Root (and inner) triangulation is depicted in the left hand side. Leaf triangulation

is depicted in the right hand side. Both triangulations are punctured triangulations obtained

from the main triangulation. Shaded triangles correspond to removed triangles.

We define the standard spin-assignment on V.T 0/, and denote it by �s, as the

unique spin-assignment on V.T 0/ which frustrates one edge of each face boundary

of the main triangulation and �s.x/ D +1. It is not hard to check that the spin-

assignment depicted in Figure 1 is the standard spin-assignment. Further, the

edges in E.T 0/ which are frustrated under �s are referred to as link edges of T 0.

By definition, every face boundary in the main triangulation has exactly one link

edge.

A spin-assignment � on S � V.T 0/ is called congruent on a subset of vertices

S 0 � S if �.S 0/ 2 ¹�s.S
0/; ��s.S

0/º. Otherwise � is called incongruent on S 0.

The following claim is trivial.
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Claim 2. A spin-assignment � is incongruent on the main triangle ¹x; y; zº of T 0

if and only if �.x/ D �.z/ or �.x/ D �.y/.

We now examine some key properties of the building blocks. Along this work,

we say that a face of a triangulation (or of a punctured triangulation whenever

the face exists1) is frustrated by a spin-assignment � if each edge of its boundary

is frustrated by � . The motivation to introduce the notion of frustrated faces is

that, in our setting, the energy provided by a spin-assignment depends only on

the number of frustrated and non-frustrated faces that it holds. More precisely,

note that for a triangulation T D .V; E; F / and a spin-assignment � on V.T /, the

energy H.�/, defined in equation (1), is given by

H.�/ D
3

2
j¹f 2 F frustrated by �ºj �

1

2
j¹f 2 F not frustrated by �ºj: (2)

Lemma 3. Let T be a leaf triangulation and let ¹x; y; zº be the main triangle of T

with ¹z; yº a link edge.

(i) If � is a spin-assignment on V.T / incongruent on ¹x; y; zº, then � is incon-

gruent on at least two transfer triangles of T and it frustrates at least one

face of T .

(ii) If � 0 is a spin-assignment on ¹x; y; zº congruent on ¹x; y; zº, then there exists

a unique spin-assignment � on V.T / so that �.¹x; y; zº/ D � 0.¹x; y; zº/,

� frustrates no face of T and � is congruent on each transfer triangle of T .

Proof. We prove (i) first. Assume that �.x/ D �.z/. The case �.x/ D �.y/

follows analogously due to the symmetry of the leaf triangulation. The assumption

�.x/ D �.z/ implies that � is incongruent on ¹w2; z; xº. If �.y/ D �.x/, then � is

incongruent on ¹w3; y; xº and if �.y/ ¤ �.x/, then � is incongruent on ¹z; y; w1º.

Next, we prove that at least one face of T is frustrated by � .

We can assume that �.w2/ ¤ �.x/, otherwise ¹w2; z; xº is frustrated by � .

We suppose first �.y/ D �.x/. If �.w1/ D �.x/ or �.w3/ D �.x/, then at least

one face is frustrated by � . Hence, we can assume �.w1/ D �.w3/ ¤ �.x/.

If �.w5/ D �.w1/, then at least two faces are frustrated by � . Thus, we can

further assume that �.w5/ ¤ �.w1/. Finally, �.w4/ D �.w3/ or �.w4/ ¤ �.w3/,

implies that at least one face is frustrated by � . For the second case, we suppose

�.y/ ¤ �.x/. We can assume that �.w1/ D �.w4/ ¤ �.y/, otherwise � frustrates

1 In a punctured triangulation removed faces do not count as faces of the embedding. Thus,

for the same underlying graph and the same spin-assignment frustrated faces in a triangulation

are not necessarily frustrated faces in a punctured triangulation.
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at least one face. We can further assume �.w3/ ¤ �.z/, otherwise at least one face

is frustrated by � . Finally, �.w5/ 2 ¹+; -º leads to one face frustrated by � .

In order to prove (ii), we first note that by definition of the standard spin-

assignment, either �s or -�s satisfies the required properties (see Figure 1). We

now prove uniqueness. Let � be the spin-assignment on V.T / satisfying the

required properties. Then �.w1/ ¤ �.z/, �.w2/ D �.z/ and �.w3/ D �.y/

since � is congruent on the transfer triangles of T . Moreover, if � does not frustrate

any face of T , then �.w1/ D �.w4/ D �.w5/. �

We observe that Lemma 3 also applies to root triangulations and inner tri-

angulations, as these can be obtained from a leaf triangulation by removing the

three faces which are bounded by a transfer triangle. More precisely, we have the

following corollary for root and inner triangulations.

Corollary 4. Let T be a root triangulation or an inner triangulation and let

¹x; y; zº be the main triangle of T with ¹z; yº a link edge.

(i) If � is a spin-assignment on V.T / incongruent on ¹x; y; zº, then � is incon-

gruent on at least two transfer triangles of T .

(ii) If � 0 is a spin-assignment on ¹x; y; zº congruent on ¹x; y; zº, then there exists

a unique spin-assignment � on V.T / so that �.¹x; y; zº/ D � 0.¹x; y; zº/,

� frustrates no face of T and � is congruent on each transfer triangle of T .

2.2. Strip of triangles. For every k � 0, the strip of triangles �k on k inner

vertices is the plane triangulation defined as follows. Let �0 be a plane triangle

on vertex set ¹x0; y0; z0º. For i � 1, let �i be the plane triangulation obtained

from �i�1 by first inserting a new vertex yi into the inner face ¹x0; yi�1; z0º of

�i�1, and then connecting the new vertex yi to each vertex x0; yi�1 and z0 (see

Figure 3). We say that x0; z0 are the big vertices of �k. Strips of triangles belong

to a family of plane triangulations usually known as stack triangulations (see [8]).

The next statement describes the useful properties of the strips of triangles.

Proposition 5. For every k � 0, let �k be the strip of triangles with outer

face ¹x0; y0; z0º and big vertices x0; z0. Define ˆq.k/ as the number of spin-

assignments on V.�k/ that assign ¹C; �; Cº to ¹x0; y0; z0º and frustrate exactly

q � 0 faces of �k . Then ˆq.k/ 2 O.kq/.

Proof. We proceed by induction on q. For the case q D 0 is easy to check that

if a spin-assignment � on ¹x0; y0; z0º assigns ¹+; -; +º to ¹x0; y0; z0º, then there

is a unique way to extend � to a spin-assignment on V.�k/ so that no face is
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Figure 3. Strip of triangles.

frustrated. Thus, ˆ0.k/ D 1 for every k � 0. Note that any spin-assignment on

V.�k/ that assigns ¹+; -; +º to ¹x0; y0; z0º frustrates at most k faces of �k, and

then, ˆq.k/ D 0 whenever q > k. For the case that q � k, it is easy to check that

ˆq.k/ D ˆq�1.k � 1/ C ˆq.k � 1/ (3)

which together with the induction hypothesis, ˆq�1.k � 1/ 2 O.kq�1/, implies

that ˆq.k/ 2 O.kq/. �

2.3. Assembling the building blocks. In order to define the collection of trian-

gulations ¹Tm;nºn>n0
for each m 2 N, we first recursively define a collection of

punctured triangulations ¹Tmºm2N, with Tm of genus g.m/ and exactly one hole.

Each Tm is a union of building blocks.

2.3.1. Recursive construction of ¹Tmºm2N. Let g.m/ denote the genus of Tm

for each m 2 N. We first describe T0. Triangulation T0 is a leaf triangulation,

g.0/ D 1 and jV.T0/j D 8. We now suppose m � 1. If m is odd, then

the triangulation Tm is the union of a root triangulation and three copies of

T.m�1/=2: each of the transfer triangles of the root triangulation is identified with

the main triangle of a copy of T.m�1/=2 so that link edges coincide. Hence, Tm

has exactly one hole, namely the hole bounded by the main triangle of the the root

triangulation used in its construction. Moreover, g.m/ D 1 C 3g..m � 1/=2/ and

jV.Tm/j D 8C3 � .jV.T.m�1/=2/j�3/ D 3 � jV.T.m�1/=2/j�1. If m is even, then the

triangulation Tm is the union of a root triangulation, two copies of T.m=2/ and a

copy of T.m=2/�1: two transfer triangles of the root triangulation are identified with

the two main triangles of the two copies of T.m=2/ and the third transfer triangle

is identified with the main triangle of the copy of T.m=2/�1. In both cases the
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identification is made so that link edges coincide. As before, Tm has exactly one

hole. Moreover, g.m/ D 1 C 2g.m=2/ C g..m=2/ � 1/ and jV.Tm/j D 8 C 2 �

.jV.T.m=2//j�3/CjV.T.m=2/�1/j�3 D 2 � jV.T.m=2//jC jV.T.m=2/�1/j�1. Again,

we refer to the main triangle of the root triangulation used in the construction of

Tm as the main triangle of Tm. Clearly, there is a positive constant c such that

jV.Tm/j � c � m2 for each m � 1.

Lemma 6. Let � be a state of Tm. If � is incongruent on the main triangle then,

the number of faces frustrated by � on Tm is at least m C 1.

Proof. By induction on m. If m D 0, then the result follows by Lemma 3(i).

Suppose m > 0 is odd. Due to Corollary 4(i), the state � is incongruent on at

least two transfer faces of the root triangulation used in the construction of Tm.

By construction of Tm, these two transfer faces are main triangles of two copies

of T.m�1/=2. By the induction hypothesis, the number of faces frustrated by � on

each copy of T.m�1/=2 is at least m�1
2

C 1 and the result follows. Now, suppose

m > 1 is even. Again, due to Corollary 4(i), the state � is incongruent on at

least two transfer faces of the root triangulation used in the construction of Tm.

By construction of Tm, these two transfer faces are main triangles of either two

copies of T.m=2/ or of a copy of T.m=2/�1 and a copy of T.m=2/. By the induction

hypothesis, in the first case, we obtain that the number of faces frustrated by � on

Tm is at least m C 2 and in the second case, it is at least m C 1. �

2.3.2. Construction of Tm;n. Let ¹Tmºm2N be the collection of punctured tri-

angulations defined in Subsection 2.3.1. Let m 2 N, n > n0 D jV.Tm/j and

k D n � jV.Tm/j. Let �k be the strip of triangles on k internal vertices, as de-

scribed in Subsection 2.2, with outer face ¹x0; y0; z0º. We keep the labeling of

the vertices in the main triangle of Tm as depicted in Figure 1 and x0; z0 are the

big vertices of �k as depicted in Figure 3. The triangulation Tm;n is the union

of �k and Tm following the rule: the main triangle ¹x; y; zº of Tm is identified

with the outer face ¹x0; y0; z0º of �k so that edge xz of the main triangle coin-

cides with edge x0z0 of the outer face of �k. The genus of jV.Tm;n/j is g.m/ and

jV.Tm;n/j D k C jV.Tm/j D n.

We are now ready to prove Theorem 1.

3. Proof of Theorem 1

Let m 2 N and n0 D jV.Tm/j � c � m2, where ¹Tmºm2N is the collection of

punctured triangulations defined in Subsection 2.3.1 and c is some positive con-
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stant. We show that the collection of triangulations ¹Tm;nºn>n0
defined in Sub-

section 2.3.2 proves Theorem 1. By construction, the genus of each triangulation

Tm;n, denoted by g.m/, is described according to the following recursively defined

function g.0/ D 1 and for m > 0

g.m/ D

8

ˆ

<

ˆ

:

1 C 2g
�m

2

�

C g
�m

2
� 1

�

if m is even,

1 C 3g
�m � 1

2

�

if m is odd.

and jV.Tm;n/j D n. We now prove that in Tm;n the degeneracy of each of its first m

energy levels is a polynomial in n.

We use the following claim.

Claim 7. For each 0 � t � m, there is a spin-assignment on V.Tm;n/ which

frustrates exactly t faces of Tm;n.

Proof. Let � 0 be a congruent spin-assignment on the main triangle ¹x; y; zº

of Tm;n. Due to Lemma 3(ii) and Corollary 4(ii), there is a spin-assignment � on

Tm such that �.¹x; y; zº/ D � 0.¹x; y; zº/ and � frustrates no face of Tm. Further,

the congruent spin assignment � 0 on ¹x; y; zº is a spin-assignment on the outer

face of the strip of triangles �k which assigns distinct spins to the big vertices

and hence, due to Proposition 5, for each 0 � t � m there is a spin-assignment �t

on �k that frustrates exactly t faces of �k. Thus, the spin-assignment � [ �t on

V.Tm;n/ proves the claim for each 0 � t � m. �

Let 0 � t � m be fixed. We now give an upper bound on the degeneracy of the

t -th energy level and show that it is a polynomial in n. Combining the previous

claim and equation (2), we obtain that a spin-assignment � on V.Tm;n/ is at the

t -th energy level if and only if � frustrates exactly t faces of Tm;n. Therefore, due

to Lemma 6, a spin-assignment � at the t -th energy level must be congruent on

the main triangle ¹x; y; zº of Tm;n and hence, it assigns distinct spins to the big

vertices of the outer face of the strip of triangles �k. According to Proposition 5,

the number of spin-assignments on �k which frustrates exactly q faces of �k and

assigns distinct spins to the big vertices is O.kq/ for each q � t . Since there exist

2jV.Tm/j spin-assignments on Tm, the number of spin-assignments on Tm;n which

frustrate exactly t faces of Tm;n is at most 2jV.Tm/j
P

q�t O.kq/ � O.nt /.
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