
Journal of Alzheimer’s Disease xx (20xx) x–xx
DOI 10.3233/JAD-201178
IOS Press

1

Review

Alzheimer’s Disease, Neural Plasticity,
and Functional Recovery

Daymara Mercerón-Martı́neza,1,∗, Cristobal Ibaceta-Gonzálezb,1, Claudia Salazarb,
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Abstract. Alzheimer’s disease (AD) is the most common and devastating neurodegenerative condition worldwide, character-
ized by the aggregation of amyloid-� and phosphorylated tau protein, and is accompanied by a progressive loss of learning and
memory. A healthy nervous system is endowed with synaptic plasticity, among others neural plasticity mechanisms, allowing
structural and physiological adaptations to changes in the environment. This neural plasticity modification sustains learning
and memory, and behavioral changes and is severely affected by pathological and aging conditions, leading to cognitive dete-
rioration. This article reviews critical aspects of AD neurodegeneration as well as therapeutic approaches that restore neural
plasticity to provide functional recoveries, including environmental enrichment, physical exercise, transcranial stimulation,
neurotrophin involvement, and direct electrical stimulation of the amygdala. In addition, we report recent behavioral results
in Octodon degus, a promising natural model for the study of AD that naturally reproduces the neuropathological alterations
observed in AD patients during normal aging, including neuronal toxicity, deterioration of neural plasticity, and the decline
of learning and memory.
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Alzheimer’s disease (AD) is one of the most com-
mon and devastating neurodegenerative diseases that
occur during aging and is characterized by a progre-
ssive neurodegeneration process that produces learn-
ing and memory loss. Although there is no consensus
yet on the origin of AD, we can mention some can-
didates: the amyloid-� protein (A�) cascade, i.e.,
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A� accumulation (soluble or in plaques) [1, 2]; the
accumulation of phosphorylated tau protein (tangles)
[3]; and a neurovascular failure-inducing degenera-
tion [4, 5]. AD is associated with the accumulation
and deposition of A�, astrogliosis, oxidative injury,
the formation of neurofibrillary tangles, cell death,
and neurotransmission alterations that impair synap-
tic plasticity (SP) and cognition. One of the dominant
working hypotheses involves the A� cascade, which
is supported by research that makes use of transgenic
mice expressing familial mutations of the human
amyloid precursor protein (APP) and presenilin and
results in the development of deficits in neural plas-
ticity, learning, and memory. Nevertheless, these
transgenic mice rarely develop neurofibrillary tangles
and exhibit little synaptic and neuronal loss [6–13].
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Instead of using mice, which are short-lived, another
approach involves the use of long-lived animal mod-
els that naturally and progressively express hallmarks
of AD as they age [13, 14] and constitute more real-
istic models of AD. These models are vital to test
different etiologies, e.g., the amyloid cascade of the
disease [15, 16]. In this regard, one promising model
is the rodent, Octodon degus (degus), which develops
brain changes during aging similar to those observed
in patients with AD [13, 17–20]. Another critical
issue that must be taken into account to advance in
the treatments for AD is to include neural plasticity
as part of the treatment since it contributes to sustain-
ing memory and learning and the nervous system’s
self-repair [21–24].

Here we review the advantages and disadvantages
of animal models that naturally develop AD neu-
ropathology, as well as some therapeutic procedures,
such as environmental enrichment, physical exercise,
transcranial stimulation, neurotrophins, and direct
electrical stimulation of the amygdala, that improve
neural plasticity and achieve a functional recovery of
learning and memory [21–24].

NEURAL PLASTICITY AND
NEURODEGENERATION

In contrast to what was previously believed, the
central nervous system (CNS), unlike thought for
many years, can dynamically modify its properties
in response to changes in the environment. This view
extends to neural plasticity’s mechanisms associated
with learning and memory and the recovery of func-
tion after injury [21–24]. In its broadest sense, neural
plasticity means the capacity for functional or mor-
phological changes, of the CNS and its component
elements (e.g., nerve cells and synapses), by external
agents’ actions. This plasticity must be differentiated
from genetically programmed modifications. Exter-
nal agents are usually sensory stimuli and traumatic
injuries, which make each unique and different expe-
rience. Thus, neural plasticity stands out for its ad-
aptive value, allowing the compensatory changes
induced by experience to occur in the CNS continuou-
sly [21, 25]. The mechanisms of neural plasticity are
diverse. They can vary from extensive morphological
modifications, such as those observed in the regener-
ation of axons and new synapse formation, to subtle
molecular changes that alter the cellular response to
neurotransmitters [26, 27]. In this sense, two neu-
ral plasticity forms can differentiate morphological

or growth plasticity and functional plasticity [21,
28], where morphological plasticity includes neu-
rogenesis, regeneration, axonal collateral formation,
and reactive synaptogenesis. Santiago Ramón y Cajal
was the first to propose plasticity in the number and
strength of neural connections as the physical basis
of learning and memory.

Years later, the psychologist Donald Hebb [29]
proposed plasticity as the mechanism by which the
coincidence of pre- and postsynaptic activity could
modify the neural connections in specific structures
of the brain. In 1973, the first experimental evidence
was found that supported the hypothesis of Cajal
and Hebb, that is, that synapses can change as a
result of their activity [30–33]. This phenomenon has
been known as long-term potentiation (LTP) and con-
sists of a sustained increase in synaptic transmission
efficiency after stimulating an afferent pathway with
high-frequency stimuli. The entire transmission pro-
cess occurs faster and to a greater extent [34, 35].
Such changes happen immediately and have a vari-
able duration, depending on the protocol used for th-
eir induction, ranging from a few hours and days to
weeks. Since its discovery, LTP is proposed to be
the cellular basis of the processes that underlie learn-
ing and memory [34–36]. In particular, when LTP’s
efficacy decreases during, e.g., neurodegeneration
and or aging, there is also a decline in subjects’ cog-
nitive capacity. The presence of amyloid plaques,
neurofibrillary tangles, Lewy bodies, synaptic dystr-
ophy, synaptic loss, loss of dendritic extent, and neu-
rons loss in the brain [37, 38] has been described as
a normal process observed during human aging.
Although these changes are more subtle and selective
than in AD patients, a critical consequence is a decay
in neural plasticity (e.g., LTP) during aging [39].
Hence, failing neural plasticity mechanisms could
accelerate transit from normal aging to neurodegen-
eration [40]. Numerous studies have shown that AD
patients’ memory failures do not correlate well with
the amyloid plaque burden in recent years. Instead,
the loss of synaptic markers in the human cortex and
hippocampus is a better predictor of clinical symp-
toms and disease progression [41–44]; however, there
is no biomarker to measure the synaptic integrity dir-
ectly over time in AD patients. The methods used
most frequently to assess synaptic integrity are elec-
trophysiological and neuroimaging [44]. More direct
methods include neuroanatomical studies [45, 46]
and measuring mRNA or synaptic proteins [47, 48].
Of particular interest are soluble oligomeric species
that may play an essential role in synaptic dysfunction
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and neuronal loss in AD since current evidence indi-
cates that neuronal and a rise of Dickkopf-1 may
cause synapse loss, an antagonist of the endogenous
intracellular wnt pathway [49, 50], rather than by A�
plaque deposition per se [51, 52].

Tau hyperphosphorylation seems to play a more
critical role in synaptic dysfunction and cogni-
tive decline, affecting organelles’ axonal transport,
including the mitochondria [53, 54] and impair
AMPA receptor clustering [55]. The colocalization
of A� and tau [56], observed in AD patients, sug-
gests potentiation of these adverse effects because tau
could become hyperphosphorylated in the amyloid
presence [57].

We hypothesize neurodegeneration and cognitive
decay during aging could, at least in part, be related
to a failure of neural mechanisms to process informa-
tion and to accommodate new learning and memory,
practically a loss of neural plasticity. Therefore, the
modulation of neural plasticity mechanisms could
potentiate the recovery of lost functions in AD pat-
ients. Following this idea, we will expose some evi-
dence that strongly supports our hypothesis.

ENVIRONMENTAL ENRICHMENT AND
NEURAL PLASTICITY

Early evidence showed that environmental enrich-
ment produces changes in cortical weight and thick-
ness [58], and an increase of dendritic branching and
length, the number of dendritic spines, and the size of
synapses of some neuronal populations [59, 60] and
dental gyrus neurogenesis [61]. Additionally, at the
molecular level, environmental enrichment induces
the expression of brain-derived neurotrophic factor
(BDNF) and nerve growth factor (NGF) [62, 63],
synaptic proteins [64, 65], and NMDA (N-methyl-
d-aspartate) and AMPA (�-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid) receptor subunits
[66]. As a result, environmental enrichment increases
SP, such as LTP [67]. More importantly, environ-
mental enrichment improves learning and memory
at the behavioral level in young and old animals [68,
69]. Exciting results have shown that environmental
enrichment enhances learning and memory in rodent
models of neurodegenerative diseases such as AD. At
the molecular level, there is an increase in synapto-
physin, NGF, and neprilysin expression. Also, Adlard
et al. [70, 71] using mice expressing a double mutant
form of APP, showed an increased learning rate in
the water maze test. They decreased the expression

of A� plaques combining environmental enrichment
with running wheels for five months.

OCTODON DEGUS, A NATURAL MODEL
OF AGING AND NEURODEGENERATION

Although transgenic models have been instrumen-
tal in understanding familial forms of AD (5% of
cases), these models, by not reproducing the full spec-
trum of neurodegeneration, are ineffective for clinical
trials for sporadic AD (95% of cases) [12]. Aging is
a critical factor that allows the gradual manifestation
of the pathological mechanisms that accompany neu-
rodegeneration and dementia in patients with AD. In
general, the use of transgenic animals, although use-
ful, is limited to detailed comparisons and related to
the overexpression of specific proteins, such as the
amyloid-� protein precursor. Another drawback in
mice is that their lifespan is relatively short, 18–24
months, which is not sufficient to study the slow pro-
cess that accompanies aging. In this respect, a limita-
tion of currently validated animal models is that few
allow for studying the real impact of natural aging on
neurodegeneration development.

In the last few years, we have introduced the rodent,
Octodon degus (degus), a natural model candidate to
study aging and neurodegeneration since their brain
reproduces changes observed in AD patients [13,
17–20]. Degus are mainly diurnal, medium-sized
rodents and live in groups with high social interaction
in the wild and under laboratory conditions [72].
Degus A� peptide shows a high 97.5% amino acid
homology with humans, differing in only one amino
acid, unlike rat and mouse, which differ from the
human sequence in 3 amino acids [16]. Perhaps be-
cause of this, some aged degus naturally develop
AD-like pathologies, including the brain expression
of the neuronal A�PP (�-APP695), display both
intracellular and extracellular deposits of A�, intra-
cellular accumulations of tau-protein and ubiquitin, a
strong astrocytic response, and acetylcholinesterase-
rich pyramidal neurons. Moreover, during aging,
degus present symptoms associated with neurodegen-
eration and develop cognitive impairments including
object recognition, spatial memory, and SP associ-
ated with the NMDAR-dependent process, which
declines in an age-dependent manner (LTP and LTD).
In degus, these impairments correspond to a form
of sporadic AD with an increase of A� and soluble
A�*56 (12-mer) oligomer, suggesting a critical factor
for neural toxicity [51, 73], and tau deposition [74].
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Consequently, SP in degus is affected during aging,
especially at the postsynaptic level, with a decrease
in LTP, protein expression (PSD-95, GluR2, NR2B),
and cognitive performance (object recognition, T-
maze), as we have described earlier [17, 51]. Here
we present behavioral results based on a natural bur-
rowing test for degus [75], that promise is an excellent
biomarker for AD neurodegenerative disorder.

ACTIVITIES OF DAILY LIVING

A wide variety of behavioral tests are designed
to assess animals’ cognitive states and defined brain
structures. We have used a behavioral test based on
rodents’ natural and spontaneous affinity to burrow,
observed in rugged environments [76]. Importantly,
designing behavioral tests based on natural or sponta-
neous behaviors provides a clear advantage in moti-
vating animals for testing and reducing stress levels
[77]. For example, natural or spontaneous behaviors
have shown a good association with Activities of
Daily Living (ADLs). Thus, in humans, ADLs are
among the first activities affected in neurodegener-
ative diseases and are defined as necessary personal
care activities (dressing, grooming, bathing, toileting,
eating, and ambulation) or complex activities (meal
preparation, shopping, telephone use, among others)
[78]. The latter was one reason why we wanted to
study the task of burrowing or digging to character-
ize the natural cognitive state of our subjects [79].
Burrowing is a natural behavior expressed by many
rodent species, as they take advantage of their natu-
ral environment to protect themselves from predators,
adverse weather conditions or store food and build a
shelter for their offspring [80].

A burrowing task (BT) corresponds to the ADL
type’s spontaneous activity and requires hippocam-
pus function, as the induction of a cytotoxic injury
decreased the burrowing performance [81]. Impor-
tantly, this test is fast, economical, and easy to impl-
ement in the laboratories in its practical part. In a
preliminary study (see methods in the Supplementary
Material), we tested twenty-five degus aged between
40–75 months. The results show that 44% (n = 11)
of degus exceeded the 10% threshold (grams of bur-
rowed pellets) and were classified as Good Burrowers
(GB), while 56% (14 degus) were below the threshold
and were classified as Bad Burrowers (BB) (p < 0.05)
(Fig. 1B). No statistical differences were found either
by sex (p > 0.05) (Fig. 1C) or age (40–55 versus 56–75
months old, p > 0.05) (Fig. 1D). Figure 1E shows the

GB number that changed from 58.3% to 50%, from
40–55 versus 56–75 months old, respectively. ADL-
type behaviors are one of the first tasks that humans
lose with aging and neurodegeneration [79]. To check
if degus BT classification is related to their motor
performance, we carried an open field (OF) test in
which the degu is free to explore for 5 min. The results
shown in Fig. 1F show that BB traveled a distance
of 28.5 + 5 m, while GB traveled 32.4 ± 3 m, with
no significant differences (p > 0.05). The differential
exploration of the center versus periphery of an OF is
used to determine the animal’s anxiety level [82]. Fig-
ure 1G indicates individual results, where -1 indicates
more time spent exploring the center, and +1 indicates
a preference for the periphery. We did not see a par-
ticular difference between GB and BB (Fig. 1G) (BB:
–0.39 ± 0.13, GB: –0.27 ± 0.09 m, p = 0.49), indicat-
ing that degus are not influenced by anxiety. Previous
related results, according to burrowing test perfor-
mance in degus, have established a good correlation
with AD biomarkers of neuroinflammation [75].

PHYSICAL EXERCISE AND NEURAL
PLASTICITY

Previous studies have demonstrated that physical
exercise can improve neural plasticity mechanisms,
increase BDNF, vascular endothelial growth factor
(VEGF) and insulin-like growth factor 1 (IGF-1)
[83–88]; enhance LTP and LTD in the dentate gyrus,
increase spine density, dendritic branching, and neu-
rogenesis [89–91], suggesting that all these factors
contribute to the cognitive and neural plasticity imp
rovement observed in physically trained model ani-
mals. On the other hand, it has been observed that
exercise increases capillarization [92], decreases
oxidative stress [93], and reduces A� load and the lev-
els of hyperphosphorylated tau proteins [70, 94–97].
More importantly, physical exercise improves phys-
ical and executive function and spatial memory of
patients with mild, moderate, or severe AD [88, 93,
95, 98]. Several studies have suggested that the activ-
ity carried out by free access to a wheel can prevent
or delay cognitive deterioration occurring during a
neurodegenerative process.

In a preliminary experiment in our laboratory, we
have studied in degus of different ages the effect of
voluntary long-term physical exercise on their cogni-
tive capacities. Specifically, we have tested the loco-
motor activity (open field), object recognition, and
spatial (8-arm-maze) memory in young and old
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Fig. 1. The burrowing task in aged degus. A) Burrowing setup. Left: Burrowing apparatus (gray plastic tube with two screws at the entrance
for support) filled with rabbit food pellets (1,300 g). Center: localization of the setup against the wall of a circular OF (diameter 180 cm). Right:
degus put in the maze for free exploration; the burrowing content is measured as grams of pellets displaced out of the tube, corresponding
to the BT performance. B) Burrowing classification according to degus performance in terms of the weight of pellet burrowed (n = 25).
A threshold value of 10% of the total pellet burrow was determined (130 g) to separate Good Burrowers (GB) from Bad Burrowers (BB).
C) Burrowing performance, according to sex. D) Burrowing performance in animals aged 40–55 months and 56–75 months. The red line
represents the threshold value. E) Percentage of GB as a function of age. F) Distance traveled in an OF. G) Time in center versus periphery
in the OF to measure anxiety level. The black line corresponds to the ratio of exploration time in center versus periphery, which were the
same. Data are mean ± SD. Statistical analysis using the T-test. ****p < 0.0001.
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degus. Our results (unpublished) suggest that both
young and old exercised degus reach a better cogni-
tive performance than degus without (wheel) activity.
Moreover, after four months without access to the
freewheel, both degu groups show an increased cog-
nitive deterioration [99]. Therefore, voluntary exer-
cise may be an effective therapeutic strategy to reduce
AD’s cognitive impairment. In another study (unpub-
lished), we conducted a pilot study to determine
the hippocampus’s neurogenesis level during aging,
which usually decreases in rodents and primates,
including humans. For this, we studied the morphol-
ogy of the hippocampus (gyrus dentate) during aging,
finding a dramatic decrease in neurogenesis between
7 to 96 months in degus, which contrasts with the
number of cells in CA1, which do not change with
age [100].

TRANSCRANIAL STIMULATION AND
NEURAL PLASTICITY

Over the last few years, transcranial stimulation has
been shown to promote neural plasticity mechanisms
and cognitive improvement in neurodegenerative
disorders. Early research in humans showed that
repetitive transcranial magnetic stimulation (rTMS)
produces a neural potentiation measured at EEG elec-
trodes located bilaterally over the premotor cortex
[101]. Interestingly, high-frequency rTMS induces
LTP-like cortical plasticity within the precuneus in
AD patients [102]. However, some results are con-
tradictory, perhaps due to different protocols utilized
in each study. For example, a study accomplished by
Chen et al. [103] in an animal model of AD using
rTMS showed an enhancement of cognitive function,
a reduction of neuronal apoptosis, and an increase in
the levels of BDNF, NGF, and doublecortin.

On the other hand, repetitive transcranial direct
current stimulation (tDCS) produced spatial memory
recovery in an AD rat model [104]. These authors
suggest that the improvement is due to tDCS modu-
lating synaptic plasticity through calcium or sodium
channel regulation and increasing cell proliferation
in the subventricular zone. However, Gondard et al.
[105], using the same technique, did not find posi-
tive effects on learning and memory. Moreover, few
randomized controlled trials using rTMS or tDCS in
patients with mild to moderate cognitive impairment
and AD demonstrated an improvement in cogni-
tive functions in a different cognitive test such as
the Mini-Mental State Examination (MMSE) or the

AD Assessment Scale-Cognitive Subsection (ADAS-
cog) [106–115]. In addition, it has been demonstrated
by Zhang et al. [116] that rTMS combined with cog-
nitive training improves cognitive function, which
suggests that combined therapies could lead to better
results in AD patients.

NEUROTROPHINS AND NEURAL
PLASTICITY

Neurotrophins are growth factors that are essential
in neuronal development, function, survival, and plas-
ticity in the developing and adult CNS. They consist
of four structure-related proteins: nerve growth factor
(NGF), brain-derived neurotrophic factor (BDNF),
neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4/5)
[117]. Neurotrophins exert their effects through
membrane receptors that connect with different intra-
cellular molecular cascades, such as MAP-kinase,
PKC, and phosphatidylinositol 3-kinase (PI3-K),
modifying gene expression and causing the synthesis
of proteins [118]. The latter enables them to induce
and modulate growth and functional neuroplasticity
[119, 120]. On the other hand, neurotrophins can
also indirectly support SP processes and reinforce
the influence of non-glutamatergic afferents mod-
ulating LTP [121, 122]. BDNF in the adult brain
increases synaptic transmission, facilitates SP, and
promotes synaptogenesis [123]. Previous studies in
healthy animals have shown that BDNF is crucial
for forming and retaining hippocampal-dependent
memory, fear memory extinction, and motor learning
[124]. Moreover, previous AD animal models have
demonstrated that BDNF administration decreases
cognitive impairment and synapse loss, and neuronal
abnormalities without causing A� and tau pathol-
ogy [125–131]. Other authors have found that BDNF
in neuronal cultures decreases production, and its
removal contributes to an increase of A� [132, 133].
Likewise, Murer et al. [134] showed that neurons
expressing BDNF did not present NFT, and by con-
trast, neurons with NFT did not express BDNF. In
addition, Wang et al. [135], report that TrkB, an ago-
nist antibody AS86 induces neurite outgrowth and
enhanced spine growth with decreased cell death
in cultured neurons. Furthermore, in this study, the
use of AS86 rescued the cognitive impairments in
APP/PS1 mice. On the other hand, the expression of
BDNF in the hippocampus, temporal cortex, and pari-
etal cortex is reduced in AD patients [136–138]. Also,
in patients with sporadic and autosomal dominant
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AD, the BDNF Val66Met polymorphism impairs
episodic memory and hippocampal activity when
measured by Fluorodeoxyglucose-positron emission
tomography (FDG-PET) [139, 140].

AMYGDALA STIMULATION AND
NEURAL PLASTICITY

The amygdala is a subcortical structure critical
for emotional and motivational reactions [141, 142].
It also contributes to memory consolidation occur-
ring in other brain areas [143]. Moreover, electrical
stimulation of the basolateral amygdala (BLA) can
reinforce memory-related synaptic mechanisms like
LTP [144] via cholinergic afferents to the locus coeru-
leus and noradrenergic afferents to the medial septum
[145]. Interestingly, natural emotional and motiva-
tional stimuli, like drinking water after two hours
of deprivation, prolong LTP if temporally related
to LTP induction [146]. This phenomenon, recog-
nized as LTP-behavioral reinforcement, is mediated
by noradrenergic receptors [147], dependent on the
synthesis of new plasticity-related proteins [148], and
the amygdala is an essential part of the neural circuit
involved [149]. Following this idea, we have shown
that post-training BLA electrical stimulation in
healthy animals accelerates the acquisition of a motor
skill in the staircase task [150] and improves spa-
tial memory in fimbria-fornix (FF) lesioned animals
[151]. It also increased BDNF protein expression
and arc gene expression in the hippocampus [152,
153], an increase of the synaptogenesis related pro-
teins MAP-2 and GAP-43 in the hippocampus and
prefrontal cortex [154]. Furthermore, the amygdala’s
stimulation produces an increase of c-Fos protein,
an early expression transcription factor related to
neural plasticity and memory, in brain regions like
the hippocampus and prefrontal cortex [155]. Inter-
estingly, Inman et al. [156] demonstrated that the
amygdala’s direct electrical stimulation enhances
humans’ declarative memory. BLA electrical stimu-
lation shortly after the performance of the behavioral
task produces a functional recovery by directly pro-
moting plastic changes in the brain structure involved
in the task or by activating other modulatory regions
like the locus coeruleus or the septal area, which,
in turn, modulate the neural plasticity mechanisms
involved in memory in relevant areas, especially in
the hippocampus and the prefrontal cortex. Interpret-
ing these and previous results [152–155], we propose
that BLA stimulation promotes norepinephrine and

dopamine release in the prefrontal cortex. In contrast,
norepinephrine and acetylcholine are released in the
hippocampus, which via G protein activates CREB
and c-fos, BDNF, and arc gene expression.

In turn, c-Fos and BDNF could induce synapto-
genesis-related proteins like MAP-2 (post-synapti-
cally) and GAP-43 (pre-synaptically), contributing
to the observed behavioral recovery. In the lesioned
hippocampus, since the fimbria fornix lesion el-
iminates most subcortical afferents, similar plastic
mechanisms could be initiated via entorhinal cortex
afferents and be triggered by glutamate activation of
NMDA and metabotropic receptors. The latter could
improve the spatial memory storage but might also
explain why the recovery is only partial. In a phar-
macological study, we have demonstrated that nora-
drenergic agonists applied 10 min after the induction
of an early-LTP could mimic BLA stimulation’s rein-
forcing effect. In contrast, cholinergic agonists were
not able to do so [145]. Catecholaminergic afferents
appear to be relevant to LTP’s early maintenance,
while cholinergic afferents are required later. Accord-
ing to the model proposed in Fig. 2, the stimulation of
the BLA in FF-lesioned and trained rats can partially
activate the molecular mechanisms leading to neural
plasticity and trace formation, producing a recovery
of spatial memory. Altogether, BLA stimulation can
improve or modulate the neuroplastic process impli-
cated in recovering lost functions due to CNS injury.
We expect that modulating neural plasticity mecha-
nisms through BLA stimulation can also rescue lost
functions, such as memory, in AD models.

CONCLUSIONS

Neural plasticity is a fundamental property of a
healthy CNS which supports functions like learning
and memory and functional recovery based on synap-
tic efficacy modification, synaptogenesis, sprouting,
axonal regeneration, and neurogenesis. In contrast,
the cognitive decline that occurs during aging is
accompanied by an increase and accumulation of A�
protein in the brain, neurofibrillary tangles, synaptic
dystrophy, loss of neurons, and reduction of brain vol-
ume. These changes could overcome a physiological
threshold beyond which neural plasticity mechanisms
fail, and thus neurodegeneration is triggered. Exciting
results have shown that optogenetic induction of LTP
in the perforant path synapses of dentate-gyrus cells
or optogenetic reactivation of the dentate gyrus cells
in double transgenic mouse models of AD restore
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Fig. 2. A cell model interpreting the synaptic plasticity mechanisms triggered by BLA stimulation on engram cells, promoting spatial
memory in healthy and lesioned animals. In normal animals, the glutamatergic afferents (1a) to the dentate gyrus (DG) carry the information
to be stored within the hippocampal memory system, probably as a long-lasting increase in the efficacy of those activated synapses (LTP).
The activation of the amygdala contributes to reinforcing the LTP in the DG via the activation of norepinephrine (NE) afferents from the
locus coeruleus, which also activates the septal cholinergic input required mainly by late phases of LTP (1b). Both transmitters activate
intracellular second messenger cascades (2,3) that modify pre-existing proteins and regulate the expression of plasticity-related genes (4,5)
like BDNF, Arc (functional plasticity), MAP-2, and GAP-43 (structural plasticity) (6,7). Altogether, the potentiation of existing synapses
(8) and the formation of new ones (9) are cellular mechanisms by which memory is stored. In FF lesioned animals, this sequence is affected
by the interruption of both NE and ACh afferents; however, the stimulation of the BLA can still (at least in part) contribute to consolidation
via the glutamatergic afferents from the entorhinal cortex (10), probably by the activation of metabotropic glutamate receptors, which share
common postsynaptic molecular cascades with other transmitters (2). Such a partially restored function could explain the memory recovery
achieved by BLA post-training stimulation, resulting in an amelioration, but not in a full recovery.

long-term memory and spine density [157, 158].
Moreover, environmental enrichment, natural behav-
ioral tests, physical exercise, transcranial stimulation,
neurotrophins such as BDNF, and direct amygdala
electrical stimulation all induce plastic changes, res-
cue damaged synapses, and improve memory. As dis-
cussed here, the use of natural animal models, which
recapitulate the main findings associated with the
neurodegenerative diseases that occur during the
slow, progressive, aging process seen in humans, is
critical when evaluating neurorestauration alterna-
tives. As illustrated in this work, the combined use

of natural models with a relatively long lifespan
combined with interventions that promote neural
plasticity represents an effective way to screen for
AD preclinical treatments.
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