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The influence maximization problem (IMP) is one of the most important topics in social network
analysis. It consists of finding the smallest seed of users that maximizes the influence spread in a
social network. The main influence spread models are the linear threshold model (LT-model) and the
independent cascade model (IC-model). These models have mainly been treated by using the single-
objective paradigm which covers just one perspective: maximize the influence spread starting by given
MSC: seed size, or minimize the seed set to reach a given number of influenced nodes. Sometimes, this

91D30 minimization problem has been called the least cost influence problem (LCI). In this work, we propose

68W25 a new optimization model for both perspectives under conflict, through the LT-model, by applying a

90c27 binary multi-objective approach. Swarm intelligence methods are implemented to solve our proposal

ggg; on real networks. Results are promising and suggest that the new multi-objective solution proposed
can be properly solved in harder instances.
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1. Introduction

A social network can be represented as a graph, whose nodes
are the actors of the network, and its edges the interpersonal
ties among the actors [1]. One of the main problems in social
network analysis is to study the influence spread, starting from a
given seed of individuals or actors. The underlying intuitive idea
is trying to maximize the influence spread by minimizing the
available resources. This is a well-known phenomenon, present
in a high diversity of disciplines and applications, such as viral
marketing [2], information propagation [3], expertise recommen-
dation [4], community systems [5], social customer relationship
management [6], percolation theory [7], cooperative game the-
ory [8], search strategies [9], collective decision-making [10,11],
networks centrality [12,13], among others.

The influence spread phenomenon can be studied on
weighted, labeled digraphs, namely influence graphs. In influ-
ence graphs, the edge weights represent the influence power
exerted by one actor over another, and the node labels quantify
the resistance of each actor to be influenced by other nodes
pointing to it [8]. There are two well-known models to represent
the influence spread phenomenon through social networks: The
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linear threshold model (LT-model) [14,15], based on some ideas
of collective behavior [16,17], and the independent cascade model
(IC-model) [14,15], based on marketing ideas [14,18].

Regardless of the influence spread model considered, the in-
fluence maximization problem (IMP) remains the same: given
an influence graph, find the minimum seed of nodes (initial
activation) that maximize the influence spread through the net-
work. Seen like this, IMP seems to be a min-max optimization
problem, formed by two objective functions. However, so far
the problem has only been addressed from a single-objective
perspective: usually, by maximizing the influence spread, given
a seed size [15], and sometimes, by minimizing the initial seed
set, given a fixed number of nodes to be influenced [19]. As a
minimization problem, it is also known as the least cost influence
(LCI) problem [20].

As a decision problem, it is known that both problems are
NP-hard [15,19] because the number of solutions can increase
exponentially when a new node is included in the network.
Therefore, several algorithm techniques have been modified to
try to solve them as best as possible. Despite both the maxi-
mization and the minimization approaches are properly applied,
we consider they are not exclusive. In this work, we model
both the IMP and LCI problems under a binary multi-objective
optimization paradigm where each node will be related with
a decision variable. We try to achieve the maximum influence
spread considering a minimum seed set.
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We solve this problem using two well-known paradigms:
an exact algorithm and swarm intelligence methods. The first
one was performed to test smaller instances, and thus know
their optimal solutions. Swarm intelligence methods allow us to
achieve near-optimal solutions in reduced solving times. They
are usually adopted due to their ability to synchronously search
for robust solutions and perform better global exploration of the
search space [21,22]. Swarm intelligence-based techniques are
smart procedures that try to solve various kinds of problems,
mainly optimization problems, by mimicking the collective be-
havior of certain individuals [23]. These bio-inspired algorithms
operate typically with a set of agents, called population, inter-
acting locally with each other and their environment. Nature
is the main inspiration source for swarm algorithms, especially
biological systems. Some highest recognized swarm methods are
ant colony systems, echolocation featuring, bird flocking, ani-
mal hunting, among several others [24,25]. We implement three
familiar swarm intelligence algorithms: particle swarm optimiza-
tion (PSO), bat algorithm (BA), and black hole optimization (BHO).
PSO is selected because it was one of the first swarm intelligence
algorithms used to solve the IMP [26]; BA, because it has been
recently applied in the same kind of problems [27], and BHO, as
an alternative that has not yet been used to solve these problems.
Moreover, these techniques have a common collective behavior,
so they are quite similar to each other. Initially, these three
algorithms are tested on the smallest network (the one used by
the exact algorithm), to adjust the parameters and thus ensure
reaching the optimal solution, at least in this case. We employ this
bio-inspired approach, given its undeniable performance when
treating optimization problems. Results show that by balancing
the maximum influence spread with the minimum seed set,
attractive results can be reached in reduced computation time,
specially for PSO.

The manuscript continues as follows. Section 2 presents an
extensive bibliographic search for related work in the field. The
results of this search justify the novelty of the multi-objective
proposal of this work. Section 3 describes the IMP under the LT-
model, with no restrictions on seed size, to be addressed in Sec-
tion 4 using a new multi-objective approach. Section 5 describes
the experimental setup, while Section 6 presents and discusses
the main results obtained. Finally, conclusions and future work
are included in Section 7.

2. Related work

The influence maximization problem (IMP) was first defined as
a discrete optimization problem in a renowned work of 2003 [15].
The problem was addressed using the two most widely used
influence spread models to date: the independent cascade model
(IC-model) and the linear threshold model (LT-model), formally
defined two years earlier in [14]. From the beginning, IMP was
already defined as a maximization problem, that is, using a single-
objective approach. Since then, numerous proposals have been
developed to try to solve the problem as best as possible, in
terms of accuracy, temporal complexity, spatial complexity, or
scalability [28].

Despite the large amount of existing work, there are just a
few surveys related to the algorithms and techniques used to
solve the problem [29,28,30]. Table 1 presents what, as far as we
know, is the most exhaustive collection of works related to this
topic. The minimization problem, also known as the Least cost
influence (LCI) problem [20], was formally defined in 2009 [31],
although the first experimental study was published two years
later, using the IC-model [19]. Table 1 shows that the mini-
mization problem has been much less studied than the original
maximization problem. Indeed, of more than 60 works listed, only
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six solve the LCI problem, while all the rest focus on IMP. Note
that none of them addresses both problems together. Therefore,
as far as we know, the problem has never been studied using a
multi-objective approach. Regarding the influence spread model,
note that only 9 works use both the IC-model and LT-model,
39 use only the IC-model, and 13 only the LT-model. Although
these are the most widely used spread models, there are also
variations [32] or generalizations [33,28] of them, as well as other
less known models [34-36].

Regarding the types of algorithms used, greedy algorithms
are used in 32 cases, heuristics-based algorithms in 15 cases,
and metaheuristics in only 11 cases. The first metaheuristic used
was the simulated annealing (SA) in 2011 [37]. Years later, some
results were introduced with genetic algorithms [38-40], while
the discrete particle swarm optimization (discrete PSO) method
was implemented for the first time in 2016 [26]. Other bio-
inspired algorithms such as artificial bee colony (ABC) [36,41],
discrete bat (DBA) [27], gray wolf [42], whale optimization [42],
and more recently, discrete shuffled frog-leaping (DSFLA) [43]
have been applied. All of these swarm intelligence approaches
have used the IC-model to solve IMP, except for the case of ABC,
which focuses on a different influence spread model adjusted
to the bees’ behavior [36]. Finally, evolutionary algorithms have
also been used recently [44-46]. The works of Weskida et al.
are the only ones to date that have used the LT-model to solve
both IMP [44] and the LCI problem [46] with metaheuristics.
Furthermore, in the recent work of Sheikhahmadi and Zareie [41],
the authors, for the first time, use a multi-objective approach to
solve IMP. However, they use it for a different purpose than ours,
and they remain in solving the maximization problem only. As
can be seen, since 2016, metaheuristics are the most researched
method to solve IMP. In this research, we will expand the use of
bio-inspired metaheuristics using the LT-model.

The IMP and the LCI are defined on a static social network
or a “shot” of a dynamic network. However, both problems have
also been studied on multiplex social networks [20,94]; networks
changing over time (for example, through Markov chains [95]);
networks with partial knowledge, whose social structure is ini-
tially unknown [96]; signed networks [97], among other varia-
tions.

Besides, several generalizations and variations of the IMP
have emerged from its formal definition [98]. For instance, the
IMP in competitive social networks, i.e., where different influ-
ence spread strategies are competing to each other, has been
defined [99,100]; the resource allocation problem on modular
social networks [101]; the IMP on evolving or dynamic social
networks [30], also known as influential node tracking (INT)
problem [102-104] or incremental influence maximization prob-
lem [105,106]; the budgeted influence maximization (BIM) prob-
lem, which considers an additional constraint of limited bud-
get [107,108]; the location-aware influence maximization prob-
lem, where the actors’ geographical location matters [109]; the
multiple influence maximization (MIM) problem, where differ-
ent types of activations are allowed at the same time [110];
the reverse influence maximization (RIM) problem [111], among
others. Again, in most cases, the IC-model is used instead of the
LT-model.

3. Preliminaries

In this section, we introduce the influence spread process
within a social network. In particular, we formally define the
linear threshold model, one of the two main influence spread
models, together with the independent cascade model. After that,
we explain the influence maximization problem, whose model-
ing as a multi-objective optimization problem is developed in
Section 4. We use notation from [8].
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Table 1
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Different solutions of the IMP and LCI problem (see Refs. [47-93]).

# Ref.  Year  Problem solved Algorithm type Metaheuristic used Spread model
1 [15] 2003 IMP greedy - IC, LT
2 [47] 2006 IMP greedy - IC
3 [48] 2007 IMP greedy - IC, LT
4 [49] 2007 IMP greedy - IC, LT
5 [50] 2009 IMP greedy, heuristic - IC
6 [51] 2009 IMP greedy - LT
7 [52] 2010 IMP greedy, heuristic - LT
8 [53] 2010 IMP heuristic - IC
9 [54] 2010 IMP greedy - IC

10 [55] 2011 IMP heuristic - IC

11 [19] 2011 Ld greedy - IC

12 [56] 2011 IMP heuristic - LT

13 [57] 2011 IMP greedy - IC

14 [37] 2011 IMP metaheuristic simulated annealing (SA) IC

15 [58] 2011 IMP heuristic - LT

16 [32] 2012 IMP greedy - LT variation

17 [59] 2012 LdI greedy - IC

18 [60] 2012 IMP heuristic - IC

19 [61] 2012 IMP approximation - IC

20 [62] 2012 IMP greedy - IC, LT

21 [63] 2012 LCI heuristic - LT

22 [64] 2012 IMP greedy - IC

23 [65] 2013 IMP greedy - IC

24 [66] 2013 LCI approximation - LT

25 [67] 2013 IMP approximation - IC

26 [5] 2013 IMP clustering - IC

27 [68] 2014 IMP approximation, greedy - IC

28 [34] 2014 IMP community-based - other

29 [69] 2014 IMP greedy, heuristic - IC

30 [70] 2014 IMP greedy - IC

31 [71] 2014 IMP greedy - IC

32 [35] 2014 IMP greedy - other

33 [72] 2014 IMP greedy - LT

34 [73] 2014 IMP greedy - IC

35 [74] 2014 IMP heuristic - IC

36 [75] 2014 IMP approximation, greedy - IC, LT

37 [76] 2014 IMP greedy - IC

38 [77] 2014 LCI greedy - IC

39 [78] 2015 IMP greedy - IC

40 [79] 2015 IMP greedy, heuristic - IC

41 [80] 2015 IMP other - LT

42  [81] 2015 IMP community-based, greedy - IC

43 [82] 2015 IMP greedy - IC, LT

44 [38] 2015 IMP greedy, metaheuristic genetic IC

45 [83] 2015 IMP greedy - LT

46 [39] 2016 IMP metaheuristic genetic IC

47  [84] 2016 IMP clustering, memetic - IC

48 [26] 2016 IMP metaheuristic discrete PSO (DPSO) IC

49 [85] 2016 IMP community-based - LT

50 [86] 2016 IMP greedy - IC

51 [87] 2016 IMP approximation - IC, LT

52 [36] 2016 IMP metaheuristic artificial bee colony (ABC) other

53 [88] 2016 IMP heuristic - IC

54 [89] 2016 IMP heuristic - other

55 [44] 2016 IMP metaheuristic evolutionary LT

56 [90] 2017 IMP random walk - IC

57 [91] 2017 IMP community-based - IC

58 [92] 2017 IMP heuristic - IC

59 [40] 2017 IMP metaheuristic genetic LT

60 [45] 2018 IMP metaheuristic evolutionary IC

61 [93] 2018 IMP heuristic - IC, LT

62 [42] 2018 IMP metaheuristic gray wolf, whale optimization IC

63 [27] 2018 IMP metaheuristic discrete bat (DBA) IC

64 [28] 2019 IMP community-based - IC, LT (general)

65 [46] 2019 LCI metaheuristic evolutionary LT

66 [43] 2020 IMP metaheuristic discrete shuffled frog-leaping (DSFLA) IC

67 [41] 2020 IMP metaheuristic artificial bee colony (ABC) other

For what follows, we denote a weighted graph as a pair (G, w),
where G = (V, E) is a directed graph or digraph with node set
V(G) and edge set E(G), and w : E(G) — N is a weight function
that assigns a weight to every edge. Thus, we can represent a
social network as a weighted graph (G, w), where V(G) is the set
of actors, E(G) is the set of interpersonal ties among the actors

within the network, and a weight w(i, j) represents the influence
power exerted by an actor i over j. Let be n = |V| and m = |E|.
For more clarity, everything shown in this section is repre-
sented in set notation. However, in Section 4, we shall use also
an equivalent vector notation. As a matter of fact, there exists
a direct relationship between sets X C {1,...,n} and vectors
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x = (xq1,...,%,) € {0, 1}". For doing so, we use the notation
Xx)={0<i<n|x =1}, and x(X) = (X1, ..., %,) withx; = 1
ifi € X, and x; = 0 otherwise [11]. Also, we denote w(i, j) = wj
for any edge (i, j) € E(G).

3.1. Influence spread model

In social network analysis, besides the weighted function that
represents the strength of interpersonal ties within the social net-
work, we can associate labels to the nodes in order to represent
the resistance of each actor to be influenced by others. This leads
us to a more general representation of social networks through
the use of influence graphs [8].

An influence graph is a tuple (G, w,f) where (G, w) is a
weighted graph, and f : V — N is a labeling function that assigns
a label to each node. Note that undirected graphs can be seen as
symmetric digraphs, so they are also included in this background.

Given an influence graph (G, w, f) and a seed or initial activa-
tion set X C V, the spread of influence of X is the set F(X) C V
formed by the nodes activated through an iterative process as
follows. Let us F:(X) denote the set of nodes activated at step t.
Initially, at step 0, only the seed is active, so Fo(X) = X. Then, at
step i > 0, the set of nodes activated is formed by all the nodes
of F;_1(X), plus some additional amount of nodes that depends
on the influence spread model considered. For the linear threshold
model (LT-model), we add all the nodes whose labels are less or
equal than the total weight of the edges pointing to them from
nodes in F;_¢(X), i.e.,

FX)=Fa()ujvev| Y wwv)=fe)p (1)

{ueF;_1(X)|(u,v)eE}

This process stops when no additional activation occurs. The final
set of activated nodes is F(X) = F¢(X), where t = min{i € N |
F(X)=F(X)} <= n

Fig. 1 illustrates an example of influence spread process in an
influence graph. The spread of influence F(X) starts from the seed
X = {a}. In the first step is obtained F{(X) = {a, c} and in the
second step (the last one), F;(X) = {a, c, d}.

3.2. Influence maximization problem

Let (G, w, f) be a social network represented as an influence
graph. The influence maximization problem (IMP) aims to select a
desirable seed X C V(G) such that the spread of influence F(X) is
maximum under a given influence spread model. A seed X should
meet two conditions to be more desirable:

e Be formed by a low number of actors, i.e., have a low |X]|
value.
e Be minimal, i.e., if any actor i is removed from the seed, then

IFXA\ AN < [F(X)I.

The maximum influence spread is reached when |F(X)| = n. For
the influence graph of Fig. 1, the most desirable seed is X =
{b}. However, note that for some cases, there could be several
desirable seeds with different numbers of actors.

Let X* be a desirable seed, the influence maximization prob-
lem can be stated as follows [43]:

X* = argmaxycy, x=k F(X) (2)
where k is given. This optimization problem is NP-hard [15]. In
the present work, k should also be minimized.

4. Developed solution

In this section, we present a multi-objective model for the
influence maximization problem (IMP) and then, we describe
three widely known swarm intelligent techniques that treat it.
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4.1. Multi-objective model

In optimization, several problems, such as multiple criteria
decision-making, task team formation, web-based virtual collabo-
ration environments, network resource allocation, among others,
have been tacked by using the multi-objective paradigm [112]. In
countless works, optimization problems are formulated through
either minimization or maximization functions. Multi-objective
optimization can be modeled as the problem of finding a vector of
decision variables that satisfies constraints and optimizes a vector
of objective functions whose elements represent the objective
functions [112]. This vector is mainly composed of mathemat-
ical formulas which are typically in conflict when none of the
objective functions can improve their value without degrading
some of the other objective values. Therefore, there is no single
solution that simultaneously optimizes the vector of objective
functions. Instead, there is a set of efficient solutions formed by
non-dominated solutions that are located in a part of the target
space. This set of efficient solutions is called the Pareto-optimal
front.

Based on the multi-objective paradigm, we state a model to
treat the multi-objective problem. Firstly, we must find the vector

of efficient solutions X* = [x],X},...,x; T which satisfy the p
inequality and the q equality constraints:
g&(X) 20, hx =0, Vi=(1,2,....,p}AVi={(1,2,...,q}

where 3 means < or >, and then, optimize the vector of func-
tions:

F&) = 1HR), (R, ... B

where X = [x1, X2, ..., X,]" is the vector of decision variables.

By considering the multi-objective paradigm, we can state a
new model for the influence maximization problem, that also
integrates the LCI problem:

n

f(X) = { maximize |F(x)| ; minimize in
i=1
- 3)
st Y x < [|F(x)
i=1
xi€{0,1}, Vie{l,...,n}

In this case study, the vector of objectives functions is com-
posed of two elements: maximize the spread of influence and
minimize the seed. Clearly, these functions conflict, since de-
creasing the seed or initial activation set may also decrease the
influence spread. Analogously, increasing the influence spread
may require increasing seed size. To solve this instance, we trans-
form the minimization problem into a maximization problem by
using its negative value. Thus, the vector of objective functions
becomes as follows:

maximize f(x) = {|F(x)| ;- in} (4)
i=1

To solve this instance, we employ a scalarizing approach on
the vector of objective functions [113]. The scalarizing is an a
priori method for multi-objective optimization problem resolu-
tion. It works by balancing the single-objective functions to find
ideal and anti-ideal points that are optimal for the multi-objective
optimization problem (efficient solutions) [114].

4.2. Swarm intelligence methods
The swarm intelligence methods are a type of metaheuristic

algorithms that work under a common collective behavior. Gen-
erally, individuals interact with each other in order to update and
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Fig. 1. Influence spread process within an influence graph.

improve themselves. For this work, we chose three similar swarm
intelligence procedures to tackle the proposed multi-objective
approach: Particle swarm optimization, bat algorithm, and black
hole optimization. These techniques have had a long journey
in bio-inspired optimization and have proven to be efficient in
addressing large-scale instances of various problems.

Particle swarm optimization (PSO) and bat algorithm (BA) are
two of the most popular swarm intelligence methods. The first
one is inspired by the behavior of birds flocking or fish schooling
when they move from one place to another. The second is based
on the echolocation phenomenon that is present in the species
of microbats, which allows them to avoid obstacles while flying
and to locate food or shelter. Both techniques describe a similar
behavior handling velocity changes and position updates. Another
optimization technique is the black hole algorithm (BHO), which
is inspired by the absorption feature present in the homonymous
phenomenon [115]. A black hole is a region of space that has so
much mass concentrated in it that there is no way for a nearby
object to escape its gravitational pull. Anything falling into a black
hole, including light, cannot escape.

4.2.1. Particle swarm optimization

In particle swarm optimization, each bird or fish represents
a particle with two components: position and velocity. A set of
particles (the candidate solutions) forms the swarm that evolves
during several iterations giving rise to a powerful optimization
method [116,117]. The method operates altering velocity through
the search space, and then updating its position according to its
own experience and that of neighboring particles.

PSO can be identified as a smart system with two phases.
During the initial phase, when the algorithm reaches large ve-
locities, the current solutions focus more on diversification. Next,
as velocities slow toward zero, the current solutions will focus
more on intensification. This second phase will occur around the
positions memorized as pBest, so the goal of the initial phase is
to find pBest positions that are members of the fittest attraction
basins.

The standard particle swarm optimization is governed by two
vectors, the velocity V; = (v}, v7, ..., vP) and the position X; =
(x!,x2,...,xP). First, the particles are randomly positioned in
a D-dimensional heuristic space with random velocity values.
During the evolution process, each particle updates its velocity
(Eq. (5)) and position (Eq. (6)):

v! = wvd + c1¢%(pBest? — x) + copd(gBest? — x7) (5)
K =x +0f (6)
where d = {1, 2, ..., D}, the positive constants w, ¢y, and c; are

acceleration coefficients, ¢y and ¢, are two uniformly distributed
random numbers in the range [0, 1], pBest; is the previous best
position of ith particle, and gBest is the global best position found
by all particles during the resolution process.

4.2.2. Bat algorithm

This algorithm uses the concept of a virtual bat, which is em-
ployed to describe an artificial bat of arbitrary species. It follows
three rules [118]:

(1) All virtual bats are assumed to use echolocation to determine
distances and being able to distinguish between food, prey,
and background obstacles.

(2) A virtual bat b; flies at a position x; with a velocity v;. The
pulses of sound emitted have the following features: a fre-
quency f;, a loudness Ag, and a rate of pulse emission r €
[o, 11.

(a) Both the velocity and the position are vectors V; =

1 .2 D — (w1 32 D ]
(v, vf, .o ) and X; = (X, X5 X, respec.tlvgly,
in a D-dimensional heuristic space for an optimization
problem.

(b) Simplifying, the frequency varies in a range [fiin, fiax]
and is chosen to be comparable with the size of the
interest domain.

(c) All sound features can be automatically adjusted de-
pending on the proximity of the target.

(3) Although the loudness can vary in many ways, it is assumed
that it ranges from a large (positive) value Ag to a minimum
constant value Apn.

The algorithm begins with an initial population of virtual bats.
In each iteration, the best solution is chosen according to its
performance and it is called the global solution. For a virtual
bat solving an optimization problem, the frequencies (Eq. (7)),
velocities (Eq. (8)), and positions (Eq. (9)) of its behavior rules
must be defined.

fi = Fnin + (fmax — fmin)B (7)
v = (e — X1 (8)
X =l 4ol 9)
where d = {1,2,...,D}, B is a vector of uniformly distributed

random values in the range [0, 1], fin is set to have a small value
and fiqy varies according to the max variance allowed in each time
step. Finally, xpes; represents the global best position found by all
virtual bat during the resolution process.

Bat optimization is governed by two general phases: diversifi-
cation and intensification. The diversification phase is led by the
random walk trajectory to select a solution among the current
best solutions. The new solution is generated on the bases of
current loudness A; of the virtual bat and maximum allowed
variance max(var) during a time step as:

xgm = xg,d + eAymax(var) (10)
where € is a random value in [—1, 1].

Finally, the intensification phase is governed by the variation
between loudness and pulse emission. It appears when a bat

found its prey. Here, the loudness decreases, and the rate of pulse
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emission increases, thus other bats will move toward the optimal
solution:

Ai=ah;, i =1{"=0(1 — emr(time=n) (11)

where « and y are ad-hoc constants to control the intensification
phase. For 0 < & < 1and y > 0, we get A; — 0, r; — r\"™=%,

t— 0.

4.2.3. Black hole optimization

The black hole optimization starts with an randomly gener-
ated initial population of potential solutions or positions X; =
(x!,x2,...,xP), in an D-dimensional heuristic space for an opti-
mization problem. In this case, at each iteration, the best can-
didate is selected to be the black hole, which then starts pulling
other candidates around it, called stars. If a star gets too close to
the black hole, it will be swallowed, and it is gone forever. In such
a case, a new star (potential solution) is randomly generated and
placed in the search space and starts a new search.

The black hole can absorb the stars that surround it. After
initializing the black hole and stars, the black hole begins by
absorbing the stars around it, and all the stars start moving
toward the black hole. The absorption of stars by the black hole
is formulated as follows (Eqgs. (12) and (13)):

v! = r(xd, —x) (12)
X =xd o (13)
where d = {1,2,...,D}, r is a vector of uniformly distributed

random values in the range [0, 1], and x;, represents the global
best location (or black hole), found by all stars during the resolu-
tion process.

The event horizon plays an important role in algorithm and
controls the balance between diversification and intensification,
that is, controlling the global and local search. Every star that
crosses the event horizon of the black hole will be absorbed by
the black hole. The radius of the event horizon in the black hole
algorithm is calculated as follows (Eq. (14)):

_ _fGon)
> fx) (14)

iel

R

where I represents the numbers of stars, f(xpy ) is the fitness value
of the black hole, and f(x;) is the fitness value of the ith star. When
the distance between a ith star and the black hole (diff;) is less
than the event horizon R, then the star collapses into the black
hole. The distance between a star and black hole is the Euclidean
distance (Eq. (15)) calculated as follows:

diffy = (Xl — X2 + (B — 2R 4+ (=i (15)

where x£, and x¥, with k = {1,2, ..., D}, are decision variables
for an optimization problem. Every time, a star is absorbed by the
black hole and a new star is automatically generated in a random
manner. After all stars have been moved, the black hole algorithm
iterates. The algorithm continues with the black hole in the new
location and the stars start moving toward this new location.

4.2.4. Multi-objective swarm intelligence methods

Techniques inspired on collective behavior, such as swarm
intelligence methods, typically consider a population of virtual
agents interacting locally with one another and with their envi-
ronment. The agents or individuals follow a set of rules that allow
them to work based on a decentralized control structure and lay
the groundwork about how individuals should behave. Based on
this, we designed a common architecture for swarm intelligence
methods. This procedure structure can be seen in Algorithm 1.
This architecture allowed us to implement the problem-solver.
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The general structure of swarm intelligence methods begins
loading the problem data to define parameter values of the in-
stance. Next, Lines (5-9) describe a sub-procedure to compute the
initial population randomly. Here, the position and the velocity
take a binary random value during the loop statement is pro-
cessed. Later, the multi-objective evaluation is calculated for each
agent. After this initial sub-procedure, the main loop structure
is executed. This statement is split into two parts. Lines (14-
22) detail the diversification and intensification phases. These
processes modify the position value using mainly mathemati-
cal distributions that are controlled by the originally proposed
methods. For example, in PSO, both the diversification and the
intensification phases directly work on the velocity update action,
unlike the bat algorithm or the black hole optimizer. Both the
bat algorithm and the black hole optimization include formal
methods to explore and to exploit the search space. In the bat
algorithm technique, a random work distribution is proposed in
Eq. (10) to control the solution diversity. A self-adjust of the pulse
rate and loudness is used to increase/decrease the promising
zone (see Eq. (11))). Finally, in the black hole algorithm, the
event horizon phenomenon manages such diversification and
intensification states. The intensification process runs the closer
you get to the black hole. However, if a star (solution) crosses
the event horizon, it is absorbed and then disappears from the
constellation, spontaneously creating a new star in a random
place (see Eq. (14)).

At the end of the sub-procedure, the multi-objective evalu-
ation is computed again. The second part updates the position
and velocity through equations modeled on the inspiration of the
phenomenon that governs the swarm intelligence method. This
sub-process is composed of a set of instructions depicted in Lines
(25-26), that evolve agents toward more promising positions.
Updated solutions will probably change their domain. To avoid
this inconsistency, a binarization step is applied between Lines
(29-33) by using a standard Sigmoid function compared to a
uniform random value between 0 and 1 [119,120]. S-Shape and
V-Shape functions are mathematical methods widely employed
to linearly convert real numbers into binary values. For example,
in [121], a recent binary swarm intelligence method is proposed
for a feature selection.

5. Experimental setup

The experiments were carried out on three networks of differ-
ent sizes, on the order of 10, 10%, and 10% nodes. These networks
come from datasets available online and had to be pre-processed
to convert them into appropriate influence graphs for the appli-
cation of the LT-model. The smaller network was also used to
configure the algorithm parameters. The different networks used
are detailed below, as well as the fundamental aspects related to
the implementation of metaheuristics.

5.1. Datasets

The three network datasets together with their number of
nodes (n) and edges (m) are summarized in Table 2. According
to Wanjing et al. [122], the Football network (G{) contains “the
relationship data of American high school football summer class
A regular season in 2000”. Each node represents a different team,
and the weighted edges are relationships between teams. We
interpret an edge (a, b) as the team a exerting a certain influence
on the team b, with a strength w(a, b).

The Bitcoin Alpha network (G,) represents trust relationships
in bitcoin exchanges through the BTC Alpha platform. In these
kind of platforms, users are anonymous and do not know the
identity of the person they are dealing with. Therefore, to prevent
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Algorithm 1 Common structure for a swarm intelligence method.

Require: problem input data, popSize, T

Ensure: a set of efficient solutions that resolve the multi-objective IMP.

1: loadProblemData()
2: {the D value defines the number of nodes of the IMP.}
3: objective functions f;(x) and fo(x), x = (x', ..., xP).
4: {produce the first generation of popSize agents}
5: for all agent a;, (Vi = {1, ..., popSize}) do
6: for all dimensiond, (Vd={1,...,D})do
7: position x4 < Random{0, 1}
8: velocity v¢ < Random{0, 1}
9: end for
10:  maximize {fi1(x;); —fo(x;)}
11: end for
12: {produce T-generations of popSize agents}
13: while t < T do
14: for all agent a;, (Vi= {1, ..., popSize}) do
15: if the diversification process is invoked then
16: position x4 is modified to explore more promising regions
17: end if
18: if the intensification process is invoked then
19: a new position x? is selected among the best solutions
20: end if
21: maximize {f1(x1-); —fz(X,‘)}

22: end for
23:  for all agent a;, (Vi= {1, ..., popSize}) do
24: for all dimension d, (Vd = {1,...,D})do

25: {generate new solutions}
26: velocity vf is updated according to the distance between the best and current velocity.
27: position x¢ is updated as fallows: x¢ = x¢ + vf
28: {then, position value must be brought to a binary domain}
29: if < > Random][0, 1) then
14+e%
30: X? «~1
31: else
32: x! <0
33: end if
34: end for
35: maximize {f1(x;); —f>(x;)}

36: end for
37: end while
38: return post-process results and visualization

Table 2
Network datasets used for experiments.
ID  Name Ref. n m URL
G;  Football [123] 35 118  http://networkrepository.com/football.php

G,  Bitcoin Alpha
Gs  Higgs Twitter  [126]

[124,125] 3783
38918

24186
32523

https://snap.stanford.edu/data/soc-sign- bitcoin-alpha.html
https://snap.stanford.edu/data/higgs-twitter.html

risky or fraudulent transactions, users must evaluate their trans-
actions, to record the reputation of each investor. The original
network works as follows. An edge (a, b) represents the bitcoin
transactions received by user a from user b. The weight of this
edge, w(a, b), represents the evaluation of user a to user b for
these transactions, which corresponds to an integer value be-
tween —10 (total distrust) and 410 (total trust). In this case, to
represent an influence graph, we change the evaluation between
—10 and 10 by values between 1 and 21, and invert the direction
of all edges, so now w(a, b) represents the “influence” power
exerted by user a on user b. In other words, if a evaluates b very
well (very poorly), this means that b exerts a high (low) influence
on a. This makes sense, if we think that a person will prefer to
continue trading with those who give them the most confidence.

Note that the time parameter of the original dataset is not taken
into account, since IMP does not consider time windows.

The Higgs Twitter network (G3) represents reply relationships
among Twitter users collected between 1st and 7th July 2012,
during and after the announcement of the discovery of a new
particle with features consistent with the Higgs boson on 4th July
2012. This dataset was updated of March 31, 2015. In this case,
an edge (a, b) represents that actor a replied actor b a number
of w(a, b) times. Analogously to the previous case, here we also
invert the direction of the edges, so now w(a, b) represents the
influence power exerted by a on b. Again, the timestamps are not
considered.

Finally, in order to apply the LT-model, we need to assign
labels to the nodes of all networks. These labels represent the
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Fig. 2. Convergence graphs (iterations vs. nodes) for each network and metaheuristics type.

resistance of each node to be influenced. To do this, we use the
majority criterion [127,12,13], which assigns each node a label
that exceeds half the influence power exerted on it, that is, given
the influence graph (G = (V,E), w,f), for each actor i € V,
f(i) = [w(i)/2] + 1, where w(i) = > {w(, i) | (j, i) € E}.

5.2, Implementation

Firstly, an exact and brute force algorithm was implemented,
which allows all possible seed combinations to be generated one
by one, to compute their influence spread according to Eq. (1).
If for any seed X a maximum spread is found, that is, such that
|[F(X)| = n, then seeds X’ with |X’| > |X| are no longer generated,
since we know that F(X’) = F(X). For all the algorithms in this

work we use the Python programming language. This method
was run for the G;-Football network (see Table 2). It took 5.25
days of computing, with 8 processes running in parallel on an i7
8700 workstation with 32 GB RAM. The best solution obtained
corresponds to a seed X with |[X| = 15, for which was obtained
|F3(X)| = |F(X)| = 35. No seed with |X| < 15 manages to activate
all the network nodes. Furthermore, there are 20 solutions with
|X| = 16 and 190 with |X| = 17 for which |[F(X)] = 35 is
obtained. Nine of the seeds with [X| = 17 manage to influence
the 35 network nodes in just two steps, while all the rest do so
in three. All solutions were saved in a human readable file to
identify the efficient solutions, using 2.5 TB of memory. Running
this algorithm for the G, and G; networks, even without saving
information, is computationally intractable.
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The PSO, BA and BHO algorithms were implemented based on
the generic structure presented in Algorithm 1, following their
differences described in Section 4.2. All the codes are available
in [128]. The algorithms were first used on the G; network so
that their parameters could be modified if necessary to achieve
the efficient solutions found with the brute force algorithm. For
the PSO algorithm, we obtained efficient solutions by fixing the
parameters as follows, according to [129]: ¢; = ¢; = 1, ¢1 =
¢2 = Random(0, 1), w = 1. For the BA algorithm, the parameters
were subtly adjusted as follows: « and y were left at 0.9 (the
author postulates a range between 0.9 and 0.998 [130]), € was set
to 1, and the best values for fui, and fpn.x were obtained in this
network for 0.5 and 1.5, respectively, although these frequency
values are adjusted independently for each problem. The same
number of virtual agents (population size) was used: 25 individ-
uals. All these algorithms were run on the same hardware as the
brute force algorithm.

6. Results and discussion

The three algorithms (PSO, BA, and BHO) were executed on
G1, G, and Gs networks with 1000, 10,000 and 100,000 iterations,
respectively. We carry out 30 individual tests for each case.

The general results are summarized in Table 3. Note that all of
these results are based on the multi-objective paradigm. There-
fore, the ‘min’ and ‘max’ results indicated in Table 3 correspond
to the ideal-points obtained for min{|x|} and max{|F(x)|}, respec-
tively, while seeking to maximize the max{|F(x)| — |x|} difference.
This value represents a significance measure to evidence how
these swarm techniques are finding efficient solutions while they
run their search intelligence procedures. In this context, Fig. 2
presents the convergence graphs showing the evolution of the
nodes reached in terms of the number of iterations. Note that
‘max’, ‘min’, and ‘max — min’ correspond to different executions,
as they represent the best solutions of each type.

6.1. Football network

For the G; network, PSO reached efficient solutions (verified
by the exact algorithm described in Section 5.2) on all individual
tests, with seeds of |x| = 15 nodes and an influence spread of
|[F(x)] = n = 35 nodes. This explains the standard deviations
and IQR equal to zero in Table 3. Furthermore, in Fig. 2(a) a very
fast convergence is observed, within the first 30 iterations. Fig. 3
illustrates a zoom-in of how the algorithm evolved in these 30
iterations, for each of the individual tests.

For the same network, BA also reached an efficient solution
set, although it required about 500 iterations (Fig. 2(c)) and did
not exhibit a good performance for all individual tests. In fact,
the smallest seed reached has 12 nodes, less than the amount
necessary to spread the influence throughout the network. It
reached seeds of average size 15.77 > 15, achieving an average
influence spread of 33.67 < 35 nodes, with an average difference
of 17.90 < 20 nodes.

Meanwhile, BHO failed to achieve efficient solutions. In gen-
eral it experienced little variation throughout the iterations
(Fig. 2(b)), with late jumps, after several iterations without mod-
ification. This problem, as we will see, was accentuated for BHO
and BA in the two largest networks G, and Gs. The lowest seed
reached 11 nodes, with an average of 14.13 < 15, and the
highest influence spread only reached 32 nodes, with an average
of 30.47 < 35 nodes. The average difference was 16.33 < 20
nodes, with a standard deviation of 0.54, well below the 1.45 for
BA.
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Fig. 3. Evolution of PSO on G; for the first 30 iterations and for each individual
test (particles).

6.2. Bitcoin Alpha network

For this network and the next one, we do not know the set of
efficient solutions, since it is not feasible to compute them for the
exact brute force algorithm.

Notwithstanding the foregoing, PSO managed in all tests to
find seeds capable of spreading its influence up to 3783 nodes in
the G, network. The minimum seed size was 676 nodes, with an
average of 729.73 nodes and a standard deviation of 29.97. The
best result for the difference was 3107 nodes, with an average
of 3053.27 nodes and a standard deviation of 29.97. Note that,
according to Fig. 2(d), for the best solutions found, the algorithm
converged after approximately 6000 iterations, demonstrating
sustained and especially rapid improvement during the first 2000
iterations.

In contrast, the results for the other two algorithms were
very poor. BHO only managed to mutate a little in the first 500
iterations (Fig. 2(e)), but could not escape local optimums, very
far from the solutions obtained by PSO. BA’s behavior, on the
other hand, was completely linear (Fig. 2(f)), failing to improve
throughout the 10000 iterations.

6.3. Higgs Twitter network

For the G5 network, PSO found a seed with an influence spread
of 99.7% of the nodes (38794 of 38918). Furthermore, Fig. 2(g)
shows a constant growth that does not converge, hence with
a greater number of iterations, even better solutions could be
obtained, possibly reaching all the nodes of the network. On
average it reached 38719 nodes, with a low standard deviation of
19.06. The smallest seed found has 14067 nodes, averaging 14118
and an even smaller standard deviation of 12.77. The largest
difference obtained was 24704 nodes, with an average of 24626
nodes and a standard deviation of 21.04.

In contrast, as for G,, the results for BHO and BA were very
poor, with a minimal improvement of BHO in the first 2000
iterations (Fig. 2(h)), and with a completely linear behavior for
the BA algorithm (Fig. 2(i)).
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Table 3
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Computational results. X denotes the best result, X the worst, X the average, o the standard deviation, X the median value, u the
interquartile range (IQR), min denotes min{|x|} and max denotes max{|F(x)|}.

PSO BHO BA
Network: Gy G, G3 Gy G, G3 Gy G, Gg

X 15 676 14067 11 1739 19339 12 1805 19260

X 15 770 14118 16 1789 19586 19 1892 19626
min X 15 729.73 14086 14.13 1769.87 19440.17 15.77 1842.77 19476.37

o 0 29.97 12.77 1.52 14.30 76.46 1.80 22.16 100.89

X 15 728.50 14085 14.50 1774 19440.50 16 1844 19482

" 0 46.50 19.50 2 17 140 2 16 142

X 35 3783 38794 32 3523 28100 35 3538 27768

X 35 3783 38719 27 3472 27800 31 3480 27332
max X 35 3783 38754.70 30.47 3502.80 27918.03 33.67 3501.60 27533

o 0 0 19.06 1.48 11.72 80.33 1.07 13.53 111.76

X 35 3783 38758 31 3502 27909 34 3500.50 27529.50

" 0 0 3150 2 18 126 1.50 17 148.50

X 20 3107 24704 18 1747 8547 20 1696 8254

X 20 3013 24626 16 1725 8422 14 1633 7850
Max — min X 20 3053.27 24668.70 16.33 1732.93 8477.87 17.90 1658.83 8056.63

o 0 29.97 21.04 0.54 6.02 30.61 1.45 14.69 90.41

X 20 3054.50 24666 16 1731 8470 18 1654 8055

" 0 46.50 35.50 1 10.50 38.50 2 18 142

6.4. Discussion

For networks of different sizes, PSO proved to be an excellent
alternative to find solutions under the multi-objective paradigm.
This algorithm maintains a sustained improvement as the num-
ber of iterations increases, and a low standard deviation in its
efficient solutions. In contrast, BHO and BA were not useful in
networks with thousands of nodes. BA allowed to find efficient
solutions for small networks but did not present any improve-
ment for larger networks. BHO did not reach a set of efficient
solutions even on the smallest network G;, but unlike BA, it
achieved small and slow improvements due to mutations in G,
and Gs, still being far from PSO.

The disadvantages that BA and BHO showed compared to
PSO are because their ways of exploring do not serve much in
binary domains, being much more useful in real ones. PSO can
improve significantly and steadily since its memory capacity and
registration by particles (solution vector) prevents it from getting
worse. At the same time, this is a disadvantage at runtime, as each
particle handles two solution vector lists: x and pBest [129],
which in the case of networks with large amounts of nodes, it
constantly implies cloning this list in case of improvement.

The fitness computation, which in this case is the maximum
value of the influence spread F(x) obtained from the minimum
initial seed x, becomes slower as the iterations progress, noticing
much more in PSO. This is because the depth of F(x) (i-parameter
in Eq. (1)) grows as the iterations progress, increasing its compu-
tation time. This is especially clear for the PSO executions on G,
where the first iterations were much faster than the last ones.
In effect, PSO started iteration O with a seed of 1850 nodes on
average, influencing an average of 3490 nodes, almost double.
Due to the above, and the fact that BA and BHO do not handle
memory (list by solution vectors), the PSO execution times were
almost double that of BA and BHO, on G, and Gs.

6.5. Comparison with centrality measures

The IMP (as well as the multi-objective version studied in
this work) are different from the centrality problem [12]. The
solution seeds obtained from the IMP and the multi-objective
version reflect a set of influential actors. In contrast, the output of
the centrality measures is a ranking that allows determining the
individual relevance of each actor within the network in terms of
influence, activity, or popularity [131].

10

Notwithstanding the above, if we consider the actors of a so-
lution seed of our problem as influential actors, then it is possible
to compare the k actors obtained from a solution seed with the
top k users obtained by a centrality measure. To make these
comparisons, we apply three classic centrality measures used
for directed, weighted graphs (out-degree [132], closeness [132],
and PageRank [133]) on the Football network (G). These three
measures are implemented and well documented in Python’s
NetworkX library.'

As mentioned in Section 6.1, an efficient solution seed for G,
yielded 15 nodes, which correspond to the smallest set capable
of spreading its influence to the 35 nodes of the network. For the
top 15 nodes obtained with the out-degree measure, ten nodes
coincided with the solution seed. However, the second most rel-
evant node for out-degree does not belong to the optimal solution
of our multi-objective IMP, while two nodes of the solution seed
are at the bottom of the ranking for out-degree. Since the out-
degree measure only depends on the number of salient edges of
each node, these differences in the results are understandable.

On the other hand, from the top 15 obtained for closeness and
PageRank, no match is obtained with the nodes of the solution
seed. Indeed, both the closeness and the PageRank depend on
the trajectories of each node toward the other network nodes.
Therefore, these measures punish nodes that do not have arrival
edges (low in-degree). However, in the case of our problem, if we
want to maximize the influence spread in the network, the nodes
with in-degree zero or close to zero must necessarily belong
to the solution seed. Otherwise, they could never be activated
through the influence spread process from a seed that does not
contain them.

As we can see, each of these algorithms give different re-
sults as they seek to solve different problems. That is why both
problems (centrality and IMP) have had so much development
separately (see Table 1 and [131]).

7. Conclusions and future work

The influence maximization problem (IMP) is one of the most
relevant problems in social network analysis. In this work, based
on an extensive bibliographic review (see Table 1), we have
seen that solutions through metaheuristics have dominated the
proposals in the last five years. A lesser-known problem is the

1 https://networkx.github.io/
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least cost influence (LCI) problem, the minimization version of
IMP, which has only been recently studied using metaheuristics,
in particular through evolutionary algorithms. As far as we know,
a multi-objective strategy has never been used until now to solve
both problems at the same time, that is, seek to minimize the
size of the seeds while at the same time maximizing the influence
spread.

In this paper, we have modeled this multi-objective problem
and implemented three swarm intelligence-based methods to
solve it: Particle swarm optimization (PSO), Bat algorithm (BA),
and Black hole optimization (BHO). As case studies, we consider
three social networks represented as influence graphs, of 35,
3783 and 38918 nodes, respectively. To exert the influence spread
phenomenon, we use the linear threshold model (LT-model).

The results show that the PSO algorithm achieved excellent
results for the three networks, showing robust convergent be-
havior toward obtaining efficient solutions. The BA algorithm
reached efficient solutions for the smallest network, but failed
to evolve for the largest networks. BHO showed a much slower
evolution capacity than PSO. Unlike BA, it managed to evolve
subtly for the largest networks but failed to achieve a set of
efficient solutions even for the smallest network. Thus, although
the use of the internal memory of PSO increases its execution
times, this seems to be a very good option to solve the influence
spread problem under a multi-objective paradigm. Instead, BA
and BHO were unable to properly adapt to the binary domain,
so the authors suggest ruling them out for future experiments, at
least in their more standard versions. An alternative to consider
could be the Crow search algorithm [134], which, like PSO, also
uses internal memory and it already has successfully been applied
to 0/1 combinatorial problems [135].

Finally, as future work, it is expected to apply this proposed
solution in other application domains, such as cooperative game
theory, collective decision-making or network centrality.
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