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Abstract

The late-time effect of primordial non-Gaussianity offers a window into the
physics of inflation and the very early Universe. In this thesis we study the conse-
quences of a particular class of primordial non-Gaussianity that is fully characterized
by initial density fluctuations drawn from a non-Gaussian probability density func-
tion, rather than by construction of a particular form for the primordial bispectrum.
We numerically generate multiple realisations of cosmological structure and use the
late-time matter power spectrum, bispectrum and trispectrum to determine the ef-
fect of these modified initial conditions. We show that the initial non-Gaussianity
has only a small imprint on the first three polyspectra, when compared to a stan-
dard Gaussian cosmology. Furthermore, some of our models present an interesting
scale-dependent deviation from the Gaussian case in the bispectrum and trispectrum,
although the signal is at most at the percent level. The majority of our models are
consistent with CMB constraints, while the others are only marginally excluded.
Finally, we discuss further possible extensions of our study.
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Chapter 1

Introduction

One of the principal problems in cosmology is to understand the physics of
the early Universe, in particular the period referred to as inflation. This period is
thought to be responsible for determining the initial conditions of our Universe and
ultimately gives rise to the observed late-time large-scale structure.

During the exponential growth of the Universe in the inflationary epoch primor-
dial quantum fluctuations grew to create the first gravitational wells where structure
started to form. Thanks to the CMB, we have strong observational evidence for
the existence of these quantum perturbations at earlier times, as they are imprinted
upon the CMB temperature map. The extremely small size of the temperature
anisotropies in the CMB accords with the concept of homogeneity of the Universe.
In fact, the smoothness of the CMB temperature map is one of the “puzzles” in
standard cosmology that is resolved by inflation (the so-called horizon problem). By
studying the statistics of the fluctuations from the CMB and the large-scale structure
of the Universe, it is possible to obtain constraints on the statistics of the primordial
fluctuations in the early Universe, and therefore obtain constraints on the physics of
the inflationary epoch.

The most simple inflationary models predict that the distribution of the pri-
mordial fluctuations has to be near Gaussian, and this is supported by the current
observational evidence from the CMB that also shows a near Gaussian distribution
of the temperature fluctuations (Planck Collaboration et al., 2020). This means that
we can find all the information about the distribution of the fluctuations through
only the two-point correlation function, or say its power spectrum. However, many
inflationary models do not predict Gaussian statistics. For instance, inflationary
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models such as multi-field inflation, through the interactions of several fields, can
transfer their statistics from one to the other leading to deviations from Gaussian
statistics in the primordial fluctuations.

Among the many probes of the statistics of the perturbations that we have avail-
able, the n-point correlation functions correspond to the moments of the probability
density function (PDF) describing the statistical distribution of the perturbations.
At present, the search for evidence of deviations from Gaussianity in the CMB has
focused just on the lowest orders of the n-point correlation functions, for instance, by
measuring the 3 and 4-point correlation functions (the Fourier transforms of these
quantities are the bispectrum and trispectrum respectively). On the other hand,
parameterising deviations from Gaussianity with the bispectrum or trispectrum is
not a fully comprehensive way to find evidence of non-Gaussianity (see Bennett et al.
(2003) and Buchert et al. (2017)). One could be missing additional information in
correlation functions of order greater than 3 or 4, which could be related to physical
processes in the early universe that have not yet been tested.

It is in this context that theories that can quantify these deviations through
higher orders of correlation functions have begun to attract attention. Multi-field
inflation can provide mechanisms that produce large amounts of non-Gaussianity
through the interaction of several degrees of freedom. In this work, we will analyse
the impact on the large-scale structure of a novel class of non-Gaussianity generated
by the interaction of an isocurvature field and the primordial curvature field. This
kind of non-Gaussianity can inherit the structure of the potential of the isocurvature
field, so by studying the PDF associated with the primordial perturbations, we could
theoretically find evidence of the structure of this primordial potential, in this sense,
this kind of non-Gaussianity is called tomographic non-Gaussianity.

We will study the impact of these primordial non-Gaussianities on structure
formation through the tool of N-body simulations as well as approximate methods
referred to as mock catalogue generators. These tools allow us to model both linear
and nonlinear structure formation, and will in principle allow us to contrast and com-
pare with future observational studies of large-scale structures, such as LSST (Vera
C. Rubin Observatory, 2021), EUCLID (2021), and SKA (Weltman et al., 2020).

The remainder of this thesis is organized as follows: In Sec. 1.1, we summarize
attempts to search for primordial non-Gaussianities, and in Sec. 1.2, we describe some
common tools for studying large-scale structure. In Chap. 2 we describe the mech-
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anism that generates the primordial perturbations and subsequently the probability
density function associated to these perturbations, which is used for the generation
of the initial conditions of our simulations. In Chap. 3, we present the codes used
in this work, as well as the method by which we generate our simulations, and the
analysis of the results. In Chap. 4, we present and discuss our results. Finally, in
Chap. 5, we summarize the work and present our conclusions.

1.1 Primordial Non-Gaussianity

The search for the initial conditions of our Universe has been discussed over
time from an observational and theoretical perspective. From a historical context,
observational evidence for large-scale structure (LSS) already indicated that the dis-
tribution of matter in the Universe was not Gaussian. Groth and Peebles (1977) mea-
sured the 3-point correlation function of galaxies from the Shane-Wirtanen catalog,
which indicated that there was no preference for a linear distribution characteristic of
galaxies. From this, the question arose as to whether the measured non-Gaussianity
in the galaxy distribution was due only to the gravitational collapse of matter, or
whether, in addition, there might be a hidden signal corresponding to primordial
non-Gaussianities that could give rise to the initial conditions of the Universe.

The theory of cosmic inflation appeared as a solution to the problems of the
standard model of cosmology (now referred to as ΛCDM, after detection of the
dark energy component), which were the monopole problem, the horizon problem,
the flatness problem, and the problem of the initial conditions leading to structure
formation. Inflation was first developed by numerous authors, in particular Guth,
1981; Kazanas, 1980; Sato, 1981; Starobinsky, 1980. The simplest models of inflation
postulate a scalar field φ (referred to as the inflaton) whose potential is such that the
field evolves extremely slowly in a very flat region (the so-called slow-roll regime) in
order to generate an exponential expansion of the Universe, after which the inflaton
reaches a potential minimum. The inflaton quantum mechanically oscillates around
this minimum, transferring the energy aquired when falling to the potential minimum
to the standard model particles, a process known as reheating. In addition, inflation
suggests a mechanism for the spontaneous generation of initial conditions: quantum
fluctuations associated to this field generate the primordial curvature perturbations
at the beginning of the Universe. These perturbations have been shown to have near
Gaussian statistics in the simplest inflationary models. The usual way to quantify
some deviation from Gaussianity has been through the fNL parameter, which refers
to the first parameter of local non-linearities in a power series around a Gaussian
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contribution, i.e.

R = RG +
3

5
fNLR2

G, (1.1)

whereR is the co-moving primordial curvature perturbation, a gauge-invariant quan-
tity, and RG is the Gaussian component of this perturbation. This is related to the
primordial gravitational potential Ψ (on a co-moving hypersurface) as

R = Ψ +H
δφ

φ̇
. (1.2)

Here, H is the hubble parameter. So we can associate a bispectrum (the 3-point
correlation function in Fourier space) to the fNL parameter as follows

〈Rk1Rk2Rk3〉 = (2π)3δ(3) (k1 + k2 + k3)
6

5
fNL[PR (k1)PR (k2)

+ PR (k2)PR (k3) + PR (k3)PR (k1)], (1.3)

where PR is the primordial power spectrum. Since different inflation models produce
different shapes and amplitudes for the bispectrum (see for example Chen (2010))
we can, in principle, discriminate different inflationary mechanisms that could have
given rise to the primordial non-Gaussianities using this statistic. To first order in
the slow-roll parameter fNL is given by the Maldacena consistency relation:

fNL = − 5

12
(ns − 1) , (1.4)

where ns is the spectral index related to the primordial power spectrum PR (k) as

ns − 1 ≡ d ln (k3PR(k))

d ln k
. (1.5)

Since inflation predicts a near scale-invariant primordial power spectrum we ex-
pect fNL to be of order 10−2. From Planck Collaboration et al. (2020) a value of
fNL = −0.9 ± 5.1 has been reported. This is still far from tightly constraining in-
flationary models, and such constraints are not anticipated to improve substantially
even for the next generation of cosmological studies Abazajian et al., 2016; EUCLID,
2021; Vera C. Rubin Observatory, 2021; Weltman et al., 2020.

Similar attempts have been made with the higher-order n-point functions, with
similar results when considered from the point-of-view of single-field inflation. If
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future observational constraints strongly indicated higher levels of non-Gaussianity
than currently suggested with the weak constraints today, the simpler models of in-
flation could be discarded, and more complex inflationary mechanisms would have
to be considered. These predict stronger signals in the n-point functions. Examples
of more complex inflationary mechanisms are the dynamical interaction of the in-
flationary field with other degrees of freedom, self-interactions of primordial fields,
non-canonical terms, etc. Many reviews provide a more complete overview of this
topic: Abazajian et al., 2016; Bartolo et al., 2004; Celoria and Matarrese, 2018; Chen,
2010; Liguori et al., 2010. On the other hand, there have also been attempts to an-
alytically explore non-Gaussianities through perturbative methods in the non-linear
regime, using the effective field theory of large-scale structure (EFT of LSS). See
Matarrese and Pietroni, 2007; Pietroni, 2008 and Angulo et al., 2015; Assassi et al.,
2015; Baldauf et al., 2015.

In addition, analysis of three-dimensional large-scale structure data sources can
provide other ways to constrain the primordial non-Gaussianities. Although one of
the greatest difficulties in working with late-time observational data is the difficulty
of distinguishing between the non-Gaussianity coming from the gravitational collapse
and the primordial non-Gaussian signal. This difficulty is mainly because we only
have one realization of the Universe. Therefore, N-body simulations and mock cat-
alogs have been a widely used tool to generate different realizations of the Universe,
to obtain statistically robust observables that can be used to compare with observa-
tions. For some examples see: Desjacques et al., 2009; Giannantonio and Porciani,
2010; Grossi et al., 2007, 2009; Hikage et al., 2008; Sefusatti et al., 2010; Wagner and
Verde, 2012; Wagner et al., 2010.

The polyspectra (n-point functions in Fourier space) is one of the standards tools
for LSS analysis, although other powerful tests of non-Gaussianity can be performed
through the halo mass function, halo bias, etc (see Palma et al., 2020). Otherwise,
they can also be used jointly to constrain late-time clustering observables (e.g. Gil-
Maŕın et al., 2015 and Gil-Maŕın et al., 2017). In the following section we will
describe some of the tools commonly used for large-scale structure analysis.

15



Figure 1.1: 2dF Galaxy Redshift Survey. Carried out by the Anglo-Australian Ob-
servatory (AAO) between 1997 and 2002 (Colless et al., 2003). There are 221,414
Galaxies.

1.2 Statistical tools for the analysis of Large-Scale

Structures

As discussed earlier, one would expect that signals of primoridal non-Gaussianity
would propagate through the evolution of the Universe and ultimately be imprinted
on late-time large-scale structure statistics, in addition to their effect on early-time
observables such as the CMB. The challenge, however, is to extract the primordial
signal from the non-Gaussianity induced due to gravitational collapse.

One way to study the large-scale structure of the Universe is by analyzing its
statistical properties, through, for example, the n-point correlation functions and
their analogues in Fourier space. To define these functions, we begin by defining
clustering, which consists of counting objects separated by a certain distance. Sup-
pose we have a map of galaxies as in Fig. 1.1, if we place on this map a grid, count
the number of galaxies in each grid cell and divide by its volume, we can calculate
the density of galaxies as

ρ(x) = Ncell(x)/Vcell, (1.6)

where Ncell(x) is the number of objects within a grid cell and Vcell is the volume of
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each cell.

An alternative way of representing the density field is by using the over-density
field δ(x) (also known as density contrast), which is defined as the density at a point
x divided by the average cosmological density ρ0 minus one:

δ(x) = ρ(x)/ρ0 − 1, (1.7)

where δ(x) = −1 in the case of a void; δ(x) = 0 when ρ(x) is equal to the background
density, and δ(x) > 0 when we have an overdense region, i.e. clustering.

1.2.1 2-point correlation function and power spectrum

In this section we will follow closely the description given in Amendola and
Tsujikawa (2010). An important tool in the statistical analysis of random point dis-
tributions in cosmology are the correlation functions. The most commonly used is
the two-point correlation function, and its counterpart in Fourier space, the power
spectrum. These quantify the correlation that exists between the clustering of par-
ticles of two positions in the space.

Consider a box with volume V and number average density ρ0, the average
number of particles n in an infinitesimal volume inside the box will be ρ0dV . Then,
for two points in the space, separated by a distance rab > 0, the average number of
pairs of particles 〈nanb〉 in the volumes dVa and dVb, are related to the correlation
function ξ (rab) by

dNab = 〈nanb〉 = ρ2
0 dVa dVb [1 + ξ (rab)] , (1.8)

where, we can see that if ξ (rab) = 0, then the particle distribution is uncorrelated
(does not depend on position), and the number of pairs of particles is independently
determined by ρ2

0dVadVb. In case of correlation (ξ (rab) 6= 0) we have

ξ (rab) =
dNab

ρ2
0dVadVb

− 1 = 〈δ (ra) δ (rb)〉 , (1.9)

where δ (ra) = na/ρ0dVa − 1 is the constrast density.

if we average it over all the possible positions in a sample (i.e sample average),
the correlation function is written as
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ξ(r) =
1

V

∫
δ(y + r)δ(y)dVy = 〈δ(y + r)δ(y)〉. (1.10)

Power spectrum

The power spectrum is a common descriptor of clustering at different scales in
cosmology, and is defined as a real quadratic function of a perturbation variable in
Fourier space, i.e.

P (k) = V δ(k)δ(k)∗ = V |δ(k)|2 , (1.11)

where V is the volume and δ(k) is the Fourier transform of the density contrast,
given by

δ(k) =
1

V

∫
δ(x)e−ikxdV. (1.12)

We can insert the above equation in the expression for the power spectrum, equation
(1.11), to find

P (k) =
1

V

∫
δ(x)δ(y)e−ik·(x−y)dVx dVy. (1.13)

Now, if we set r = x − y, and using the expression (1.10), we can write the power
spectrum as follows

P (k) =

∫
ξ(r)e−ik·rdV. (1.14)

Thus, we see that the power spectrum is the Fourier transform of the 2-point correla-
tion function (Wiener-Khinchin theorem). Likewise, the 2-point correlation function
may be written as

ξ(r) = (2π)−3

∫
P (k)eik·rd3k. (1.15)

One can define the power spectrum in a more general way if we consider ensemble
averages (averaging different realizations) for the power spectrum, i.e,
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V 〈δ(k)δ(k′)∗〉 =
1

V

∫
〈δ(y)δ(y + r)〉e−i(k−k′)·y−ik·rdVr dVy

=
1

V

∫
e−i(k−k

′)·ydVy

∫
e−ik·rξ(r)dVr

=
(2π)3

V
P (k)δD (k − k′) ,

(1.16)

where have used Dirac’s delta function in Fourier space

δD(k) = (2π)−3

∫
eik·xd3x, (1.17)

which is normalised to ensure that∫
δD(k)d3k = 1. (1.18)

The expression in (1.16) shows that the modes k are uncorrelated when the correla-
tion function ξ(x) depends only on the separation r and not on the position y. This
corresponds to (statistical) homogeneity. Moreover, since δ(x) is a real function then
δ(k) = δ∗(k), and we can also write the power spectrum as

V 〈δ(k)δ(k′)〉 =
(2π)3

V
P (k)δD (k + k′) . (1.19)

If we have an isotropic distribution, in addition to homogeneity, then the 2-point cor-
relation function depends only on the distance between the two points, i.e. r = |r|,
and the power spectrum depends only on the magnitude of the wavevector k = |k|.

Due to the discreteness of the matter distribution of the Universe, we do not
obtain information about a continuous density field but instead we must use a sam-
pling of this field. This sampling will introduce biases in the reconstruction of the
density field. In what follows, we assume the simplest form of discrete sampling
which is a Poissonian distribution of points in any location. For galaxies as tracers
of the underlying dark matter field, we know that a Poissonian distribution is not the
whole picture, and the concept of galaxy bias must be introduced. In this study we
are interested in the dark matter distribution itself (using simulations) rather than
the galaxy distribution, but we are still limited to a discrete sampling due to the
limited particle resolution of our simulations.
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To proceed, we introduce a window function W (x) in order to quantify our
particle selection procedure. The simplest approach is to select all particles within a
volume and ignore all particles outside that volume. This corresponds to using the
top-hat window function. This window function is normalised to a volume V as∫

W (x)dV = 1. (1.20)

Thus the function is simply given by W (x) = 1/V inside the volume and zero
everywhere else. The density field of our specific sample, δs, is then given by the full
density field δ(x) multiplied by the window function W (x) and the sample volume
V , due to the normalisation of W (x):

δs(x) = δ(x)VW (x). (1.21)

The discrete density field can now be written as

δs(x) =
V

N

∑
wiδD (x− xi)− VW (x), (1.22)

where we have used ρ(x) =
∑

i δD (x− xi), i.e. the discrete field is written as a sum
of Dirac delta functions, and wi = VW (xi). In Fourier space the discretised field is

δs(k) =
1

N

∑
i

wie
−ik·xi −W (k), (1.23)

where W (k) is the k-space window function:

W (k) =

∫
W (x)e−ik·xdV, (1.24)

with normalisation W (0) = 1. Now, from Eq.(1.23), we have〈
∆2(k)

〉
≡ V 〈δs(k)δs(k)∗〉 = P (k) + Pn, (1.25)

where we have used 〈δs(k)〉 = 0. In the above expression, the power spectrum P (k)
and the pure noise spectrum Pn are given by:

P (k) =
V

N2

∑
i 6=j

〈wiwj〉 e−ik·(xi−xj) − VW (k)2,

Pn =
V

N2

∑
i

w2
i =

V

N
,

(1.26)
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where, in the last equality, we have used the fact that wi is either 0 (outside the
volume) or 1 (inside the volume). The quantity Pn gives the power spectrum of a
Poisson distribution of points, and is negligible when the number of points in the
volume becomes extremely large ρ0 = N/V → ∞. Typically, however, we do not
have a very large number of points available (in observations due to limitations of the
survey, in simulations due to limitations in resolution) and thus the noise is usually
not negligible and must be subtracted from the measured power spectrum in order
to obtain a more accurate estimate:

P̂ (k) = ∆2k − Pn. (1.27)

1.2.2 3-point correlation function and bispectrum

It is easy to extend the correlation function to higher orders by simply adding
another point in space to the product of density perturbations. Such higher order
correlation functions are sensitive to non-Gaussianities (the two-point function fully
characterises the distribution for Gaussian statistics). As we have discussed earlier,
the 1-point correlation function may be taken simply as the ensemble or sample-
averaged density perturbation, which would be zero. We have already shown above
the 2-point function and its Fourier transform, the power spectrum. Now we consider
the 3-point correlation function, defined as

ςabc (ra, rb, rc) = 〈δ (ra) δ (rb) δ (rc)〉 , (1.28)

or

ςabc (ra, rb, rc) =

〈(
na

ρ0 dVa
− 1

)(
nb

ρ0 dVb
− 1

)(
nc

ρ0 dVc
− 1

)〉
=

〈nanbnc〉
ρ3

0 dVa dVb dVc
− ξab − ξbc − ξac − 1,

(1.29)

with ξij ≡ ξ (rij). Rewriting (1.29) we obtain the relation,

〈nanbnc〉 = ρ3
0 dVa dVb dVc (1 + ξab + ξbc + ξac + ςabc) . (1.30)

Here, the term ςabc, is known as the “disconnected” part of the 3-point correlation
function, and it provides information about the nonlinearities of a random field. If
ςabc = 0, we are dealing with a Gaussian distribution, and in this case, the static
properties of the field are completely described by the 2-point correlation function
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(or the power spectrum in Fourier space). This notion can be carried to larger orders
of the correlation function, and the same description applies. As we will see in the
following subsection, the Fourier transform of the 3-point correlation function is the
“bispectrum”.

Bispectrum

The bispectrum is the Fourier transform of the 3-point correlation function, and
is defined as

〈δ (k1) δ (k2) δ (k3)〉 = δD (k1 + k2 + k3)B (k1,k2,k3) . (1.31)

In this case the Dirac delta function ensures that the bispectrum is computed for
only closed triangular configurations, i.e.,

∑
i ki = 0.

It is useful to define the reduced bispectrum Q (k1,k2,k3) as

Q (k1,k2,k3) ≡ B (k1,k2,k3)

P (k1)P (k2) + P (k1)P (k3) + P (k2)P (k3)
. (1.32)

This quantity is useful for observational studies as it is only weakly dependent on
scale and cosmology (Peebles, 1980), which is beneficial as it breaks the degeneracy
between cosmological parameters, and thus it can isolate the effects of gravity.

The bispectrum for any Gaussian distribution of points is zero, which means
all information about physical processes is contained in the power spectrum. The
bispectrum remains zero in a linear evolutionary process, i.e., as long as the k modes
evolve independently. On the other hand, the bispectrum takes a relevant role when
one wants to study non-linear processes; when an evolutionary process is no longer
linear, the modes are coupled and the bispectrum is no longer zero. In this way,
information about non-linear processes that influence the evolution of dark matter
clusters can be extracted. In addition, the presence of non-Gaussianity will also lead
to a non-zero bispectrum, which will mix with the contribution arising from non-
linearities.

The analytical approach of the bispectrum is also useful when we want to con-
trast information with observational data and/or simulations. In Eulerian perturba-
tion theory, at second order (tree-level), and in an Einstein de-Sitter Universe the
bispectrum results in
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B (k1,k2,k3) = 2F s
2 (k1,k2)PL

1 P
L
2 + cyc. perm., (1.33)

where PL
i = PL (ki) is the linear power spectrum, and F s

2 is the symmetrized twopoint
kernel given by

F s
2 (ki,kj) =

5

7
+

1

2
cos (θij)

(
ki
kj

+
kj
ki

)
+

2

7
cos2 (θij) , (1.34)

where θij is the angle between the vectors ki and kj. This is an accurate approxi-
mation for quasi-linear scales, but is inaccurate for moderately non-linear scales.
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Chapter 2

Tomographic non-Gaussianity

We now introduce the specific model of primordial non-Gaussianity that we
are interested in this work. We give a brief summary of the theory, as described
in detail in Chen et al. (2018a). As is standard in studies of inflation, we present
the statistical measures in terms of the primordial curvature perturbation ζ. This
may then be straightforwardly related to the dark matter density perturbation δ
through the gravitational potential. To begin with, the n-point correlation func-
tions 〈ζ (x1) · · · ζ (xn)〉 that we have been considering are statistical moments of an
underlying multivariate probability density function P (ζ):

〈ζ (x1) · · · ζ (xn)〉 =

∫
dζP (ζ)ζ (x1) · · · ζ (xn) , (2.1)

where 〈·〉 denotes the expectation value of a random variable. On the other hand,
the non-Gaussianity considered in this work can be fully characterised by a reduced
PDF that considers only the statistics of a single point of the ζ field:

〈ζ(x)n〉 =

∫ ∞
−∞

d(ζ(x))ρ(ζ(x))(ζ(x))n, (2.2)

where ρ(ζ(x)) is the PDF which will be reconstructed in the Sec. 2.3.

In this chapter, we will describe the physical mechanism generating the primor-
dial perturbations which give rise to the probability distribution function (PDF) of
the primordial tomographic non-Gaussianity, and consequently, we will describe the
statistics associated with this non-Gaussianity through the n-point functions. After
describing the generating mechanism of the primordial fluctuations, in Sec. 2.3 we

24



will describe how to reconstruct the PDF through its relation to the n-point func-
tions. We do not show the details of this calculation but instead refer the reader to
the original study of Chen et al. (2018a).

2.1 Multifield inflation context

The CMB observational data constrain the bispectrum to be consistent with
Gaussian statistic Planck Collaboration et al. (2020). On the other hand, parame-
terising the primordial statistics via the 3-point correlation function or higher orders
may not be the best way to constrain the data (see Bennett et al. (2003) and (Buchert
et al., 2017)). Instead, multi-field (with a light isocurvature field) or quasi-single-field
(with a massive isocurvature field) inflation models can generate larger amounts of
primordial non-Gaussianity by increasing the amplitude of the 3-point correlation
function. See Enqvist and Väihkönen, 2004 and Achúcarro et al. (2017), for ex-
amples of these kinds of models. The isocurvature field ψ, during horizon-crossing
and/or super-horizon scales, could affect the dynamics of the primordial perturba-
tion field ζ due to a derivative coupling of the form Lint ∝ ζ̇ψ. His interaction can
lead to deviations in the inflationary path of the inflaton through the landscape of
the inflationary potential Gordon et al., 2000; Groot Nibbelink and van Tent, 2000,
2002, something that is clearly not possible in single-field inflation. These couplings
produce different types of non-linearities capable of being transferred to the statistics
of the primordial perturbation field ζ.

2.1.1 Two-field lagrangian

In a two-field inflationary theory, the interaction between the fields is given
by a term at quadratic order in the fluctuations, and this interaction can turn the
inflationary trajectory. The evolution of these fluctuations is then described by
a Lagrangian which couples the comoving curvature perturbation ζ with a single
isocurvature field ψ (see, for instance Gordon et al., 2000; Groot Nibbelink and van
Tent, 2000, 2002). This is given by

L(ζ, ψ) =a3
[
ε(ζ̇ − αψ)2 − ε

a2
(∇ζ)2 +

1

2
ψ̇2 − 1

2a2
(∇ψ)2 − 1

2
µ2ψ2

]
, (2.3)

25



where ε ≡ −Ḣ/H2 is the first slow-roll parameter, µ is called the entropic mass of
ψ, a is the scale factor, and α (which depends on time) incorporates the coupling
between ζ and ψ. It follows that ψ satisfies the following equation of motion in the
long-wavelength limit:

ψ̈ + 3Hψ + µ2ψ = 0. (2.4)

From this, we see that µ corresponds to the mass of ψ on super-horizon scales. On
the other hand, if µ = 0, then ψ becomes “ultralight” and the Lagrangian gains a
translational symmetry

ψ → ψ′ = ψ + C, (2.5)

ζ → ζ ′ = ζ + C

∫ t

dtα, (2.6)

where C is an arbitrary constant. Summarised from Achúcarro et al. (2017), this
symmetry tell us two things: Firstly, from Eq. (2.5), the Lagrangian generates a
constant solution for ψ (which can also be seen from Eq. (2.6)). This constant
solution, ψ∗ breaks the symmetry of the Lagrangian dominating on super-horizon
scales. Secondly: from the symmetry of the lagrangian gained through Eq. (2.6), it
follows that the solution ψ∗ will be the source of the evolution of ζ on super-horizon
scales. Considering that α ≈ const., on super-horizon scales it can be shown that

ζ ' α

H
ψ∗∆N. (2.7)

If we consider that ψ∗ has a value such that it corresponds to the horizon
crossing, then ∆N will correspond to the number of e-folds at that time, so the
statistical relationship between ζ and ψ, given by the n-point function is as follows

〈ζn〉 '
( α
H

∆N
)n
〈ψn∗ 〉 . (2.8)

Then, the ratio of the power spectra (n = 2) for both fields is given by

Pζ '
α2∆N2

H2
Pψ. (2.9)

Since the order of the interaction in the Lagrangian of Eq. (2.3) is quadratic, and
there are no higher order terms for the self-interaction of ψ, then the statistics of
ψ, which is then passed to ζ (given by Eqs. (2.8) and (2.9)), is expected to be fully
Gaussian, and any deviation from the Gaussian case is expected to be suppressed by
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the slow-roll parameters (Maldacena, 2003).

There are, however, other ways to transfer non-Gaussian statistics to the pri-
mordial curvature field. In the next section we will describe such a mechanism, in
which a structure-rich potential is given by an axion-like particle, giving rise to a
type of non-Gaussianity referred to as tomographic non-Gaussianity.

2.2 Tomographic non-Gaussianity mechanism

As described in Sec. 2.1, this type of non-Gaussianity arises from a two-field
inflationary model, which includes an interaction between the isocurvature field ψ
and the comoving curvature field ζ. If now, instead of the lagrangian of Eq. (2.3),
we think of a more general case where the self-interaction of the isocurvature field ψ
is described by the potential ∆V (ψ), then the Lagrangian would now be as follows

L(ζ, ψ) = a3

[
ε(ζ̇ − αψ)2 − ε

a2
(∇ζ)2 +

1

2
ψ̇2 − 1

2a2
(∇ψ)2 −∆V (ψ)

]
, (2.10)

where, in Chen et al. (2018a), the potential ∆V (ψ) is refered to as the landscape of
the perturbation, since the goal is to explore situations where the fluctuations ψ are
such that we cannot disregard the structure of ∆V (ψ).

Axions are particles widely studied in multifield inflation theories, and axion-
like particles are well motivated by string theory (see Cicoli, 2013; Marsh, 2016, for
instance). The characteristic potential associated with this particle is given by

∆V (ψ) = Λ4

[
1− cos

(
ψ

f

)]
, (2.11)

where Λ corresponds to the characteristic energy scale of the interaction, while f is
the axion decay constant. The potential of Eq. (2.11) breaks the continuous transla-
tion symmetry previously held by the Lagrangian of Eq. (2.3) for µ = 0, and replaces
it with a discrete symmetry given by:

ψ → ψ′ = ψ + 2πnf, (2.12)

ζ → ζ ′ = ζ + 2πnf

∫ t

dtα. (2.13)
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The way ψ transfers its statistics to ζ is similar to that described using the symmetry
arguments considering Eqs. (2.5) and (2.6), but this time the ψ field can acquire con-
stant solutions that minimise the potential. These solutions dominate the behavior of
ψ on superhorizon scales, managing to pass its information to the ζ field. The infor-
mation that can be transferred from ψ to ζ will increase for solutions that minimise
the potential, while this will decrease for solutions that maximise it. Therefore, the
structure of ∆V will end up being inherited by the PDF of ζ, making it non-Gaussian.

The Lagrangian of Eq. (2.10) can be expected to come from perturbing a more
fundamental system with a potential V = V0 + ∆V . If we stay in the regime
Λ4/3H2M2

Pl � 1, then ∆V practically does not affect the background evolution
given by the potential V0. In this regime, the ψ field will behave as an ultralight
field, so before and during the horizon crossing it will be frozen, and during the hori-
zon crossing the statistics of ψ will be transferred to ζ by Eq. (2.7). As time passes,
the non-linear contributions from ∆V will increase and will be passed to ζ because
ψ will no longer be frozen. Therefore these contributions will produce non-Gaussian
statistics, with the relation between the fields given in Chen et al. (2018a) as

〈ζn〉NG '
1

2

( α
H

∆N
)n
〈ψn〉NG , (2.14)

where the n-point correlation functions for ψ were calculated in Palma and Riquelme
(2017) using the in-in formalism, and are given by

〈ψ (k1, τ) · · ·ψ (kn, τ)〉c = (−1)n/2(2π)3δ(3)

(∑
j

kj

)
2

3

Λ4

H4
e
− σ20

2f2

(
H2

2f

)n
k3

1 + · · ·+ k3
n

k3
1 · · · k3

n

∆N.

(2.15)
This is the statistics coming from the non-Gaussian contributions acquired by ψ due
to its potential ∆V (ψ) = Λ4[1 − cos(ψ/f)]. The correlation functions for ζ were
obtained in Chen et al. (2018a), and are referred to as follows.

G̃
(n)
ζ (τ,k1, · · · ,kn) ≡ 〈ζ (k1, τ) · · · ζ (kn.τ)〉 . (2.16)

After quantising the Lagrangian of Eq. (2.10) and applying the in-in formalism, in
momentum space, the n-point functions are obtained as

G̃
(n)
ζ (τ,k1, · · · ,kn) = (−1)n/2(2π)3δ(3)

(∑
i

kj

)
Λ4e

− σ20
2f2

3H4

(
λH2∆N

2f
√

2ε

)n
k3

1 + · · ·+ k3
n

k3
1 · · · k3

n

∆N,

(2.17)
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with n even and G̃
(n)
ζ = 0 for n odd, and λ =

√
2εα
H

is a dimensionless coupling. σ2
0 is

the variance ψ, and defining the integration variable q = k|τ |, it is given by

σ2
0 =

H2

4π2

∫
dq

(
q +

1

q

)
. (2.18)

This expression contains divergences in the limits q → 0 and q → +∞, and therefore
it is necessary to introduce infrared and ultraviolet cutoff scales qIR and qUV. The
UV cutoff refers to the deepest scales accessible within the horizon, according to the
applied physics, while the IR cutoff derives from the largest scales of the observable
Universe.

2.3 Reconstruction of the non-Gaussian Probabil-

ity Distribution Function

Using the n-point correlation function given in Eq. (2.17), we can reconstruct
the PDF of the non-Gaussian primordial perturbations. For this purpose, we must
obtain the moments 〈ζn〉 of this expression in coordinate space. These are calculated
by evaluating a common value x, in all coordinates of the inverse Fourier transform
of Eq. (2.17):

〈ζn〉c ≡ G
(n)
ζ (τ,x, · · · ,x). (2.19)

The subscript c indicates that the moments 〈ζn〉 come from fully connected diagrams,
indicating that this expression is proportional to a single Dirac delta function that
encapsulates momentum conservation, so the moments 〈ζn〉 are independent of x.

On the other hand, the expression for G̃
(n)
ζ (τ,k1, · · · ,kn) has been calculated for

long wavelength modes of ζ, in order to make inflation predictions for super-horizon
perturbations, so a momentum cutoff kL has been introduced, which is represented
in terms of the physical momentum qphys ≡ k|τ | (per unit of H). Thus this cutoff
divides the curvature perturbations as follows:

ζ = ζS + ζL. (2.20)

In this case, ζL, includes modes of wavelength larger than a value given by
2π/qL. Consider that the horizon crossing happens at qphys = 1, so that qL ≤ 1.
Then qL is given by
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ζL(x, τ) =

∫
k<kL

ζ(k, τ)e−ik·x, (2.21)

with kL = qL/|τ |. Therefore, the correlation function, G
(n)
ζ,L (τ,x1, · · · ,xn), is now

integrated up to a value kL resulting in

G
(n)
ζ,L (τ,x1, · · · ,xn) = (−1)n/2(2π)3 Λ4

3H4

∫
k1<kL

· · ·
∫
kn<kL

δ(3)
(∑

j kj

)
e−i

∑
j kj ·xj

×e−
σ20
2f2

(
λH2

2f
√

2ε
∆N

)n
k31+···+k3n
k31 ···k3n

∆N.

(2.22)
The cutoff introduced in Eq. (2.21) forces the quantity σ2

0 to be divided into
short wavelength contributions (σ2

S) and large (σ2
L), such that they receive larger and

shorter contributions than kL respectively. These quantities, according to Eq. (2.18),
are as follows

σ2
S =

H2

4π2

(
1

2

(
q2

UV − q2
L

)
+ ln (qUV/qL)

)
' H2

8π2
q2

UV, (2.23)

σ2
L =

H2

4π2

(
1

2

(
q2
L − q2

IR

)
+ ln (qL/qIR)

)
' H2

4π2
ln ξ, (2.24)

where ξ corresponds to a range of accessible scales of long-wavelength modes between
kL and kIR, which contribute to ζL. This is defined as

ξ =
qL
qIR

=
kL
kIR

. (2.25)

Note that ξ parameterises the range of modes available per observation. For exam-
ple, for the CMB case, ln ξ ∼ 8.

After applying the cutoff, if we proceed to evaluate a single coordinate value x
in Eq. (2.22) we get the expression

〈ζnL〉c = (−1)n/2gnA
2e
− σ2L

2f2

[
λσ2

L

f
√

2ε
∆N

]n
, (2.26)

where A2 ≡ ∆N
6σ2
L

Λ4
ren

H2 , and Λ4
ren = e−σ

2
S/2f

2
Λ4 is the renormalised coupling resulting

from a loop resummation of the calculation of the correlation function (see Chen
et al. (2018a) for details), the coefficient gn is
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gn ≡
(2π)3

(2σ2
L/H

2)
n−1 In, (2.27)

with gn = 0 for odd n, and where In is the following integral

In ≡
∫
k1<kL

. . .

∫
kn<kL

δ(3)

(∑
j

kj

)
k3

1 + · · ·+ k3
n

k3
1 · · · k3

n

. (2.28)

For convenience it is better to write Eq. (2.26) in terms of the variance σ2
ζ rather

than σ2
L (which is associated with the ψ field). In relation to this, in Achúcarro et al.

(2017), it was investigated that in the linear regime, and in the limit Λ4 → 0, the
power spectrum of ζ and ψ are related as follows:

Pζ(k) =
λ2

2ε
∆N2Pψ(k). (2.29)

If we stay in the regime λ2∆N2 & 1 (to simplify the calculation) the above expression
implies that

σ2
ζ = σ2

L

λ2

2ε
∆N2, (2.30)

and defining fζ ≡ f
σζ
σL

= f λ√
2ε

∆N , we find that

〈ζnL〉c = (−1)n/2gnA
2e
−
σ2ζ

2f2
ζ

[
σ2
ζ

fζ

]n
. (2.31)

This expression is the general form of the n-point correlation function, which requires
the form of gn (given in Eq. (2.27)), and hence the integral In (given in Eq. (2.28)),
both to be used in the reconstruction of the PDF of ζ.

Using In we can introduce scale dependence into the n-point function. In ap-
pendix C of Chen et al. (2018a) it is shown that In can be written in terms of a
single integration variable, as follows

In(ξ) =
n

(2π2)n+1

∫ ∞
0

dx

x
G(ξ, x)[F (ξ, x)]n−1, (2.32)

where the functions G(ξ, x) and F (ξ, x) are given by
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G(ξ, x) =[sin(x)− x cos(x)− sin(x/ξ)

+ (x/ξ) cos(x/ξ)],

F (ξ, x) =Ci(x)− sin(x)

x
− Ci(x/ξ) +

sin(x/ξ)

x/ξ
,

(2.33)

and where Ci(x) is the cosine integral function. Furthermore, it is shown that when
we have access to an unbounded number of modes (ξ →∞), the integral In assumes
its asymptotic form I0

n(ξ), given by

I0
n(ξ) ≡ nπ

2 (2π2)n+1 (ln ξ)n−1. (2.34)

Note that the scale kL of Eq. (2.25), corresponds to the horizon exit, and that the
cutoff kIR corresponds to the largest modes available from observations, so ln ξ ≤ 60.
This tells us that, in principle, we cannot consider In as I0

n, as these functions lead
to significantly different PDFs, as discussed in detail in Appendix C of Chen et al.
(2018a).

However, in this work we have found that by applying a scaling to the A2 pa-
rameter of the PDF derived from I0

n, we can obtain a close match with the PDF
derived from the general integral In. This is relevant considering that, for practical
reasons, and in order to obtain preliminary results, it is easier to work with the
PDF reconstructed with I0

n than the one obtained with In (we will present the PDFs
themselves in the following subsections). In Sec. 4.4, we discuss this issue in more
detail, and we also show that most of our models are within the constraints given by
the CMB.

The probability density function ρ(ζ) is related to its moments according to

〈ζnL〉 =

∫
dζρ(ζ)ζn. (2.35)

To carry out the reconstruction of ρ(ζ) it is useful to understand the general
structure of ρ(ζ). Let us start by considering the full n-point correlation function,
which has both connected and disconnected diagrams, this quantiy is given in Chen
et al. (2018a) as

〈ζnL〉 =

n/2∑
m=0

n!

m!(n− 2m)!2m
σ2m
ζ

〈
ζn−2m
L

〉
c
, (2.36)
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where we can note that the term m = n/2 in Eq. (2.36) corresponds to

〈ζnL〉 =
n!

(n/2)!2n/2
σnζ . (2.37)

This expression corresponds to the moments of a Gaussian distribution, which means
that ρ(ζ) is given by a main Gaussian distribution with non-Gaussian corrections.
A simple proposed ansatz is

ρ(ζ) = ρG(ζ) + ∆ρ(ζ), (2.38)

where

ρG(ζ) =
exp

−ζ2

2σ2
ζ√

2πσζ
, (2.39)

is the Gaussian part arising from the n-point functions given by Eq. (2.37), and
∆ρ(ζ) results from the nonlinear interactions proportional to A2.

2.3.1 Asymptotic reconstruction

As we mentioned before, in the formal limit ξ →∞ the integral In is defined by
its asymptotic form I0

n(ξ). In this case, using Eq. (2.24), we find that gn = n. Then
for n even, the n-point functions are given by

〈ζnL〉c = (−1)n/2nA2e
− σ2S

2f2
ζ

[
σ2
ζ

fζ

]n
, (2.40)

and for n odd 〈ζnL〉c = 0. For the final step, in Chen et al. (2018a), the following
ansatz is proposed

∆ρ(ζ) =
e
− ε2

2σζ√
2πσζ

[∑
m=0

Bmζ
2m cos

(
ζ

fζ

)
+
∑
m=0

Cmζ
2m+1 sin

(
ζ

fζ

)]
, (2.41)

which satisfies that it is even under the change ζ → −ζ, so only the odd moments
vanish. Using the relation of Eq. (2.35), we can find the B0 and C0 coefficients, which
are the only ones that do not vanish. Finally ρ(ζ) is given by
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ρ(ζ) =
e
− ζ2

2σ2
C

√
2πσζ

[
1 + A2

σ2
ζ

f 2
ζ

cos

(
ζ

fζ

)
− A2 ζ

fζ
sin

(
ζ

fζ

)]
. (2.42)

It can be shown that this PDF complies with the normalisation
∫
ρ(ζ)dζ = 1.

Interestingly, the importance of this result lies in its simplicity and dependence on
several parameters related to the shape of the landscape. If we note the second
term, within square brackets in Eq. (2.42) we see that this increases the probability
of finding a value of ζ sourced by values of ψ that minimise the cosine potential of
Eq. (2.11). While the third term could be interpreted as the probability values that
represent the propagation of ζ. It is also worth noting, however, that this third term
could be absorbed into the second term by shifting fζ .

2.3.2 Full reconstruction

The full reconstruction of the PDF is performed in a similar way to its asymp-
totic form, but this time we must consider any value of ln ξ > 0, so we have to deal
with the integral of Eq. (2.32) which depends on the coordinate x. On the other
hand, if we compare In and I0

n of Eqs. (2.32) and (2.34) respectively, we find the
same dependence on n, but with the difference that in Eq. (2.32) we see that n is a
factor for each value of x. Then, checking Eq. (2.35), by comparison we can identify
a “decay constant” that now depends on x:

fζ(x) ≡ fζ
ln ξ

F (ξ, x)
≥ fζ , (2.43)

which satisfies fζ(0) = fζ . Using again the ansatz presented in Eq. (2.41), and with
some algebraic manipulations, we finally get that

ρ(ζ) =
e
− ζ2

2σ2
ζ

√
2πσζ

[
1 + A2

∫ ∞
0

dx

x
Kξ(x)

(
σ2
ζ

fζ(x)2
cos

(
ζ

fζ(x)

)
− ζ

fζ(x)
sin

(
ζ

fζ(x)

))]
,

(2.44)
where

Kξ(x) ≡ 2G(ξ, x) ln ξ

πF (ξ, x)
exp

(
−
σ2
ζ

(
f 2
ζ (x)− f 2

ζ

)
2f 2

ζ f
2
ζ (x)

)
. (2.45)

The oscillatory structure shown in Eq. (2.44) is very similar to that shown in
Eq. (2.42). The main difference is the filtering produced by selecting a limited range
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of modes, given by the ratio ξ = kL/kIR. As a result, the filter significantly sup-
presses the amplitude of the oscillations deviating its shape from the shape of the
asymptotic reconstruction. Furthermore, small values of the parameter fζ decreases
the amplitude of the oscillations, contrary to what happens with the asymptotic re-
construction, this is mainly due to the exponential in the kernel function Kξ(x).

However, as discussed earlier and as also indicated in Chen et al. (2018a), by
properly rescaling the A2 parameter, the amplitude suppressed by this filter can be
recovered, resulting in very similar forms for both PDFs, even if we construct PDFs
with varying frequencies and amplitudes. In Sec. 4.4 we show that different PDFs
generated from the asymptotic reconstruction with varying amplitudes and frequen-
cies do not deviate significantly from those generated with the full reconstruction
when we properly rescale A2; our most extreme model, with very low frequency and
very high amplitude, deviates up to ∼ 12% from the full reconstruction.

It is important to note that in the limit ξ →∞, the PDF of Eq. (2.44) recovers
the form given by the asymptotic reconstruction in Eq. (2.44). In the ideal case of
having access to all modes, it would be possible to obtain full information about the
shape of the landscape potential through the parameters Λ4

ren and f . Otherwise,
with only a bounded range of modes, there will be a filter due to ξ in the function
Kξ(x), which will limit the amount of information we can obtain from the landscape
potential. This is to be expected since ξ restricts the amount of available modes that
can be used to reconstruct the shape of ∆V .
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Chapter 3

Methodology

In the previous chapter, we described the mechanism and the way to reconstruct
the PDF representing the non-Gaussianities used to generate the initial conditions of
our simulations. In this chapter, we describe the codes used to generate these initial
conditions and the corresponding cosmological simulations, as well as the method
used to calculate the polyspectra. We begin by describing the process of generating
initial conditions in the MUSIC code in Sec. 3.2. These initial conditions are later
used in the full non-linear N-body code RAMSES as described in Sec. 3.3. We then
go on to describe L-PICOLA in Sec.3.4, a code for generating mock catalogs quickly,
which has an identical initial-condition-generating mechanism to MUSIC. Finally,
we will describe the method for analysing our results in Sec. 3.5.

3.1 Generating the initial conditions

The standard way to generate initial conditions for cosmological simulations is
to create a density field from a Gaussian noise sample. To set up the initial con-
ditions required for our simulations, it is necessary to replace the Gaussian noise
sample with a non-Gaussian sample. This process will eventually change the density
field that will be used in Lagrangian perturbation theory to create the field of initial
positions and velocities as discussed in the following section.

A density field δ(r) may be described by its power spectrum, as we have dis-
cussed earlier. The power spectrum of matter perturbations after recombination may
be determined by using a transfer function T (k) applied to the primordial power
spectrum of the fluctuations produced by inflation:
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P (k) = αkns T 2(k), (3.1)

where α is a normalisation constant and ns is the spectral index of the power spec-
trum after inflation.

To generate initial conditions for cosmological simulations we must produce a
random density field with a power spectrum given by equation (3.1). This random
density field may be constructed in two ways: the first option is working in Fourier
space and calculating the product of a noise field µ̃(k) with the square root of the
power spectrum:

δ̃(k) =
√
P (‖k‖)µ̃(k) = α‖k‖ns/2 T (‖k‖) ˜µ(k), (3.2)

so, by applying the inverse Fourier transformation one obtains the real-space over-
density field δ(r). This procedure is often called “k-space sampling”. The second
option is to work in real space and apply a convolution between a real-space transfer
function T (‖r‖) and a real-space noise sample µ(r):

δ(r) = T (‖r‖) ∗ µ(r), (3.3)

where T (r) is the real-space counterpart of T̃ (k) ≡ αkns/2 T (k). The expression
(3.3) is equivalent to Eq. (3.2), since a product in Fourier space is a convolution in
the real space. From the physical point of view, the transfer function is responsible
for encoding the information on the physical processes that occurred from the end
of inflation until the recombination period, while the noise sample physically rep-
resents the primordial fluctuations during the inflationary period. In this context,
the Eq. (3.3) has an intuitive physical interpretation, which is that the convolution
operation imprints the perturbations of the density field in space, according to the
physical processes that occurred after inflation and until recombination, as a result
of the primordial fluctuations produced during inflation.

The noise sample µ(r) (or its Fourier space counterpart µ̃(k)) is usually drawn
from a Gaussian distribution with zero mean and unit standard deviation. In our
case, we will generate µ(r) by drawing from a non-Gaussian PDF in order to include
the non-Gaussianity in our N-body models. This requires us to Fourier transform
the non-Gaussian noise sample µ(r) to Fourier space. Of course, for a Gaussian noise
sample, the Fourier transform is also Gaussian, and so µ̃(k) may be obtained directly
in that case.
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In MUSIC (see Sec. 3.2) it is possible to obtain the density perturbations using
either of the two forms given by Eqs. (3.3) and (3.2), both of which have certain
advantages and disadvantages when implemented as discuted in Hahn and Abel
(2011). In this thesis we have considered generating the initial conditions through
the traditional form given by Eq. (3.2), after applying the Fourier transform to the
non-Gaussian random numbers. These are subsequently used in the simulations of
the N-body code RAMSES (see Sec. 3.3). The reason for this is that our results
will be compared with the L-PICOLA code described in Sec. 3.4, in which the initial
conditions are generated in the same way as described in this section, via 2LPT and
Eq. (3.2).

3.2 MUSIC

MUSIC 1 is an algorithm to generate multi-scale initial conditions with multiple
levels of refinements for cosmological simulations. This software uses the Lagrangian
perturbation theory (LPT) at first (1LPT) or second (2LPT) order to generate a
field of displacements and velocities as initial conditions that can be used by N-body
codes. These displacements and velocities are generated by applying LPT to a homo-
geneous particle distribution in order to sample the appropriate underlying density
field. This density field is constructed by convolving the matter power spectrum
with a random noise field. Usually this random noise field would be constructed by
drawing a random number from a Gaussian distribution at each spatial point. In
our case we will replace this with our non-Gaussian PDF.

The aim of this section will be limited to describing the method used to generate
the initial field of displacements and velocities. For a more detailed description of
MUSIC see Hahn and Abel (2011).

3.2.1 Initial condition for the particle field

Lagrangian perturbation theory

The evolution of the density perturbations in the rest-frame of a fluid can be
described using Lagrangian perturbation theory. In this frame, a fluid element with
a position x and velocity ẋ, at a given time t, can be written as

1The code is publicly available at https://www-n.oca.eu/ohahn/MUSIC/
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x(t) = q + L(q, t), ẋ(t) =
d

dt
L(q, t), (3.4)

where q its the initial position of the fluid element, and L(q, t) is called the displace-
ment field, derived from perturbation theory. At first order in the perturbations,
referred to as the Zel’dovich approximation (Zel’Dovich, 1970), the displacement
field L(q,t) is given by

L(q) = − 2

3H2
0 a2D+(t)

∇qφ(q, t) ≡ D−1
+ (t)∇qΦ(q, t), (3.5)

where H0 is the Hubble constant, a is the expansion factor at time t, D+(t) is the
growth factor of linear density perturbations, and φ is the gravitational potential
obeying Poisson’s equation

∆qφ(q, t) =
3

2
H2

0 a2δ(q, t), (3.6)

where δ(q, t) is the Gaussian density field after convolution with the matter power
spectrum. It is important to note that δ is the source field of the displacements, not
the density field created after displacing the fluid elements by the lagrange perturba-
tion theory. In this approximation the velocities are irrotational, i.e. ∆× ẋ(t) = 0.

MUSIC can also use second-order Lagrangian perturbation theory to improve
the precision in the calculation of the displacement field, since the first-order per-
turbation theory might underestimate higher-order moments from the density prob-
ability distribution of this displacement field (see e.g. Scoccimarro (1998)). The
displacement field at second order contains a contribution of the second-order poten-
tial, in addition to the contribution of the first-order gravitational potential, so the
displacement field for 2PT is

L(q, t) = D+(t)∇qΦ(q, t) +D2(t)∇qΨ(q, t), (3.7)

where Φ is the second-order potential obeying the Poisson equation ∇qΦ((q), t) =
τ((q), (t)) and

τ(q, t) = −1

2

∑
i,j

[
(∂qi∂qjΦ)2 − (∂qi∂iΦ)(∂qj∂qjΦ)

]
. (3.8)

Here, D2(t) ' 3
7
D2

+(t), where D2
+(t) is the growth factor of linear perturbations.
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Figure 3.1: The AMR technique applied to a shock impacting a steep slope is shown
here. Credits: Wikipedia.

3.3 RAMSES

RAMSES 2 is an N-body and hydrodynamics code, which has been devel-
oped for the purpose of investigating structure formation with high spatial reso-
lution (Teyssier, 2002). RAMSES is based on the Adaptive Refinement Tree (ART)
(Kravtsov et al., 1997) code, but with minor differences in the implementation. Also,
it implements Adaptive Mesh Refinement (AMR) with a tree-based data structure
allowing recursive grid refinements on a cell-by-cell basis.

RAMSES calculates the gravitational potential on a computational grid (or
mesh). By fixing the size of this grid, the numerical solution is determined at a uni-
form resolution throughout the entire space. However, in some cases a more accurate
solution is required in specific areas, which may be obtained by increasing the grid
resolution in those areas, a process referred to as refinement. AMR consists of dy-
namically adapting the accuracy of a solution in certain regions of the computational
domain. It is dynamic in the sense that it may be modified every timestep in order
to adapt to the solution as it evolves. Thus throughout the simulation there will be
regions with higher levels of refinement, and therefore a more accurate solution, and
these are nested within lower levels of refinement, where the accuracy of the solution
is lower. The development of this technique is credited to Berger and Oliger (1984).

2The code is publicly available at https://www.ics.uzh.ch/ teyssier/ramses/RAMSES.html
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We have generated some of our simulations using RAMSES, and we consider
those to be our reference simulations, due to the high accuracy of the solution in very
over-dense regions, thanks to the AMR technique. However, due to the computa-
tional cost of running full N-body simulations (in particular, our simulations required
about 8 hours per run), we generate the majority of our cosmological realizations
using a mock catalog generator known as L-PICOLA, as discussed in the following
section.

3.4 L-PICOLA

Due to the need to generate large numbers of simulations to obtain accurate
measurements of statistical and systematic errors of large-scale structure surveys, dif-
ferent codes have been developed in recent years that quickly generate dark matter
halo catalogs (or galaxy catalogs) known as mocks catalogs, which can be compared
with the observed galaxy distribution of a survey (Howlett et al., 2015). L-PICOLA
is a parallel code able evolve a dark matter field from early times to the present day
much faster than a full nonlinear N-body code. The precision of L-PICOLA is ex-
cellent at linear and quasi-linear scales and is poorer at non-linear scales (as usually
seen in this type of mock catalog generator). As opposed to a code like RAMSES
(see Sec. 3.3), L-PICOLA does not have adaptive mesh refinement (AMR) capability,
it is based on a mesh with a fixed resolution.

L-PICOLA is based on the Comoving Lagrangian Acceleration method (COLA;
Tassev et al. (2013)), which is more accurate than 2LPT. The COLA method solves
the equation of motion of the particles by splitting the linear and quasi-linear con-
tributions from the nonlinear ones. It then solves the larger scales using Lagrangian
perturbation theory in a comoving reference frame in Lagrangian space (described
in subsection 3.2.1), where the solution is exact. While the nonlinear component is
solved using the particle mesh (PM) method (see Hockney and Eastwood (1988)),
which is utilized in n-body codes. The EOM is discretized using the Kick-Drift-Kick
method and solved iteratively. In each iteration, the positions and velocities are
updated according to the gravitational potential felt by each particle. The positions,
and velocities, are not calculated for the same point in time (except for the beginning
and end), but they jump each other and the next iteration of the velocity depends
on the position of the previous iteration.

In this work we use the full implementation of L-PICOLA, i.e. we use the COLA
method to run our simulations. The method still needs a certain amount of timesteps
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to reproduce CDM halo statistics. The amount recommended by the authors is 10
timesteps, which has been adopted for all our simulations with L-PICOLA. For this
reason L-PICOLA is much faster than RAMSES, as the number of timesteps is fewer.

The L-PICOLA implementation automatically generates initial conditions through
2LPT which are used in the calculation of the density field at different redshifts. We
have modified the L-PICOLA implementation to use our non-Gaussian random num-
ber distributions given by different models (see Fig. 3.2 from Sec. 3.6) generated from
Eq. (2.42). A comparison between the density field results between RAMSES and
L-PICOLA is given in Fig. 4.1 of Chap. 4. In the next section, we describe the
implementation used to analyse the polyspectra.

3.5 The FFT Polyspectrum Estimator

Here, we present the Fast Fourier Transform Polyspectrum Estimator (Watkin-
son et al., 2017), the method that we used to calculate the polyspectra of our sim-
ulations. This is a general extension of the method described in the thesis of Jeong
(2010) which in turn has been built from the thesis of Sefusatti (2005). To start we
define the following FFT conventions:

δ(x) =
1

V

∑
∆(k)eik·x2, (3.9)

∆(k) = H
∑

δ(x)e−ik·x. (3.10)

The density field of the simulations can be determined on a regular lattice, thus
it is useful to use dimensionless grid coordinates to write the polyspectrum estimator,
i.e. k = kFm, where m is a dimensionless integer triplet (mx,my,mz), kF = 2π/L
is the fundamental frecuency, and L is the large of the box.

Due to the discretisation of the data it is necessary to implement ∆FFT (the
discrete Fast Fourier Transform algorithm), which is implemented using the well-
known FFTW3 library. This must be connected to the theoretical ∆(k) of Eq. (3.10)
as follow

3Fastest Fourier Transform in the West (FFTW) is a software library for computing discrete
Fourier transforms (DFTs). More information in: https://www.fftw.org/
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∆FFT(m) =
∑
r

δ(x)e−ix·k =
∆(k)

H
,

=
∑
n

δ(n)e−i2πm·n/Nside .
(3.11)

Here, n is an integer related to the co-ordinate of the grid point as x = nL/Nside,
with Nside being the number of grid points of each dimension of the box. So, we can
now write the poyspectrum, P (k1,k2, . . .kp), as a measure of a discretized data set
as follow

(2π)3P (k1,k2, . . .kp) δ
D (k1 + k2 . . .+ kp)

=

〈
p∏
i

∆ (ki)

〉
,

(2π)3P (k1,k2, . . .kp) δ
K (k1 + k2 . . .+ kp)

≈ Hp

〈
p∏
i

∆FFT (kFmi)

〉
,

(3.12)

where we have converted the dirac delta function δD (k1 + k2 . . .+ kp) to the Kro-
necker delta function δK (k1 + k2 . . .+ kp). After some cancellations and enforcing
the Kronecker delta function on the left, the polyspectrum is left as

P (k1,k2, . . .kp) ≈ Hp 1

V

×

〈
p∏
i

δK (m1 + m2 + . . .+ mp) ∆FFT (mi)

〉
.

(3.13)

Because of the discretisation of the data, we must work with a bin s of width
kf (at least), then
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P (k1,k2, . . .kp) ≈ Hp 1

V

1

Npoly

×
∑
l1±s/2

. . .
∑
lp±s/2

p∏
i

δK (m1 + m2 . . .+ mp) ∆FFT (mi)

= Hp 1

V

×
∑

l1±s/2
∑∑

lp±s/2
∏p

i δ
K (m1 + m2 . . .+ mp) ∆FFT (mi)∑

l1±s/2 . . .
∑

lp±s/2 δ
K (m1 + m2 . . .+ mp)

,

(3.14)

where li = |(ki/kF)−mi|, and the summation is performed over all vectors mi

within a bin width of ki/kF , in other words, all k-space grids where li 6 s/2. Finally
Npoly is the number of polygons given by m1 + m2 . . . + mp = 0. Note that, if the
above requirements are satisfied, Npoly can be rewritten as a sum over the Kronecker
delta function, as shown in the denominator of the second equality of Eq. (3.14).
The Kronecker delta may be written as follows

δK (m1 + m2 . . .+ mp) =
1

Npix

Npix∑
n

p∏
i

ei2πn·mi/Nside , (3.15)

where we used x = nL/Nside . Then, we can use Eq. (3.15) to rewrite Eq. (3.14):

P (k1,k2, . . .kp) ≈ Hp 1

V

×

∑Npix

n

[∑
l1±s/2 · · ·

∑
lp±s/2

∏p
i ∆FFT (mi) ei2πn·mi/Nside

]
∑Npix

n

[∑
l1±s/2 . . .

∑
lp±s/2

∏p
i ei2πn·mi/Nside

] .
(3.16)

Finally, we can estimate the pth-order polyspectrum rewriting P (k1,k2,...kp) as

P (k1,k2,...kp) ≈ Hp 1

V

∑Ngrid

n

∏p
i=1 δ (n,ki)∑Ngrid

n

∏p
i=1 I (n,ki)

, (3.17)

where the terms δ (n,ki) and I (n,ki) are given by
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δ (n,ki) =
∑
li±s/2

∆FFT (mi) ei2πn·mi/Nside ,

I (n,ki) =
∑
li±s/2

ei2πn·mi/Nside .
(3.18)

To calculate these terms, we can create a new FFT box that gets the data ∆(ki),
and where a grid vector satisfies that ki/kf 'mi and zero otherwise. Then, we can
apply a Fourier transform to this box to move to real space to get δ (n,ki). And
equivalently, we can do the same to create I (n,ki).

For an example, we will write the bispectrum (p = 3) with this convention:

B (kfm1, kFm2, kFm3) ≈ V 2

N3
grid

∑Ngrid

n δ (n, k1) δ (n, k2) δ (n, k3)∑Ngrid

n I (n, k1) I (n, k2) I (n, k3)
. (3.19)

For our analysis, we have considered the lowest orders of the polyspectra, i.e.,
p = 2, p = 3, and p = 4. These correspond to the power spectrum, bispectrum, and
trispectrum, respectively. We have used the Pylians code (Villaescusa-Navarro, 2018)
where the polyspectra estimator of Eq. (3.17) is implemented. We have modified and
added the trispectrum calculation to the code. Note that to apply the polyspectra
estimator we must convert the particle distribution of the simulation to a density
constrast field on a regular lattice. This is achieved using a standard Cloud-in-Cell
assignment scheme within Pylians. In Sec. 4.1 we will show the results between
the polyspectra from RAMSES and L-PICOLA, where we will see that although we
have a large divergences at smaller scales, the normalized polyspectra shows a better
agreement than 1%, at all scales considered in this work.

3.6 Simulations

We now give the technical details of the generation of the initial conditions,
the manner in which we generate different realizations, and the details of how we
implement the polyspectra analysis.

3.6.1 Initial conditions

Before explaining the generation of the initial conditions (ICs), and in order to
provide clarity when indicating a model, due to the great variety that we will present,
we have adopted the following naming:
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• Initial condition type: G for Gaussian, NG for non-Gaussian.

• Level of non-Gaussianity: 1, 2, 3 or 4. This only applies for NG models. The
meaning of these levels will be clarified shortly.

• Frequency of non-Gaussianity: f1, f2 or f3. This only applies for NG models.
The meaning of these levels will be clarified shortly.

• Random realizations: r1, r2, r3, r4 or r5. This will only be necessary when we
refer to one specific realization. For most results we average over all realizations.

To analyze the impact of this type of non-Gaussianity on the large-scale struc-
ture, we consider a range of amplitudes and frequencies for the oscillations of the
probability density distribution of the primordial perturbations Eq. (2.42). As men-
tioned in Sec. 2.3, in this thesis we focus on the asymptotic approximation (i.e.
k → ∞) rather than the full reconstruction Eq. (2.44) for practical reasons. In
Fig. 3.2 we show the form of Eq. (2.42) for different values of the amplitude A and
different values of the frequency f . Note that all of our PDFs have a standard de-
viation of unity. We constructed 12 PDFs by choosing 4 amplitudes for 3 different
frequencies (see table 3.1). The 3 panels correspond to frequencies f1, f2 and f3 re-
spectively. Each panel shows orange, green, red and purple solid lines representing
the non-Gaussian curves (hereafter non-Gaussianity levels). Each non-Gaussianity
level has an overplotted Gaussian curve (dashed lines) that perfectly matches the
central peaks of the oscillations of the 4 non-Gaussian levels. We can see how the
non-Gaussian curves are contructed from a Gaussian PDF with an oscillatory cor-
rection. This ensures that the odd moments of the distribution are zero just as in
the case of a Gaussian distribution (see Sec. 2.3 for more details). By comparison, a
Gaussian distribution is also shown in each panel (blue dashed line). To construct the
non-Gaussian PDFs, we vary the parameter f which modifies the frequency of the
oscillations, as well as their amplitude (the f parameter appears in the coefficients
that multiply the trigonometric functions in Eq. (2.42) and in their arguments), so we
compensate this variation by modifying A, such that for each level of non-Gaussianity
the central peak is at the same height for all frequencies. .

To generate our random numbers, which will be the seeds of the initial condi-
tions (after convolution with the transfer function), we use the accept-reject tech-
nique. This technique consists of generating random values and accepting those
which are equal to or below the PDF from which we wish to draw the sample. In
more detail, two uniformly distributed random numbers are generated. The first,
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Figure 3.2: The asymptotic form of the PDF, for various values of the amplitude
(levels 1 to 4) and frequency (left panel : f1; middle panel : f2; right panel : f3). The
levels and frequency values are defined in Table 3.1.

Frequency A, Level 1 A, Level 2 A, Level 3 A, Level 4
f1 (f = 7× 10−2) 6.5× 10−4 1.45× 10−3 2.225× 10−3 3.05× 10−3

f2 (f = 1× 10−1) 1.4× 10−3 3× 10−3 4.6× 10−3 6.2× 10−3

f3 (f = 2.4× 10−1) 7.6× 10−3 1.7× 10−2 2.65× 10−2 3.585× 10−2

Table 3.1: Values of A and f used in the non-Gaussian correction term of the PDF
for our models.

r1 lies in the horizontal range of ζmin = −4 and ζmax = 4, while the other, r2, lies
between zero and the maximum central peak height of the non-Gaussian PDF with
the largest amplitude oscillations (level 4). Then we compare r2 to P (r1) where P is
one of the probability distribution functions that we are considering. If r2 ≤ P (r1)
then the value r1 is accepted, otherwise it is rejected. This process continues un-
til each distribution has been sampled with N values, where N will ultimately be
equal to the number of particles in our simulations and the number of grid points
in the regular lattice used to calculate the polyspectra. Note that after a given
PDF sample has reached N values we only continue to add points for samples that
have not yet reached N values. For this work we use N = 2563 for all our simulations.

The final step is to sort the non-Gaussian distributions according to the or-
dering of the Gaussian one (we use the same seed for the Gaussian model and the
non-Gaussian models). To do this, we sort the values in the Gaussian distribution in
ascending order, then we obtain the set of indices required to invert this sorting and
restore the Gaussian distribution to its original ordering. These indices are then used
to reorder the non-Gaussian distributions. By comparing the values of the samples
one to one, we can see a small variability of the non-Gaussian values with respect
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Figure 3.3: Ilustration of accept-reject technique. Here we are representing only the
NG4f3 model.

to the Gaussian ones, which translates to a deviation from the Gaussian case. In
Fig. 3.4 we show a comparison between non-Gaussian and Gaussian values before
and after the ordering. This ordering is important since it will eliminate the vari-
ance in the realizations produced by the difference in the random numbers. This will
produce initial conditions that will evolve very similarly to form very similar struc-
tures, but with small differences due only to the effect of non-Gaussianity as will
be shown in Chap. 4. This procedure was repeated for all levels of non-Gaussianity,
all 3 frequencies and for 5 different values of the initial seed of the uniform random
number generator in order to generate 5 different statistical realizations. These re-
alizations will be averaged over to try to remove the contribution to any signal of
non-Gaussianity at late times that comes from gravitational collapse, leaving only
the contribution from the primordial statistics. In total, therefore, we produced ini-
tial conditions for 65 models, 5 of them being fiducial Gaussian models.

For our simulations we have used RAMSES and L-PICOLA (see sections 3.3
and 3.4). To generate the initial conditions for RAMSES we have passed the random
numbers to MUSIC, where they are k-space sampled (transformed to Fourier space
and multiplied with a transfer function generated by CAMB as seen in Eq. (3.2) and
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Figure 3.4: Non-Gaussian values versus Gaussian values before and after sorting (left
and right respectively). For simplicity we have plotted only 5× 104 points.

described in Sec. 3.2. Then the 2LPT method is applied to generate the initial condi-
tions. In the case of L-PICOLA, we have modified the initial condition generation to
read and use our random numbers, where the 2LPT method is also used. Therefore,
the generation of the initial conditions of L-PICOLA is the same as MUSIC. Note
that we use RAMSES for just one realization with frequency f1 (5 models). All other
models are generated only using L-PICOLA.

For all our simulations, both in RAMSES and L-PICOLA, we have assumed a
standard ΛCDM cosmology with the following parameters: Ωm = 0.3, Ωb = 0.04,
ΩΛ = 0.7, σ8 = 0.88, and ns = 0.96. In addition, for all realizations we have used a
500 Mpc box, and a particle number of 2563. In the case of RAMSES, which employs
the AMR method, we have set a coarser grid resolution of 2563 points (minimum
level 8). The maximum refinement level (16) corresponds to a resolution of 7.6 kpc,
sufficient to resolve massive halos. These conditions required approximately 8 hours
of execution per simulation using 8 cores in RAMSES. In the case of L-PICOLA we
have a fixed grid resolution of 2563 points and 10 timesteps. These latter simulations
required approximately 5 minutes of execution time using 1 core.
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3.6.2 Polyspectra analysis

The analysis performed in this thesis will concentrate only on the lowest or-
ders of the n-point correlation function in Fourier space. An important feature of
the nature of the non-Gaussian PDF is that only the even n-point functions are
non-zero, while the odd n-point functions are zero just like a Gaussian PDF. On
the other hand, possible evidence of primordial non-Gaussianities is mixed with non-
Gaussianities coming from the gravitational collapse of the large-scale structure at all
orders of the n-point function making it difficult to decode its signature. Therefore,
as preliminary work, we have decided to focus on the search for the possible signature
of this primordial Gaussianity by considering the power spectrum, bispectrum, and
trispectrum, which are the 2, 3, and 4-point correlation functions in Fourier space
respectively.

Due to the assumption of isotropy, we can fully describe the power spectrum
using only the modulus k of the spatial wavevector k. This situation changes quite
a bit when we consider correlation functions with n ≥ 2. For example, for the
bispectrum, we can form any triangular configuration with k1, k2 and k3, or any
quadrilateral configuration with k1, k2, k3 and k4 in the case of the trispectrum.
As a first step, we have focused our analyses on highly symmetric configurations.
Specifically, for the bispectrum we choose k1 = k2 = k3, and for the trispectrum we
choose k1 = k2 = k3 = k4. It should be noted that a quadrilateral does not necessar-
ily lie in a plane like a triangle, it is possible to have four non-coplanar points in a
3-dimensional space. If for example we take a square and fold it partially across one
of its diagonals, what we would previously consider a square in 2-dimensional space
would no longer be a square in 3-dimensions, i.e., a quadrilateral is not necessarily
flat. This means that we have two additional degrees of freedom for the quadrilateral,
given by the lengths of the diagonals |k1 +k2| and |k2 +k3|. For our case, meanwhile,
we have considered all (possibly folded) quadrilaterals with equal side lengths.

We have calculated the polyspectra using a public version of the Pylians code
described in Villaescusa-Navarro (2018). We have modified the code and added the
trispectrum calculation for our purposes. The calculation of all these polyspectra
follows the method described in Watkinson et al. (2017) (see Sec. 3.5). We use
35 linearly-spaced bins in the range 2.2kF ≤ k ≤ kFNk/3, where the fundamental
frequency is kF = 2π/L, with L = 500 Mpc (box length), and Nk is the number of
points used in our discretised Fourier space in each dimension, i.e. Nk = 256. We
have avoided small values of k corresponding to scales close to the box size as they are
highly affected by the sample variance due to the small number of k configurations.
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At the other extreme we set the upper limit on k to kFNk/3 to avoid very high values
of k where the estimator is expected to perform poorly (Sefusatti et al., 2016). This
also ensures that we are below the fundamental limit set by the Nyquist frequency
kNyq = kFNk/2.
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Chapter 4

Results

4.1 Comparing RAMSES and L-PICOLA

In order to justify the use of L-PICOLA in this work, let us compare results
with RAMSES. First, by checking the differences in the projected dark matter den-
sity distributions, and second, by comparing the low-n polyspectra. The projected
density field at z=0 for RAMSES and L-PICOLA are shown in Fig. 4.1. The first row
corresponds to results using Gaussian ICs (Gr1 model), while the second and third
rows correspond to results using non-Gaussian ICs (NG2f1r1 and NG4f1r1 models
respectively).

Comparing the simulation results between RAMSES and L-PICOLA we can see
a considerable similarity in the structure distribution, especially at large scales. At
small scales, the structures are much more defined in RAMSES than in L-PICOLA.
The latter is expected due to the precision of the solutions in a full non-linear N-body
code, which also features AMR to improve the spatial resolution of the overdensities.
On the other hand, L-PICOLA has solutions based on approximations on a mesh
with a fixed resolution. This mesh is equivalent to the coarse-level grid resolution
that we used in RAMSES. When comparing the models (Gaussian and non-Gaussian)
in both RAMSES and L-PICOLA, we see extremely similar results, making it much
more difficult to see any difference. This is a product of the sorting applied to the
seeds (random numbers) of the initial conditions. These differences will be more evi-
dent when we analyze the different levels of non-Gaussianity in the polyspectra. For
now, we will continue to look at the differences between RAMSES and L-PICOLA.

The differences between RAMSES and L-PICOLA can be seen more easily in
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Figure 4.1: Projection density of RAMSES and L-PICOLA at z=0; the first and the
second column respectively. First row : Gaussian initial conditions (model Gr1); sec-
ond row : the NG2f1r1 model; third row : the NG4f1r1 model. We see a considerable
similarity in the structure distribution, especially at large scales. At small scales,
the structures are much more defined in RAMSES than in L-PICOLA.
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Figure 4.2: Left column: polyspectra of a single realization of a Gaussian simula-
tion using RAMSES and L-PICOLA. Right column: The polyspectra of L-PICOLA
(for one realization) normalized by those of RAMSES for models Gr1, NG2f1r1 and
NG4f1r1. Top row : power spectrum, middle row : bispectrum, bottom row : trispec-
trum. Only equilateral triangle configurations are considered for the bispectrum and
only square configurations for the trispectrum.

54



the polyspectra. In the left column of Fig. 4.2, we show the polyspectra: the power
spectrum, the bispectrum, and the trispectrum (using equilateral configuration for
the latter two) for RAMSES and L-PICOLA (purple and green lines, respectively)
for one realization (r1). As we observed in the density field, we can see that there is
good agreement at larger scales (k small), whereas, as the scale decreases (k large)
the disagreement between the codes becomes more evident. In the right column, we
have the L-PICOLA polyspectra normalized by the polyspectra from RAMSES, for
the models Gf1r1, NG2f1r1, and NG4f1r1. The difference between L-PICOLA and
RAMSES at scales larger than k ≤ 2 h/Mpc is between 5% for the power spectrum
and the trispectrum, while for the bispectrum this difference is just over 10%. For
the smallest scales (k ∼ 1 h/Mpc) the difference reaches about 25% for the power
spectrum, while in the case of the bi-and trispectrum it is about 50%. We can ob-
serve two important points from the results in the right column. First, the similarity
in the shapes of the curves of the Gaussian and non-Gaussian models, which is,
again, a result of the sorting of the non-Gaussian random numbers. And second,
there is no effective spread in the lines of the plots, indicating that the inclusion of
non-Gaussianity does not affect the relationship between the results of RAMSES and
L-PICOLA.

In Figure 4.3 we show the polyspectra for RAMSES and L-PICOLA for mod-
els NG2f1r1 (left column) and NG4f1r1 (right column), both normalized by the
Gr1 polyspectra. Here we take advantage of what we noted earlier, that the non-
Gaussianity does not affect the relationship between L-PICOLA and RAMSES. By
normalising using the Gaussian polyspectra for both codes, we find that the results
are extremely similar in both cases. Although the curves do not coincide exactly at
all scales, in particular due to the lack of structure at small scales in L-PICOLA,
we still find an excellent agreement of less than 1% at all scales. Therefore, we can
have high confidence that the non-Gaussian polyspectra normalized by the Gaussian
polyspectra are very well represented by L-PICOLA. Hereafter, we will refer to these
quantities as normalized polyspectra.

4.2 Variance among realizations

The use of numerical simulations allows us to explore the statistical effect of
having several realizations of the density field of the Universe. In this way, we can
determine the amount of variability to be expected in measurements of n-point func-
tions (or rather their associated polyspectra) as a product of the different structures
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Figure 4.3: Comparison of the normalized polyspectra for L-PICOLA and RAMSES.
Left column: NG2f1r1; Right column: NG4f1r1. By normalising using the Gaussian
polyspectra for both codes, we find that the results are extremely similar in both
cases. We find an excellent agreement, less than 1% at all scales.
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arising from gravitational collapse. This variability limits the degree to which we
can confidently assert that a deviation in a statistical measure is entirely due to
primordial non-Gaussianity. To remove this variance, we average all the normalized
polyspectra over the 5 realizations that we have for each model. We then define the
quantity averaged normalized polyspectrum, ∆P(k), defined as

∆P(k) =
1

n

n∑
i=1

P(i)
ng (k)

P(i)
g (k)

, (4.1)

where Pg(k) is a Gaussian polyspectrum, and Png(k) a non-Gaussian polyspectrum.
Thus ∆P(k) will show deviations from the Gaussian case. The index i corresponds
to the specific realization (generated by a specific initial seed), and n is the total
number of realizations (n = 5, for our case). As mentioned before, we will only work
with equilateral configurations of k in this work, so we will show all polyspectra
depending on the modulus k.

We will refer to the variance of our realizations as the range between the ex-
treme values of the polyspectra, i.e., from the values of the polyspectra measured
for each realization, we take those furthest away from the average (minimum and
maximum value) and we consider them as the range in which the polyspectra vary.

In the following subsections (4.2.1, 4.2.2, and 4.2.3), but with the exception of
the subsection Deviation from the equilateral case of 4.2.2, we will show six panels
plots (two columns and three rows) with the results of the analysis of variance in
the polyspectra, for models NG2 (left column) and NG4 (right column) for our
frequencies f1, f2, and f3 (first, second, and third row, respectively) at z = 0 and
z = 2.2. In all plots, the red solid line represents the NG2 model, and the blue
solid line represents the NG4 model, while the light grey strip will show the range of
variance around these lines.

4.2.1 Power spectra

In Fig. 4.4, we show the averaged normalized power spectra at z = 0. We can
see that the variance in most of these models is always below 1%, except for the
largest scales of some models. For example, for NG4f3, the variance reaches 3%
at scales close to the box size. This increase in variance at larger scales is expected
because of the small sample size for k-space configurations close to the size of the box.
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Figure 4.4: Non-Gaussian power spectra normalized with respect to the Gaussian
power spectra, averaged across all realizations at z = 0. Left column: NG2 models,
right column: NG4 models. Top row : frequency f1, middle row : frequency f2, bottom
row : frequency f3. The red and blue lines indicate the average normalized power
spectra (for the NG2 and NG4 models respectively) while the light grey strip shows
the degree of variance around this average arising from the individual realizations.
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Figure 4.5: Non-Gaussian power spectra normalized with respect to the Gaussian
power spectra, as for Fig. 4.4, but at z = 2.2. The variance is reduced in all models.
This is to be expected since the non-linear processes, are reduced as the redshift
increases.
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If we now focus on analyzing the normalized power spectrum curve, at first
look, there is no scale dependence, except for the NG4f2 model in the range between
k ∼ 0.3 h/Mpc and k ∼ 0.7 h/Mpc, which is much more subtle for NG2f2. We
will refer to this feature as a “dip”. In addition, we can see there is a rather subtle
suppression of the power spectrum in the NG2f3 model, which is much more evident
in NG4f3, at practically all scales. Taking into consideration the PDFs correspond-
ing to frequencies f2 and f3 (see Fig. 3.2), we can see that a higher frequency (f2)
leads to a weak suppression of the power spectrum of NG4f2, and in a limited range.
While a lower frequency (f3) leads to suppression in all the scales that we show here.
Note, however, that this suppression still lies within the variance band determined
by considering all 5 realizations. Thus this signal is at the boundary of what we
could consider to be statistically significant. Nevertheless, it is noteworthy that such
a large deviation from Gaussian statistics in the initial conditions (as exemplified by
the NG4f3 model) fails to give rise to a significant deviation in the late-time matter
power spectrum.

In Fig. 4.5 we show the results of the normalized power spectrum averaged at
z = 2.2. This result shows how the variance is reduced in all models. This is to be
expected since it is known that the non-linear processes, which are the main cause
of the formation of the structure, are reduced as the redshift increases. We also see
a non-significant deviation of the power spectrum with respect to the Gaussian case,
and only a suppression in the NG2f3 and NG4f3 models.

4.2.2 Bispectra

Equilateral configuration

Now, we will show the results for the bispectrum for an equilateral configura-
tion, and three configurations deviating from the equilateral case:

In Figure 4.6 we show the results for the averaged normalized bispectra in the
equlateral configuration, at z = 0. In this case, we see an increase of the variance in
all the models at all scales, and more noticeably at large scales as expected. While
the power spectrum has a variance always less than ∼ 1%, only the NG2f1 model
has a similar variance to the rest of power spectra. The NG4f3 model shows a vari-
ance of ∼ 16% (without considering the larger scales), and the rest of the models
are below ∼ 10%. This shows us a much higher sensitivity of the bispectrum for
different structures. On the other hand, here, we also have a small scale depen-
dence, with a stronger signal than in the power spectrum (note that the vertical axis
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Figure 4.6: Non-Gaussian bispectra normalized with respect to the Gaussian bis-
pectra, at z = 0. Left column: NG2 models, right column: NG4 models. Top row :
frequency f1, middle row : frequency f2, bottom row : frequency f3. We can see, ap-
parently a similar “dip” in the models NG2f2 and NG4f2 as in the power spectrum,
although on a slightly wider range of scales: 0.3 . k . 0.8 h/Mpc, and with a
stronger suppression.
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Figure 4.7: Non-Gaussian bispectra normalized with respect to the Gaussian bispec-
tra, at z = 2.2. The panels are as for Fig. 4.4. Contrary to the case of the power
spectrum, we see an unexpected increase in variance rather than a decrease, which
is not seen in the power spectrum.
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scale in Fig. 4.6 is five times larger than that of Fig. 4.4). For example, we see a
slight elevation (within ∼ 1%) of the bispectrum in the NG2f1 and NG2f1 models
at 0.8 . k . 1 h/Mpc. Furthermore, we can see, apparently a similar “dip” in the
models NG2f2 and NG4f2 as in the power spectrum, although on a slightly wider
range of scales: 0.3 . k . 0.8 h/Mpc, and with a stronger suppression due to the
increased sensitivity of the bispectrum as discussed above. In addition, we do not
see the same structure suppression for the NG4f3 model as seen in Fig. 4.4.

If we take into account the form of the non-Gaussianity with which we work,
which is a symmetrical oscillatory correction of an underlying Gaussian PDF, we can
expect that the bispectrum of this primordial non-Gaussianity is zero (as it is also for
the rest of the odd n-point functions of a Gaussian distribution). On the other hand,
it is known that the evolution in time of non-linearities in the structure, leads to such
an asymmetry that the matter bispectrum is not zero. Now, when comparing the
bispectrum resulting from the evolution of nonlinearities of the Gaussian case and
the non-Gaussian case, we see that this type of primordial non-Gaussianity shows
a deviation from the Gaussian one. That is, the primordial non-Gaussianity drives
the nonlinearities to form structures (through gravitational collapse) that imprint a
characteristic signal on the bispectrum. This is different from the signal we would
expect from the nonlinearities coming from gravitational collapse driven by purely
Gaussian initial conditions. This signal is marginally significant at the limit of the
variance, at least with this choice of parameters.

In Fig. 4.7 we show the bispectra at z = 2.2. Recall that due to the large
variance in the bispectrum at larger scales, resulting from the small number of k
configurations used, we have decided to remove the first two values of the bispec-
trum for this result, so the range shown in this plot is 0.1 . k . 1 h/Mpc. Contrary
to the case of the power spectrum, we see an unexpected increase in variance rather
than a decrease. This is probably indicative of the sensitivity of the bispectrum to
the initial conditions, which is not seen in the power spectrum. As we have already
noted, the variance tends to be much higher as the scale increases, and as the fre-
quency is lower, with NG4f3 being the model with the highest variance, reaching a
value even higher than 20%.

As a general comment, the noise of the average, minimum and maximum lines
in all of the variance plots is likely due to the small number of realizations that we
used. So, we could improve the smoothness of the lines with a larger number of
realizations. Furthermore, the variance increases with lower frequencies due to the
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larger deviation from the Gaussian PDF in these cases.

Deviation from the equilateral case

As a first test to find the signature of the non-Gaussianity in non-symmetric
configurations in k-space, we have decided to test with a deviation from the equi-
lateral case in the bispectrum. We have tested with the following configuration:
k2 = 1.1k1, and k3 = 1.2k1. So in this case, we will show the results depending on
one of the sides of the triangle, k1, as is shown in Figure 4.8. The first, second, and
third panels correspond to the frequencies f1, f2, and f3, respectively. We have se-
lected only the highest level of non-Gaussianity (NG4) to observe its effect. The red
solid line represents the measurement for the non-symmetric configurations of the
bispectrum. In contrast, we have plotted the symmetric configurations represented
with a solid blue line.

For the first panel (frequency f1), we do not see a substantially significant devia-
tion for the majority of scales, except for larger scales, where we see a deviation from
Gaussianity greater than 15%, although the deviation is not statistically significant
as it is within the limits of the variance. For the smaller scales (k1 > 0.3 h/Mpc), the
deviation from Gaussianity reaches ∼ 2%, which is not evident for the equilateral
case. Between the range of scales 0.8 . k1 . 1 h/Mpc, we see a slight increase in
the bispectrum for all k when compared to the Gaussian case, of order ∼ 1%. It is
worth noting that the variance band is also somewhat shifted above the Gaussian
line when compared to the equilateral case, thus this ∼ 1% deviation is at the limit
of detectability.

For frequencies f2 and f3, the differences are less obvious. We see no signifi-
cant deviation from the symmetric configuration, although the variance tends to be
slightly smaller in the non-symmetric configuration at larger scales, and this trend
seems to be at all scales of frequency f3.

Despite these differences, there is no clear manifestation of the effect of our
non-symmetric configuration, consequently, an exploration with a larger variety of
non-symmetric configurations and at other orders of the n-point correlation function
is needed. This, together with further exploration of amplitudes and frequencies
(see the section 4.4 for constraints of the CMB), could lead us to more significant
scale-dependent deviations arising from this type of non-Gaussianity.
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Figure 4.8: NG4 normalized bispectra, at z = 0. Top row : frequency f1, middle row :
frequency f2, bottom row : frequency f3. Red line: non-symmetric configurations; blue
line: symmetric configurations. We have tested with the following configuration:
k2 = 1.1k1, and k3 = 1.2k1.
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4.2.3 Trispectra

In the case of the trispectrum, we have considered working with quadrilater-
als in equilateral configurations, which are generally folded in 3-dimensional space.
Then we take k1 = k2 = k3 = k4, where we have not set a restriction on the other
two additional degrees of freedom. On the other hand, it is worth remembering that
the trispectrum is the analogue in Fourier space of the connected 4-point correlation
function, where the disconnected parts are given by products of the power spec-
tra, which correspond to the disconnected 2-point correlation functions (Verde and
Heavens, 2001). Thus, including for the equilateral configuration considered here,
the trispectrum is an independent statistical measure that goes beyond the power
spectrum.

The results for the averaged normalized trispectra, at z = 0, are shown in
Fig. 4.9. Here, we must take into consideration that we have the same range of
values considered on the vertical axes of the power spectrum of Figs. 4.4 and 4.5,
which shows a range of variation up to ∼ 6%, much smaller than the range of values
shown on the vertical axes of the bispectrum of Figs. 4.6 and 4.7, with a range of
variation up to 40%. With this in mind, we can more clearly analyze these results.

We see that there is an appreciably higher sensitivity in all models, in contrast
to the power spectrum, but this is lower if we compare it to the bispectrum. The
variance for the NG4f3 model is somewhat higher than 6% at larger scales, but av-
erages ∼ 4%.

Concerning the normalized averaged curves of the models, we see an elevation
in the scales 0.8 . k . 1 h/Mpc for both models at frequency f1, similar to what
occurs in the bispectrum in Fig. 4.6. For models of frequency f2, interestingly, we
have again a “dip” in a similar range (0.3 . k . 0.9 h/Mpc) to that shown in the
power spectrum and the bispectrum. In addition, the f3 frequency models show an
indication of suppression, which is more evident at the smaller scales of the NG4f3
model, just as it is also the case for the power spectrum and the bispectrum. These
similarities will be more carefully analyzed in section 4.3.

In the results at z = 2.2, for the averaged normalized trispectra of Fig. 4.10,
we see a decrease in variance compared to the results at z = 0, and equivalent to
what occurs in the power spectrum case (see Figs. 4.4 and 4.5), and different from
what occurs in the bispectrum case (see Figs. 4.6 and 4.7). Additionally, we see an
indication of trispectrum suppression for the f3 frequency models, with an increase
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Figure 4.9: Non-Gaussian trispectra normalized with respect to the Gaussian trispec-
tra, at z = 0. Left column: NG2 models, right column: NG4 models. Top row : fre-
quency f1, middle row : frequency f2, bottom row : frequency f3. Again, we see, the
“dip” in the models NG2f2 and NG4f2 as in the power spectrum and the bispectrum.
Here, we have quadrilaterals in equilateral configurations, which are generally folded
in 3-dimensional space. So, we take k1 = k2 = k3 = k4, where we have not set a
restriction on the other two additional degrees of freedom.
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Figure 4.10: Non-Gaussian trispectra normalized with respect to the Gaussian
trispectra, at z = 2.2. The panels are as for Fig. 4.4. The variance is reduced
in all models when we compare with the results for the trispectrum at z = 0. Again,
this is to be expected since the non-linear processes, are reduced as the redshift
increases.

68



0.0 0.2 0.4 0.6 0.8 1.0
k[h/Mpc]

0.9990

0.9995

1.0000

1.0005

1.0010

1.0015
P n

g(
k)

/P
g(

k)
Frecuency: f1

NG1
NG2
NG3
NG4

0.0 0.2 0.4 0.6 0.8 1.0
k[h/Mpc]

0.998

0.999

1.000

1.001

1.002

P n
g(

k)
/P

g(
k)

Frecuency: f2
NG1
NG2
NG3
NG4

0.0 0.2 0.4 0.6 0.8 1.0
k[h/Mpc]

0.994

0.995

0.996

0.997

0.998

0.999

1.000

1.001

1.002

P n
g(

k)
/P

g(
k)

Frecuency: f3

NG1
NG2
NG3
NG4

1.0 0.5 0.0 0.5 1.0 1.5
103 × Residual

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
en

si
ty

Residual histogram
S2 = 0.0140
S2 = 0.0705
S2 = 0.1723
S2 = 0.3194

1.0 0.5 0.0 0.5 1.0
103 × Residual

0

1

2

3

4

D
en

si
ty

Residual histogram
S2 = 0.0139
S2 = 0.0655
S2 = 0.1630
S2 = 0.3205

3 2 1 0 1 2 3
103 × Residual

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
en

si
ty

Residual histogram
S2 = 0.1156
S2 = 0.5697
S2 = 1.3152
S2 = 2.2206

Figure 4.11: Fit lines for the averaged normalized power spectra at z = 0 in the first
row. A 4th order polynomial fit is used for all frequencies (f1, left panel; f2, middle
panel; f3, right panel). In the second row, we show the residual histograms of the
adjustments. The variance S2 of the residual histograms is also given (multiplied by
103 to improve legibility of the plot).

at smaller scales, just as happens for z = 0. The level of variance, however, implies
that these results are not statistically significant.

4.3 Fitting functions

In this section, we analyze in more detail the different levels of non-Gaussianity
in order to measure its degree of deviation from the Gaussian case. For this purpose,
we will show results with the best-fit curve of the averaged normalized polyspectra
∆P(k), from which we hope to detect any systematic scale dependence and any in-
trinsic property of these measures in their dependence on k. We will present the
results for all our models (the 4 levels of non-Gaussianity with the 3 different fre-
quencies). In Figs. 4.11, 4.12, and 4.13, we show the results for the power spectra,
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Figure 4.12: Fit lines for the averaged normalized bispectra at z = 0 in the first
row. A 4th order polynomial fit is used for all frequencies (f1, left panel; f2, middle
panel; f3, right panel). In the second row, we show the residual histograms of the
adjustments. The variance S2 of the residual histograms is also given (multiplied by
103 to improve legibility of the plot).

70



0.0 0.2 0.4 0.6 0.8 1.0
k[h/Mpc]

1.000

1.002

1.004

1.006

T n
g(

k)
/T

g(
k)

Frecuency: f1
NG1
NG2
NG3
NG4

0.0 0.2 0.4 0.6 0.8 1.0
k[h/Mpc]

0.985

0.990

0.995

1.000

1.005

T n
g(

k)
/T

g(
k)

Frecuency: f2
NG1
NG2
NG3
NG4

0.0 0.2 0.4 0.6 0.8 1.0
k[h/Mpc]

0.985

0.990

0.995

1.000

1.005

T n
g(

k)
/T

g(
k)

Frecuency: f3

NG1
NG2
NG3
NG4

2 1 0 1 2 3
103 × Residual

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

D
en

si
ty

Residual histogram
S2 = 0.0937
S2 = 0.4815
S2 = 1.1882
S2 = 2.2258

3 2 1 0 1 2 3 4
103 × Residual

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

Residual histogram
S2 = 0.1524
S2 = 0.7238
S2 = 1.7750
S2 = 3.3219

8 6 4 2 0 2 4 6 8
103 × Residual

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

Residual histogram
S2 = 0.8279
S2 = 4.1356
S2 = 9.4036
S2 = 15.1383

Figure 4.13: Fit lines for the averaged normalized trispectra at z = 0 in the first
row. A 4th order polynomial fit is used for all frequencies (f1, left panel; f2, middle
panel; f3, right panel). In the second row, we show the residual histograms of the
adjustments. The variance S2 of the residual histograms is also given (multiplied by
103 to improve legibility of the plot).
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bispectra, and trispectra, respectively. The columns in all figures show the results
for the frequencies f1, f2 and f3, where the frequency decreases from left to right. For
all our results, we have used a polynomial of fourth degree, which represents reason-
ably well the trend of the data. The fitting of the different levels of non-Gaussianity
(NG1, NG2, NG3, and NG4), are represented by the blue, yellow, green, and red
solid lines, respectively. The goodness of fit can be seen represented in the residual
histograms in each figure.

First of all, we will highlight the systematic effects that are clearly shown in the
results of this section. Note that we have decreased the range of the vertical axis to
have a clearer view and comparison between the fits. The clearest effect is a product
of the amplitudes of the modulations of the 4 levels of non-Gaussianity. We see a
systematic suppression or elevation in all polyspectra (Figs. 4.11, 4.12, and 4.13), and
all frequencies. Furthermore, if we check the sample variance S2 in the histograms,
we see that it increases for each level of Gaussianity. On the other hand, comparing
the sample variance of the fit across columns, we see that the frequencies f1 and f2
show very similar magnitudes (an expected result given that the frequencies f1 and
f2 are comparable, as shown in Fig. 3.2). In some cases the sample variance for f1 is
slightly larger than that for f2, for some levels of non-Gaussianity (see, for instance,
Fig. 4.12), which is a product of the realization variance (defined in Eq.2.18) at larger
scales. For the frequency f3 we see a clear effect where the residuals of the fit are
much larger than for the other frequencies.

We will now take a closer look at each frequency individually. Comparing the
results for frequency f1 across polyspectra (i.e. the left panels in Figs. 4.11, 4.12
and 4.13), we can see that the non-Gaussianity induces a systematic shift upwards
at smaller scales in this case k & 0.7 h/Mpc, k & 0.55 h/Mpc, and k & 0.5 h/Mpc,
with maximum amplitudes of ∼ 0.06%, ∼ 0.7%, and ∼ 0.5%, for the power spectra,
bispectra, and trispectra, respectively. While the scale dependencies in the polyspec-
tra are very similar, the amplitude of the deviation produced in the power spectra
is extremely small, while for the bispectra and trispectra they are very similar. It
is worth noting that the residual histograms are unimodal and approximately cen-
tred at zero, with some mild skewness arising for the higher levels of non-Gaussianity.

Moving on to the frequency f2 (middle panel in the Figs. 4.11, 4.12, and 4.13)
we see a different scale dependence in the deviation from Gaussianity, reflecting the
“dip” feature referred to earlier beteween the scales 0.2 . k . 1 h/Mpc. Again this
feature appears for all polyspectra, with maximum amplitudes of ∼ 0.02%, ∼ 2.%
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and ∼ 1.5%, for the power spectra, bispectra, and trispectra, respectively. The resid-
ual histograms for frequency f2 across polyspectra are again approximately centred
at zero, with only slight skewness in some cases. The spread in the residuals is no-
ticeably larger in the case of the bispectrum, indicating the increased variability of
this statistic with increased non-Gaussianity.

Finally, in the case of frequency f3 (right panel of Figs. 4.11, 4.12, and 4.13) the
long-wavelength deviations in the primordial PDF lead to a deviation from Gaussian
model, which appears as a suppression across all (accessible) scales of polyspectra,
except the bispectrum between the range 0.2 . k . 0.4 h/Mpc, with a somewhat
larger deviation at smaller scales. The form of the best-fit lines is very similar for
the power spectra and trispectra, with maximum amplitudes of ∼ 0.4%, ∼ 1.5% and
∼ 1%, for the power spectra, bispectra, and trispectra, respectively. The residual
histograms are mostly centred at zero with only mild skewness for the power spec-
tra and bispectra, but there is more significant skewness of these histograms for the
trispectra, perhaps indicating that the best-fit lines are overestimating the offset from
the line of equality (where Tng/Tg = 1) for the NG3 model, and underestimating for
the NG2 and NG4 models. The spread in the residuals is also larger for the power
spectra and trispectra compared to the other frequencies, and much larger for the
bispectra.

We should caution that the analysis of the residuals is affected by the low num-
bers of points that we are considering (we calculate the polyspectra using 35 values
in k-space, and we have removed the first value in the bispectrum, as stated earlier).

It is of interest to note that the most extreme case that we study (that of
the NG4f3 model) does not lead to the largest deviations from Gaussianity in the
z = 0 polyspectra (at least up to the trispectrum). It is rather the NG2f3 model
that exhibits the largest deviations, and we will verify that this model is apparently
consistent with CMB constraints in the following section.

4.4 CMB constraints

In this section, we will check if our models are within the allowed region of
parameter space as determined by constraints on the trispectrum derived from CMB
observations, according to the analysis carried out in Chen et al. (2018a).

These constraints have been calculated using the full PDF reconstruction of
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the primordial curvature perturbations of Eq. (2.44), so we must relate it to the
asymptotic reconstruction used in this work of Eq. (2.42). For this task, we have
checked that by rescaling the values of A2 (given by table 3.1), there is a close match
between both PDFs. Therefore, we have replaced A2 of Eq. (2.44) with αA2. We
also found that the values of α depend most sensitively on frequency. For the models
corresponding to frequency f1 we used α = 33.64, for f2 we used α = 11.56, and for
f3 we used α = 1.69. For our most extreme case (model NG4f3) and after rescaling,
we found a maximum deviation of the asymptotic form from the full reconstruction
of 12%±11%, which corresponds to one standard deviation around the average. The
deviation of the other models is smaller, and this occurs mostly in the tails of the
distributions.

In Chen et al. (2018b), the following bound on the trispectrum is obtained by
using the Planck observations from CMB:

β < 2.1× 10−3, (4.2)

where

β ≡ A2
σ4
ζ

f 4
ζ

exp

(
−
σ2
ζ

2f 2
ζ

)
. (4.3)

After our scaling, we can determine where our models lie in the permitted pa-
rameter space. In Fig. 4.14 (c.f. Fig. 8 in Chen et al. (2018b)), we show the position
of our models together with the allowed region of the parameter space. We have set
σ2 = 1 for all of our models.

We can see that almost all of our models are well within the permitted (orange)
region, albeit with large values of the A2 parameter. There are two models that lie
just within the excluded region (white): NG3f3 and NG4f3, the two most extreme
cases (these have β = 2.3 × 10−3 and 3.1 × 10−3 respectively). The frequency f2
models, however, all lie within the permitted region. These models have shown in-
teresting scale-dependent deviations from Gaussianity in the late-time polyspectra,
most significantly in the bispectrum (Fig. 4.6).

It is important to keep in mind that this constraint is determined entirely from
the trispectrum. If we instead consider the full PDF of temperature fluctuations in
the CMB (as discussed with respect to a different NG model in Chen et al. (2018b))
it is very likely that our primordial non-Gaussian PDFs would be excluded. The
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Figure 4.14: The permitted region of parameter space for the full PDF, as determined
from the trispectrum, is shown in orange. The excluded region is shown in white.
The models we have considered are shown as blue dots.

large amplitudes that we have studied in this work, however, allow us to investigate
the feasibility of detecting this type of NG in the late-time n-point statistics. We
leave a more detailed confrontation with observations for future work.
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Chapter 5

Summary and Conclusions

In this work we have studied the effect of a new type of primordial non-
Gaussianity, fully characterised by a probability distribution function (PDF), on
large-scale structure, where the non-Gaussianity comes from an oscillatory modula-
tion of an underlying Gaussian distribution. We have generated our initial conditions
by randomly sampling from this modified PDF (using accept-reject technique). We
use 12 PDFs, representing 4 levels of non-Gaussianity for 3 different frequencies.
For each PDF, we generated 5 different realizations, producing 60 non-Gaussian
plus 5 Gaussian realizations. Of these 12 models, the two most extreme cases were
marginally excluded by the CMB constraints. These random values are convolved
with the transfer function of a standard ΛCDM cosmology, to produce the initial
positions and velocities using second order Lagrangian perturbation theory, which
are subsequently used in both full N-body simulations as well as a mock catalogue
generatior called L-PICOLA. We have generated a small number of cosmological
simulations with the N-body code RAMSES, where we have used the MUSIC code
to generate our initial conditions. In the case of L-PICOLA, the generation of initial
conditions is performed within the code, and the procedure is exactly the same.

We have focused on looking for evidence of the impact of this type of primor-
dial non-Gaussianity on the large-scale structure by analyzing the lowest orders of
the n-point correlation function in Fourier space (power spectrum, bispectrum, and
trispectrum) at low redshift. First, we compared both codes across polyspectra, and
although we found differences of up to 25%, 52%, and 55% in the power spectrum,
bispectrum and trispectrum, respectively, at the smallest scales (k ∼ 1 h/Mpc),
we found that the normalised polyspectra is represented quite well, with differences
< 1% at all scales considered in this work. Thus, we use L-PICOLA to generate all
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our 65 models.

In our analysis, using the averaged normalized polyspectra, we have found scale-
dependent deviations from the Gaussian model, which are at the limit of detectabil-
ity. For models with frequency f2, we see the most significant deviations from the
Gaussian case in the bispectrum. In the rest of the models, even considering the
most extreme ones (with the longest wavelength in the non-Gaussian modulation),
we only find deviations from the Gaussian case at the sub-percent level, which are
within the sample variance of the different realizations.

The most significant result has been provided by the NG4f2 model, which has
produced a deviation from Gaussianity of up to 2%. The variance indicates that the
signal is at the detectability threshold, but it could be measured with sufficient preci-
sion. In addition, this signal is a scale-dependent suppression, which is present in all
polyspectra: power spectra, and in the equilateral configurations of the bispectra and
trispectra. On the other hand, we have found a systematic effect in all polyspectra of
all models. First, produced by the variation of the amplitude of the non-Gaussianity,
which translates as an elevation and/or suppression of the polyspectra in different
scale ranges at low redshift. And second, we have seen that varying the frequency of
the non-Gaussianity produces a systematic increase in the scatter of the data con-
cerning the fitting curve at low redshift. We expect this feature to manifest itself at
other redshifts as well.

We hope that a broader search, considering more geometrical configurations in
the polyspectra, and a wider parameter space for this type of non-Gaussianity, can
give us more information and evidence of deviations from Gaussianity.

As for the limitations of our study, several aspects can be improved to obtain
more precision and information in our results. First, the size of the cosmological
volume used in this work is limited to a 500 Mpc/h box, while the particle (mass)
resolution is 2563 particles. By improving these parameters, we would achieve a
better reconstruction of the clustering, thus achieving accuracy in the measured
statistics by reducing the variance. Second, we have limited ourselves to using, in
general, symmetric configurations for the bispectrum and the trispectrum, and we
have performed only some preliminary calculations considering deviations from the
equilateral case for the bispectrum, where we have not found a significant difference
in the measurement. Therefore, a more complete analysis of asymmetric configura-
tions in the n-point correlation function is certainly necessary.
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Finally, our limitations in resolution led to a lack of structure at small scales,
so we have not been able to measure the mass function of halos, where it is expected
that the enhanced probability for certain ranges of density peaks could lead to an os-
cillatory modulation in the mass function of halos in a certain mass range. There are
other possible tests of non-Gaussianity beyond polyspectra, such as scale-dependent
bias, Minkowski functionals, and topological measures that can also be explored.

While our results suggest this type of non-Gaussianity will be very challenging
to detect, further study of the parameter space, using more observables, may uncover
unexpected and novel tests of these models, helping to shine a light on the inflationary
landscape.
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Maćıas-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Marcos-Caballero,
A., Maris, M., Martin, P. G., Mart́ınez-González, E., Matarrese, S., Mauri, N.,
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