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Overview and the objectives

The equations of motion for particles travelling in the gravitational fields of massive

objects, as formulated by the general theory of relativity, have been receiving rigor-

ous attention ever since the advent of the theory. In fact, the approximate solutions

to these equations, at the time, could pave the way in figuring out the trajectories of

planets and light in the solar system and finally, led to some observational evidences

which confirmed general relativity’s predictions (as asserted by Eddington in his fa-

mous book (Eddington, 1920)). However, the more delicate the experimental tests

became, the more they raised the interest in obtaining exact solutions to the equations

of motion. This necessitated employing advanced mathematical methods, mainly,

because of the resultant differential equations appearing in the equations of motion,

which tend to calculate the arc-lengths associated with the particle trajectories. Since

the early attempts by Hagihara (Hagihara, 1930) and Darwin (Darwin, 1959, 1961)

in obtaining and categorizing the particle orbits in the Schwarzschild spacetime, re-

searchers have been employing different approaches to the computation of the arc-

lengths swept by particle trajectories in gravitating systems. These approaches are,

in general, based on manipulating elliptic integrals and the resultant elliptic func-

tions, covering the Jacobi and the Weierstraß elliptic functions, as the two most com-

mon forms. Ever since, the elliptic and hyper-elliptic functions have received a great

deal of interest in analyzing the geodesic structure of massive and mass-less particles

in black hole spacetimes (Rauch & Blandford, 1994; Kraniotis & Whitehouse, 2003;

Kraniotis, 2004; Beckwith & Done, 2005; Cruz et al., 2005; Kraniotis, 2005; Hackmann

& Lämmerzahl, 2008a,b; Bisnovatyi-Kogan & Tsupko, 2008; Kagramanova et al., 2010;

Hackmann et al., 2010a,b; Kraniotis, 2011; Enolski et al., 2011; Gibbons & Vyska, 2012;

Muñoz, 2014a; Kraniotis, 2014; Muñoz, 2014b; De Falco et al., 2016; Barlow et al., 2017;

Vankov, 2017; Chatterjee et al., 2019; Uniyal et al., 2018; Jusufi et al., 2018; Ghaffarne-

jad et al., 2018; Villanueva et al., 2018; Hsiao et al., 2020; Gralla & Lupsasca, 2020;

Kraniotis, 2021).

In this thesis, we investigate the time-like and null geodesics that propagate in the
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exterior geometry of static and rotating black holes. The first problems that are dealt

with, is the derivation of the analytical solutions to the equations of motion, for both

the radial and angular types of orbits. To achieve this purpose, we use the standard

Lagrangian dynamics and identify the orbits in the context of the corresponding effec-

tive potentials. The second objective is to apply the classical general relativistic tests

(in particular in the solar system), to examine the relevant mathematical formulations

for these tests that are given for each of the black holes spacetimes.

The organization of this thesis is as follows: In chapter 1, we discuss, in detail, the

elliptic integrals and their solutions in terms of the Jacobian and Weierstraßian elliptic

functions in all of their forms. We also bring several examples to demonstrate their ap-

plicability for the relevant problems in classical physics. In chapter 2, we explore the

geometrical aspects of the Lagrangian and Hamiltonian on the base manifold. This is

followed by the derivation of the geodesic equation from Euler-Lagrange equations.

Furthermore, to exemplify this in black hole spacetimes, we calculate the exact so-

lutions to the radial and angular geodesics for the mass-less and massive particles

that travel in the exterior geometry of a Schwarzschild black hole, which necessitates

the exploitation of the formerly discussed elliptic functions. These trajectories are

also plotted for each of the types of orbits. Moreover, we review the derivation of

a modified version of the Newman-Janis algorithm to generate the stationary coun-

terparts of static spacetimes. In chapter 3, we begin our studies by investigating the

geodesics in a particular spacetime, derived from the fourth order Weyl conformal

gravity, under certain circumstances. This static black hole spacetime, is studied in

the context of the propagation of mass-less, neutral, and charged massive particles.

We also apply several general relativistic tests on this black hole, by means of the de-

rived analytical expressions. Finally, by employing the aforementioned algorithm, a

stationary counterpart of this black hole is generated. This black hole is investigated

in terms of its ergoregion, photon spheres and shadow. In chapter 4, the propaga-

tion of mass-less particles in the exterior geometry of a scale-dependent BTZ black

hole is discussed, together with the simulation of the possible orbits. Chapter 5 is

devoted to a more complicated case, namely to a Kerr black hole immersed in a non-

magnetized plasma, which produces a dielectric medium residing in a curved mani-

fold. We apply an elaboration to all the previously discussed methods, and then, we

employ them to the investigation of the light ray trajectories in this medium. The

orbits are discussed in both planar and three-dimensional context, by solving, in-

dividually, the temporal evolution of the coordinates. In chapter 6, we consider a

Schwarzschild black hole associated with quintessence and cloud of strings, which
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is firstly calibrated in the context of standard general relativistic tests for its parame-

ters. We then continue with the derivation of exact analytical solutions for null and

time-like geodesics in this spacetime. We finally switch our study, in chapter 7, to the

application of Carathéodory’s geometrothermodynamics to a static (Hayward) and a

stationary (rotating scale-dependent BTZ) black hole. This discussion, although being

different from those done in the previous chapters, is of great interest since it provides

a new vision to the black hole thermodynamics and helps for the creation of a boost

in the development of this field of study. We construct the perspective of our future

studies in chapter 8.

Throughout this thesis, unless in the particular places that is adopted other-

wise, we use the geometric units, in which G = c = h̄ = 1. Furthermore,

in appropriate places where needed, we use the Einstein convention on summing

over dummy indices, and the four-dimensional system of coordinates is adopted as

xµ =
(

x0, x1, x2, x3), in which, the zero component corresponds to the time coordinate,

i.e. x0 = t. All the diagrams and simulations have been generated by the software

Mathematica® 12.0.
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CHAPTER 1

Mathematical preliminaries

In this chapter, we introduce and discuss the elliptic integrals and elliptic func-

tions, based on their well-known varieties. These include their Jacobian and the

Weierstraßian forms and we briefly study their applications in classical mechanics

which constitute the mathematical foundations of the rest of this thesis.

1.1 Introduction

During its evolution, physics has been confronted several complicated problems, to

solve which, a bunch of rather complicated functions were used. These problems,

sometimes, have even formed the origins of new mathematical functions that were

later developed accordingly. Among the mentioned complicated mathematical tools,

the elliptic functions were have been applying widely to solve a great variety of prob-

lems in classical mechanics. In fact, in many problems in classical mechanics, one

confronts the integral (Taylor, 2005; Gregory, 2006)

t(y) = ±
∫ y

y0

dx√
( 2

m )[E − V(x)]
, (1.1)

giving the spatial dependence of the time coordinate for a moving object of mass m

of constant energy E, that has been located in the x-dependent conservative potential

V(x). The initial condition y0 is then chosen in the way that it corresponds to the

1



CHAPTER 1. MATHEMATICAL PRELIMINARIES

root of the turning point, given by the equation E = V(y0). For the latitudinal (polar)

motion, we confront the integral

θ(s) = ±
∫ s

s0

dσ√
( 2µ
ℓ2 )[E − V(σ−1)− ℓ2σ2

2µ ]
, (1.2)

is inverted as r(θ) = 1
s(θ) and is used in the central force problems, for an object of

the reduced mass µ, constant energy E and the angular momentum ℓ, which has been

located in the potential V(r). The initial condition s(0) = s0 is then obtained in terms

of the equation E = V(s−1
0 )− ℓ2s2

0
2µ for the turning points. To obtain the dependence of

the time coordinate with respect to the polar coordinate, we have the integral equation

t(θ) = ±
∫ cos θ

cos θ0

du√
( 2

I1
)(1 − u2)[E − V(u)]

, (1.3)

that corresponds to the θ(t) solution in the equations of motion. Here, I1 is the compo-

nent of the tensor of inertia, for which, the symmetry of the motion id defined1. The

turning points are then associated with the initial condition E = V(u0) = V(cos θ0).

To obtain the exact analytical solutions to the coordinates (t, x, θ), we then need to do

the inversions t(x) → x(t), θ(s) → s(θ) and t(θ) → θ(t). These solutions are, however,

achievable once the above integrals can be expressed in terms of analytical functions.

For example, the the time integral in Eq. (1.1) are expressible in terms of trigonomet-

ric (or singly periodic) functions, in the case that V(x) is a quadratic polynomial. For

the case of the integral (1.2), such solutions can only be achieved when V(r) = − k
r

or V(r) = kr2

2 . However, in the more general cases, the analytical solutions are not

expressed in terms of simple functions. For example, in the case that V(r) = krn, the

integral (1.2) results in elliptic functions for n = −3,±6,±4, 1 (Whittaker & McCrae,

1988). Same happens for the integral (1.3), when V(u) = Mghu (a gravitational poten-

tial for a particle of mass M, with one fixed point located at distance h from the center

of gravity).

1.1.1 The periodicity of elliptic functions

The elliptic functions are thought of as being doubly periodic. These periods, together,

form a lattice composed of a parallelogram in the complex plane. To elaborate this,

let us consider a function F(z) with the two periods η and η′, where z is a complex

number. In the case that F(z + mη + nη′) = F(z) for m, n = 0,±1,±2, . . . , and the

1In three dimensions, for example, we can let I1 = I2 ̸= I3.
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1.1. INTRODUCTION

Im(z)

Re(z)
Re(η1)

Im(η2)

Im(η1)

η2

η1

η 1
+
η 2

Re(η2)

Figure 1.1: The period parallelogram for the double-periodic function F(z).

ratio η′

η has a positive definite imaginary part, then F(z) is called double-periodic.

In the case that |η′| → ∞ the function F(z) becomes singly periodic with period η.

The mentioned fundamental period-parallelogram of a doubly periodic function is

defined by the four points (0, η, η′, η + η′) (see Fig. 1.1). Elliptic functions are indeed

defined in this parallelogram and are thought of as double-periodic functions with

either two simple zeros or a second order pole (℘-Weierstraß elliptic function), or two

first order poles (Jacobi elliptic functions). In fact, an elliptic function y(x;a) with

a = (a0, a1, a2, a3, a4), is defined as the solution to the nonlinear ordinary differential

equation (
dy
dx

)2

= a4y4 + a3y3 + a2y2 + a1y + a0. (1.4)

This equation can be regarded as the inversion of the solution to the integral

x(y;a) = x0 ±
∫ y

y0(a)

ds√
a4s4 + a3s3 + a − 2s2 + a1s + a0

, (1.5)

where y0(a) is a root of the quartic polynomial a4y4 + a3y3 + a2y2 + a1y + a0 and

x(y0;a) = x0. The Jacobi elliptic functions are defined in terms of the quartic polyno-

mial (1 − y2)(a + by2) with a, b = const., whereas the ℘-Weierstraß elliptic functions

are defined in terms of the cubic polynomial 4y3 − g2y − g3, with g2 and g3 known as

the Weierstraß invariants (Byrd & Friedman, 1971). These properties will be discussed

in more details in the forthcoming sections.
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CHAPTER 1. MATHEMATICAL PRELIMINARIES

1.2 Jacobi elliptic functions

Let us introduce the three famous Jacobi elliptic functions (sn z, cn z, dn z). First, the

Jacobi elliptic function sn z ≡ sn (z|m), with modulus m < 1, is a solution to the

differential equation (
dy
dz

)2

= (1 − y2)(1 − my2), (1.6)

with the initial condition y(0) = 0. The Jacobi elliptic function cn z ≡ cn (z|m), with

modulus m < 1 and the complementary modulus m′ = 1 − m > 0, is a solution to the

differential equation (
dy
dz

)2

= (1 − y2)(my2 + m′), (1.7)

with the initial condition y(0) = 1. Finally, the Jacobi elliptic function dn z ≡ dn (z|m),

with m′ = 1 − m > 0, is a solution to the differential equation(
dy
dz

)2

= (1 − y2)(y2 − m′), (1.8)

with the initial condition y(0) = 1. The differential equations (1.6)–(1.7) imply that

the Jacobi elliptic functions have the following derivatives with respect to z (Byrd &

Friedman, 1971):

sn ′z = cn z dn z, (1.9a)

cn ′z = −sn z dn z, (1.9b)

dn ′z = −m cn z sn z, (1.9c)

where the sign conventions satisfy the identities

sn 2(z|m) + cn 2(z|m) = 1 = dn 2(z|m) + m sn 2(z|m). (1.10)

We note that, for the special case m = 1, the solutions to the differential equations

(1.6)–(1.8) yield

sn (z|1) = tanh z, (1.11a)

cn (z|1) = sech z, (1.11b)

dn (z|1) = sech z, (1.11c)

while for m = 0, we get

sn (z|0) = sin z, (1.12a)

cn (z|0) = cos z, (1.12b)

dn (z|0) = 1. (1.12c)
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0 2 4 6 8
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0.0

0.5
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z

sn(z|m)cn(z|m)

dn(z|m)

Figure 1.2: Plots of sn (z|m), cn (z|m) and dn (z|m) from z = 0 to 4K(m) for m = 0.2.

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

m

Figure 1.3: The behavior of 2
π K(m) = 2

π K′(1 − m) with respect to changes in m.

As stated before, the elliptic functions (sn z, cn z, dn z) are doubly periodic functions of

z, with real-valued periods that are either 2K (dn z) or 4K (sn z and cn z) (see Fig. 1.2),

with

K ≡ K(m) =
∫ π

2

0

dθ√
1 − m2 sin2 θ

=
π

2

(
1 +

1
4

m +
9
64

m2 + . . .
)

, (1.13)

being the complete elliptic integral of the first kind, and purely imaginary periods that

are either 2iK′ (sn z) or 4iK (cn z and dn z), where

iK′(m) ≡ iK(m′) = i
∫ π

2

0

dθ√
1 − m′ sin2 θ

. (1.14)

It is apparent from Fig. 1.3 that K(0) = π
2 = K′(1), whereas K(m) = K′(1 − m) → ∞

for m → 1. Furthermore, in Fig. 1.4, we have shown the behaviors of sn z and −i sn (iz)

5
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0 1 2 3 4 5 6 7

-4

-2

0

2

4

z

sn(z|m)

-i sn(z|m)

Figure 1.4: Plots of sn (z|m) and −i sn (iz|m) for 0 ≤ z ≤ 4K′(m) for m = 2
3 .

for m = 2
3 , which exhibit both a real period (4K) and an imaginary period (2iK).

The fundamental period parallelogram for the Jacobi elliptic functions is, therefore, a

rectangle with corners at (0, 4K, 4iK, 4K + 4iK′), where zeros occur for real values of z

(at 2K and 4K), while the singularities occur for imaginary values of z (at iK′ and 3iK′).

The Jacobi elliptic functions for m > 1 (m′ < 0) are obtained from transformations of

the differential equations (1.6)–(1.8) in terms of the new variable m
1
2 z. Accordingly, for

m > 1 we find

sn (z|m) = m− 1
2 sn (m

1
2 z|m−1), (1.15a)

cn (z|m) = dn (m
1
2 z|m−1), (1.15b)

dn (z|m) = cn (m
1
2 z|m−1), (1.15c)

that satisfy an identity similar to that in Eq. (1.10).

1.2.1 Seiffert spherical spiral

The periodicity of the Jacobi elliptic functions sn z and cn z can be exemplified in the

Seiffert spherical spiral (Whittaker & Watson, 1996; Erdös, 2000). This spiral, defines

a periodic curve on the unit sphere which is constructed by means of the cylindrical

metric ds2 = dρ2 + ρ2dϕ2 +dz2 where z =
√

1 − ρ2 and ϕ(s) ≡ ks is the azimuth angle

parametrized by the arc length s (by making this assumption that the initial point of

the curve is (ρ0, ϕ0, z0) = (0, 0, 1)). One can, therefore, obtain the following differential

equation: (
dρ

ds

)2

=
(
1 − ρ2) (1 − k2ρ2) , (1.16)

6
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Figure 1.5: Parametric plots of the Seiffert spherical spiral on the surface of the unit sphere

for k = 0.15 and (from left to right) from s = 0 to s = 2K(k2), s = 4K(k2), s = 6K(k2) and

s = 8K(k2).

which is solved in terms of the elliptic functions, giving

ρ(s) = sn (s|k2), (1.17a)

z(s) =
√

1 − ρ2(s) = cn (s|k2), (1.17b)

when 0 < m ≡ k2 < 1, that satisfies the conditions ρ(0) = ρ0 and z(0) = z0. The

Seiffert spiral is then produced by the path of the unit vector

r̂(s) = sn (s|k2) [cos(ks)x̂ + sin(ks)ŷ] + cn (s|k2)ẑ, (1.18)

on the unit sphere. Furthermore, from the identity sn 2s+ cn 2s = 1 we can unsure that

|r̂| = 1 ∀ k. In Fig. 1.5 we have plotted the Seiffert spherical spiral when s runs up

Figure 1.6: Parametric plot of the Seiffert spherical spiral for k = 0.95 from s = 0 to s = 4K(k2).

to different values. Note that, at each value 4nK with (n = 1, 2, . . . ), the orbit returns

7
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to the initial point at ρ0 and z0. The special case k = 0 reproduces the great circle

(r̂ = sin sx̂ + cos sẑ), which is generated bu the intersection of the (x, z) plane with the

unit sphere. In Fig. 1.6 the full complex periodic nature of the Seiffert spiral orbit has

been shown.

For the case of k > 1, one needs to apply the identities in Eqs. (1.15), yielding

ρ(s) = k−1sn (ks|k−2), (1.19a)

z(s) =
√

1 − ρ2(s) = dn (ks|k−2), (1.19b)

and this means that the period of the Seiffert spiral is 4k−1K(k−2).

1.2.2 The case of the planar pendulum

The motion of a planar pendulum is described by the differential equation (Whittaker

& McCrae, 1988; Landau & Lifshitz, 1976)(
dϕ

dτ

)2

=
ϵ

2
− sin2 ϕ, (1.20)

where 2ϕ, τ ≡ vt, and ϵ ≡ E
MgL denote, respectively, the angular deviation of the pen-

dulum from the vertical position, the dimensionless time, and the normalized energy

of the pendulum, with M and L being the mass and the length of a pendulum that is

subjected to the gravitational field g, and accordingly, its velocity is given by v =
√

g
L .

This equation can be transformed to the Jacobi differential equation (1.6), by means of

the change of variable y(τ) .
= m− 1

2 sin ϕ (considering m = ϵ
2 ). This way, the solution

to the planar pendulum (for m < 1) is obtained as

ϕ(τ) = arcsin
(

m
1
2 sn (τ|m)

)
. (1.21)

For the case of ϵ > 2 (with m < 1) one can apply the identities (1.15) that yield

ϕ(τ) = arcsin
(

sn (m
1
2 τ|m−1)

)
. (1.22)

Note that, (1.21) corresponds to the libration motion, having the period 4m− 1
2 K(m−1).

When m = 1, the identities (1.9) give rise to the solution

ϕ(τ) = arcsin (tanh τ) , (1.23)

which is given in terms of the singly periodic (hyperbolic) trigonometric functions

with an imaginary period, and is known as the separatrix solution. The case of ϕ → π
2

8
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ϕ
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Figure 1.7: The phase portrait (ϕ′ versus ϕ) for the planar pendulum. The bounded libration

orbits given in Eq. (1.21) for ϵ < 2 (inner curves) and the unbounded rotation orbits (1.22) for

ϵ > 2 (outer curves) are separated by the separatrix orbits (1.23) for ϵ = 2 (dashed curves).

for this solution, corresponds τ → ∞, and therefore, the period of the pendulum on

a separatrix motion is infinite. In Fig. 1.7, the phase portrait of pendulum for the

above three kinds of orbits has been demonstrated. This portrait, shows the mutual

behaviors of the ϕ and the ϕ′ coordinates, where for m < 1 and applying the identities

(1.9) and (1.10), we have

ϕ′ =
m

1
2

√
1 − msn 2τ

sn ′τ = m
1
2 cn (τ|m), (1.24)

known as the libration angular velocity, whereas for m > 1 we get to the rotation

angular velocity

ϕ′ = m
1
2 dn (m

1
2 τ|m−1), (1.25)

by means of the identities (1.15). As it is observed from Fig. 1.2, the rotational angular

velocity (1.25) does not vanish and hence, the rotational orbits in the phase portrait

have been generated with the angular velocities of both signs. The identities (1.11)

imply that the angular velocity on the separatrix orbit (i.e. with m = 1 or ϵ = 2) is ϕ′ =

sech τ, meaning that the pendulum’s angular velocity approaches, exponentially, to

the zero as ϕ → π
2 . Each orbit in the phase portrait corresponds to the initial conditions

ϕ0 = 0 and ϕ′
0 = ±

√
ϵ
2 (only one of the signs is chosen for the libration orbits) and

is generated with −2K
(

ϵ
2

)
< τ < 2K

(
ϵ
2

)
(for the libration orbits with ϵ < 2), or

−2
√

2
ϵ K
( 2

ϵ

)
< τ < 2

√
2
ϵ K
( 2

ϵ

)
(for the rotation orbits with ϵ > 2). Note that, the

9
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topology of the phase portrait for the planar pendulum is represented as a cylinder,

since the condition ϕ = −π
2 is physically equivalent to the case of ϕ = π

2 .

1.2.3 Force-free asymmetric top

The Euler equations for a force-free symmetric top can be considered as another phys-

ical example, assuming the moments of inertia I1 > I2 > I3 (Landau & Lifshitz, 1976).

These equations read as

I1ω̇1 = (I2 − I3)ω2ω3, (1.26a)

I2ω̇2 = −(I1 − I3)ω1ω3, (1.26b)

I3ω̇3 = (I1 − I2)ω1ω2, (1.26c)

where the angular velocity ω = ω11̂ + ω22̂ + ω33̂ can be decomposed in terms of its

components along the principal axes of inertia. The conservation laws of the kinetic

energy

κ =
1
2
(

I1ω2
1 + I2ω2

2 + I3ω2
3
)
≡ 1

2
I0Ω2

0, (1.27)

and the squared angular momentum

ℓ = I2
1 ω2

1 + I2
2 ω2

2 + I2
3 ω2

3 ≡ I2
0 Ω2

0, (1.28)

are used to define the parameters I0 ≡ ℓ2

2κ and Ω0 ≡ 2κ
ℓ . These parameters can be used

to introduce the definitions

ω1(τ) = −

√
I0(I0 − I3)

I1(I1 − I3)
Ω0

√
1 − y2(τ) ≡ −Ω1(I0)

√
1 − y2(τ), (1.29)

ω2(τ) = −

√
I0(I0 − I3)

I2(I2 − I3)
Ω0y(τ) ≡ Ω2(I0)y(τ), (1.30)

ω3(τ) = −

√
I0(I1 − I0)

I3(I1 − I3)
Ω0

√
1 − my2(τ) ≡ Ω3(I0)

√
1 − my2(τ), (1.31)

where τ =
[
(I1 − I3)

Ω1Ω3
I2Ω2

]
t is the dimensionless time used in Eqs. (1.29)–(1.31), and

the modulus m is defined as

m(I0) =
(I0 − I3)(I1 − I2)

(I2 − I3)(I1 − I0)
. (1.32)

Assuming the condition m > 0, the parameter I0 = ℓ2

2κ must satisfy I3 < I0 < I1, and

hence, we have 0 ≤ m(I0) ≤ 1 for I3 ≤ I0 ≤ I2, and m(I0) < 1 for I2 < I0 < I1 (with

10
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Figure 1.8: Parametric plots of (ω1, ω2, ω3) for the asymmetric free top from τ = 0 to (from

left to right) τ = K(m), 2K(m), 3K(m), 4K(m).

m → ∞ as I0 → I1). Substitution of these expression in the Euler equations (1.26), as-

suming ω2 ≡ Ω2y(τ), yields the dimensionless Jacobi differential equation (1.6), that

can be now integrated, accordingly, for the initial conditions (ω1(0), ω2(0), ω3(0)) =

(−Ω1, 0, Ω3), giving (Landau & Lifshitz, 1976)

(ω1, ω2, ω3) = (−Ω1cn τ, Ω2sn τ, Ω3dn τ) , (1.33)

that provide the orbits in Fig. 1.8. This problem can be therefore solved in terms of

the Jacobi elliptic functions (sn , cn , dn ). Note that, the identity (1.10) can be used to

show that the solution (1.33) maintains the constants of the motion (1.27) and (1.28).

The case of separatrix solution (i.e. for m = 1), we have I0 = I2 that gives Ω2 ≡ Ω0.

Therefore, this type of motion is described by the equations

ω1(τ) = −

√
I2(I2 − I3)

I1(I1 − I3)
Ω0sech τ, (1.34)

ω2(τ) = Ω0 tanh τ, (1.35)

ω3(τ) = −

√
I2(I1 − I2)

I3(I1 − I3)
Ω0sech τ. (1.36)

It is also important to note that the motion of a symmetric top (i.e. for I1 = I2 ̸= I3)

corresponds to the limit m ≡ 0 (and Ω2 = Ω1). The Jacobian solution (1.33) for a

symmetric top is therefore,

(ω1, ω2, ω3) = (−Ω1 cos τ, Ω2 sin τ, Ω3) , (1.37)

with τ ≡
(

1 − I3
I1

)
Ω3t as the dimensionless time.

11
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(g3, ∆) e1 e2 e3 ω1 ω2 ≡ ω1 + ω3 ω3

(−,−) a − ib a + ib −2a < −1 |Ω′|+ iΩ
2 |Ω′| − iΩ

2 −iΩ

(−,+) d > 0 c − d > 0 −c < 0 |ω′| −iω + |ω′| −iω

(+,+) c > 0 d − c < 0 −d < 0 ω ω + ω′ ω′

(+,−) 2a > 1 −a − ib −a + ib Ω Ω
2 + Ω′ −Ω

2 + Ω′

Table 1.1: Cubic roots (e1, e2, e3) and half-periods (ω1, ω2, ω3) for the ℘-Weierstraß elliptic

function.

1.3 Weierstraß elliptic functions

The ℘-Weierstraß elliptic function ℘(z+γ) ≡ ℘(z+γ; g2, g3) is defined as the solution

to the differential equation

(
dy
dz

)2

= 4y3 − g2y − g3,

≡ 4(y − e1)(y − e2)(y − e3), (1.38)

subject to the initial condition y(0) = ℘(γ). Here, (e1, e2, e3) denote the roots of the

cubic polynomial 4y3 − g2y − g3 (such that e1 + e2 + e3 = 0), and the invariants g2 and

g3 are defined in terms of the cubic roots as (Whittaker & Watson, 1996; Abramowitz

& Stegun, 1964)

g2 = −4(e1e2 + e2e3 + e3e1) = 2
(
e2

1 + e2
2 + e2

3
)

, (1.39a)

g3 = 4e1e2e3. (1.39b)

The application of ℘-Weierstraß elliptic functions are analyzed in terms of four differ-

ent cases (Table 1.1) based on the signs of (g3, ∆) = [(−,−), (−,+), (+,−), (+,+)]

where ∆ = g3
2 − 27g2

3 in the modular discriminant. In Fig. 1.9, the ℘-

Weierstraß function has been plotted for the case of ∆ > 0, demonstrating the two

different periods 2ω and 2ω′ along the real and the imaginary axes, respectively. The

corresponding half-periods are given by

ω(g2, g3) =
∫ ∞

e1

ds√
4s3 − g2s − g3

, (1.40a)

ω′(g2, g3) = i
∫ e3

−∞

ds√
|4s3 − g2s − g3|

. (1.40b)

12
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2 4 6 8
z

Figure 1.9: Plots of ℘(z) > 0 (solid lines) and ℘(iz) < 0 (dashed lines) for g2 = 3 and g3 = 1
2

(with ∆ > 0) showing the real period 2ω (upper graph) and the imaginary period 2ω′ (lower

graph) defined, respectively, by Eqs. (1.40).

For the case of ∆ < 0, the function ℘(z) has different periods 2Ω and 2Ω′ along the

real and imaginary axes, respectively, with the half-periods Ω and Ω′ defined as

Ω(g2, g3) =
∫ ∞

e1

ds√
4s3 − g2s − g3

, (1.41a)

Ω′(g2, g3) = i
∫ e1

−∞

ds√
|4s3 − g2s − g3|

. (1.41b)

The half-periods ω(g2, g3) and ω′(g2, g3), for the case of ∆ > 0, as well as Ω(g2, g3)

and Ω′(g2, g3), for the case of ∆ < 0, have been plotted for specific cases of the in-

variants in Fig. 1.10. The cubic roots ei = (e1, e2, e3) and their corresponding half-

periods ωi = (ω1, ω2, ω3) have been given in Table 1.1, that satisfy ℘(ωi) ≡ ei and

℘(z + 2ωi) ≡ ℘(z), whereas for i ̸= j ̸= k, we have the identity (Whittaker & Watson,

1996)

℘(z + ωi) = ei +
(ei − ej)(ei − ek)

℘(z)− ei
, (1.42)

so that ℘(ωi + ωj) = ek. In Fig. 1.11, we have plotted the functions ℘(z + ω2) and

℘(z + ω3) for one complete period, in accordance with the Eq. (1.42). The singular

behavior of this relation appears at z = ωi, which is also apparent in Fig. 1.9 for

i = 1 ̸= j, k. An additional property of the ℘-Weierstraß elliptic function is that it is of

even parity, i.e. ℘(−z) = ℘(z). Furthermore, under a change of sign g3 > 0 → g3 =

−|g3| < 0 (with fixed g2 and, hence, fixed discriminant ∆), the ℘-Weierstraß function

satisfies the identity

℘(z; g2, g3) ≡ −℘(iz; g − 2, |g3|). (1.43)

13
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Figure 1.10: The plots of ω and Im(ω′) for 0 < g3 < 1 (∆¿0), together with the plots of Ω

and Im(Ω′) for g3 > 1 (∆¡0), considering g2 = 3. The case of g3 → 1 corresponds to ∆ → 0

and both of Im(ω′) and Im(Ω′) diverge, whereas Ω(g2, 1) = ω(g2, 1). On the other hand,

ω′(g2, 0) = iω(g2, 0), and both of Ω and Ω′ tend to zero as g3 → ∞.

The identity (1.43) (termed as the g3-inversion identity), has been used in Table 1.1 in

order to write the transformation


e−1
e−2
e−3

 ≡


℘
(
ω−

1 ; g2, g3
)

℘
(
ω−

2 ; g2, g3
)

℘
(
ω−

3 ; g2, g3
)
 ≡ −


℘
(
iω−

1 ; g2, |g3|
)

℘
(
iω−

2 ; g2, |g3|
)

℘
(
iω−

3 ; g2, |g3|
)
 ≡ −


℘
(
ω+

1 ; g2, |g3|
)

℘
(
ω+

2 ; g2, |g3|
)

℘
(
ω+

3 ; g2, |g3|
)
 ≡ −


e+1
e+2
e+3

 ,

(1.44)

abbreviated as e+i (g3 > 0) → e−i (g3 < 0) for the Weierstraß roots (for fixed g2 and ∆),

which makes use of (
ω−

1 , ω−
2 , ω−

3
)
≡ i
(
ω+

1 , ω+
2 , ω+

3
)

. (1.45)

The transformations (1.44) and (1.45) were previously introduced in order to present

a uniform solution of the problem of a moving in a cubic potential in terms of the

℘-Weierstraß elliptic function for all values of energy and for all bounded an un-

bounded orbits. It is worth to note that, in contrast to the simple rectangular form of

the fundamental period–parallelogram of the Jacobi elliptic functions, the fundamen-

tal period–parallelogram (0, ω1, ω2 = ω1 + ω3) of the ℘-Weierstraß elliptic function,

changes its shape depending on the signs of (g3, ∆), according to the information in

Table 1.1.
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1 3 5
z

-0.5

Figure 1.11: The functions ℘(z + ω2) (solid curves) and ℘(z + ω3) (dashed curves) for g2 = 3

and g3 = 1
2 (∆ > 0) plotted in the domain 0 ≤ z ≤ 2ω1.

1.3.1 Planar pendulum

We reconsider the planar pendulum, as we discussed in Sect. 1.2 for the case of Ja-

cobi elliptic functions. By writing y = 2 sin2 ϕ (for which 0 < y < 2), we transform

Eq. (1.20) into the cubic potential equation

(y′)2 = 2y(2 − y)(ϵ − y), (1.46)

with turning points at y = 0, 2 and ϵ. Physical motion is possible only when the right

side of Eq. (1.46) is positive. Hence, the motion is periodic between y = 0 and y = ϵ

for ϵ < 2, while the motion is periodic between y = 0 and y = 2 for ϵ > 2. Note that,

one can recover the standard ℘-Weierstraß differential equation (1.38), by setting

y(τ) = 2℘(τ + γ) + µ, (1.47)

where µ ≡ 1
3 (ϵ + 2) and the constant γ is determined from the initial condition y(0).

The Weierstraß invariants are

g2 = 1 + 3(µ − 1)2, (1.48a)

g3 = µ(µ − 1)(µ − 2), (1.48b)

and the modular discriminant is ∆ = ϵ2(2 − ϵ)2 ≥ 0. The Weierstraß solution of

the planar pendulum is discussed in terms of the four cases summarized in Table 1.2,

where the root − µ
2 corresponds to the turning point y = 0, the root 1 − µ

2 corresponds

to the turning point y = 2, and the root µ − 1 corresponds to the turning point y = ϵ.
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Case (g3, ∆) ϵ e3 e2 e1 γ = ω3 Half-period ω1 κ m

(a) (+,+) 0 < ϵ < 1 − µ
2 µ − 1 1 − µ

2 ω′ ω 1 ϵ
2

(b) (−,+) 1 < ϵ < 2 − µ
2 µ − 1 1 − µ

2 −iω |ω′| 1 ϵ
2

(c) (−,+) 2 < ϵ < 4 − µ
2 1 − µ

2 µ − 1 −iω |ω′|
√

ϵ
2

2
ϵ

(d) (+,+) 4 < ϵ − µ
2 1 − µ

2 µ − 1 ω′ ω
√

ϵ
2

2
ϵ

Table 1.2: Weierstraß roots (e1, e2, e3) and Jacobi parameters κ =
√

e1 − e3, and m = (e2−e3)
(e1−e3)

for

the planar pendulum problem.

Using the initial conditions y(0) = 0 and y′(0) = 0 (giving γ ≡ ω3 so that ℘(γ) = e3),

the Weierstraß solutions for cases (a) and (d) are expressed as

y(τ) = 2℘(τ + ω′) + µ, (1.49)

where ω3 = ω′ and the period of oscillations is 2ω1 = 2ω (refer to the case of (g3, ∆) =

(+,+) in Table 1.1). For the cases (b) and (c), the Weierstraß solutions are expressed

as

y(τ) = 2℘(τ − iω) + µ, (1.50)

where ω3 = −iω and the period of oscillations is 2ω1 = 2ω (refer to the case of

(g3, ∆) = (−,+) in Table 1.1). As expected, when ϵ → 2 (i.e. when ∆ → 0), the period

2|ω′| approaches infinity as we approach the pendulum’s separatrix (see Fig. 1.10).

Each pair of cases (a)–(b) and (c)–(d) in Table 1.2, satisfies the transformations (1.44)

and (1.45). For example, considering the case (a), we denote the initial angle as ϕ0 (with

ϕ′
0 = 0), where 0 < ϕ0 < π

4 , so that 0 < ϵ = 2 sin2 ϕ0 < 1, while in case (b), we denote

the initial angle as ϕ̄0 (with ϕ̄′
0 = 0), where π

4 < ϕ̄0 < π
2 , so that 1 < ϵ̄ ≡ 2 sin2 ϕ̄0 < 2.

Introducing the transformation

ϕ0

ϵ

→

ϕ̄0

ϵ̄

 ≡

π
2 − ϕ0

2 − ϵ

 , (1.51)

which generates the g3-inversion transformation (g2, g3, ∆) → (ḡ2, ḡ3, ∆̄) =

(g2,−g3, ∆) on the Weierstraß invariants for the planar pendulum. From the trans-

formation (1.51) we obtain that µ → µ̄ = 2 − µ, and thus, (e1, e2, e3) → (ē1, ē3, ē3) =

−(e3, e2, e1), and (ω1, ω2, ω3) → (ω̄1, ω̄2, ω̄3) = −i(ω3, ω2, ω1), which is also inferred

from the transformations (1.44) and (1.45). Furthermore, the solution ȳ(τ; ω̄1) =
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2℘(τ + ω̄3; ḡ2, ḡ3) + µ̄, having the half-period ω̄1 = |ω′|, is expressed as

ȳ(τ; ω̄1) = 2℘(τ − iω1; g2,−g3) + (2 − µ)

= 2 − [2℘(iτ + ω1; g2, g3) + µ]

≡ 2 − y(iτ;−iω3), (1.52)

where the solution y(iτ;−iω3), which has the real half-period −iω3 = |ω′|, is a func-

tion of the imaginary time iτ. Because the normalized time τ ≡
( g

L

) 1
2 t involves the

gravitational acceleration g, we obtain an imaginary time if we invert gravity’s direc-

tion (i.e. g → ḡ ≡ −g), which results in τ → τ̄ ≡ iτ and y(iτ;−iω3) ≡ y(τ̄; |ω′|).
Therefore, the physical interpretation of the imaginary half-period ω′ of the planar

pendulum is that its magnitude |ω′| is the real half-period of the inverted planar pen-

dulum (or pendulum with imaginary time) (Whittaker & McCrae, 1988). Note that,

the solution of the planar pendulum in terms of the Jacobi elliptic function sn (z|m)

and the ℘-Weierstraß elliptic function ℘(z + γ), suggests a close connection between

them (see appendix A.1). For example, we find the general solution for the planar

pendulum for all values of normalized energy ϵ, as

2℘(τ + ω3) + µ = 2mκ2sn 2(κτ|m) =

 ϵ sn 2 (τ| ϵ
2

)
(ϵ < 2)

2 sn 2 (√ ϵ
2 τ| 2

ϵ

)
(ϵ > 2)

, (1.53)

where κ =
√

e1 − e3 and m = e2−e3
e1−e3

(according to Table 1.2). In appendix A.2, we have

shown that the Weierstraß half-periods ω and ω′ are related to the Jacobian quarter-

periods K and K′ as ω ≡ K(m) and ω′ ≡ iK.

1.3.2 Spherical pendulum

We set the spherical pendulum problem in the cylindrical coordinates (ρ, ϕ, z) (Whit-

taker & McCrae, 1988). The energy equation for a spherical pendulum of unit mass

and unit length is

ϵv2 =
1
2
(
ρ̇2 + ρ2ϕ̇2 + ż2)+ v2z, (1.54)

where, as before, ϵ is the normalized total energy (v2 ≡ g). By substituting ρ(z) =
√

1 − z2 (where −1 ≤ z ≤ 1) and the angular momentum conservation law ℓ ≡ ρ2ϕ̇
v ,

we obtain the differential equation

(z′)2 = 2(ϵ − z)(1 − z2)− ℓ2

≡ 2(z − z1)(z − z2)(z − z3), (1.55)

17
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where z′(τ) ≡ v−1ż and z1 + z2 + z3 = ϵ. Because the right side of Eq. (1.55) is negative

at z = ±1, the greatest root z1(> 1 < z2 > z3 > −1) of the cubic polynomial is

nonphysical , since it corresponds to an imaginary cylindrical radius ρ. The periodic

motion of the spherical pendulum is therefore bounded in the domain z3 < z < z2.

The differential equation (1.55) can be transformed into the standard form (1.38), by

setting z(τ) = 2℘(τ + γ) + µ, where µ = ϵ
3 , the constant γ determined from the initial

condition z(0), and the invariant are g2 = 1 + 3µ2 and g3 = ℓ2

4 + µ(µ2 − 1). If we

choose the initial condition z(0) = z3 > −1, then γ = ω3 = ω′ and the solution of the

spherical pendulum problem for the z (and ρ) coordinate is

z(τ) = 2℘(τ + ω3) + µ ≡
√

1 − ρ2(τ). (1.56)

The motion is periodic with the half-period ω1 = ω, so that, as expected, z(ω1) =

2℘(ω1 + ω2) + µ = 2℘(ω2) + µ ≡ z2 < 1. Note that, the case of the planar pendulum

is indeed a special case of the spherical pendulum, by letting ℓ = 0, and adopting

appropriate definitions for (z, ϵ, µ).

The solution for the azimuth angle ϕ(τ) is obtained from the angular-momentum

conservation law ϕ′(τ) = ℓ
ρ2(τ)

, which yields (Whittaker & McCrae, 1988)

ϕ(τ) = ℓ
∫ τ

0

ds
1 − [2℘(s + ω3) + µ]2

≡ − ℓ

4

∫ τ

0

ds
[℘(s + ω3)− ℘(κ)][℘(s + ω3)− ℘(λ)]

, (1.57)

where we used the initial condition ϕ(0) = 0 and the imaginary constants κ and λ

are defined by the relation ℘(κ) = − 1
2 (1 + µ) and ℘(λ) = 1

2 (1 − µ), that correspond,

respectively, to z = −1 < z3 and z = +1 > z2. For such constants we have ℘′(κ) =
iℓ
2 = ℘′(λ), which is obtained from the Weierstraß differential equation (1.38) for z = κ

and λ. These relations allow us to write (1.57) as

ϕ(τ) =
i
2

∫ τ

0
ds
[

℘′(λ)

℘(s + ω3)− ℘(λ)
− ℘′(κ)

℘(s + ω3)− ℘(κ)

]
, (1.58)

where we used the identity ℘(λ)− ℘(κ) = 1. Note that, in general, the differentiation

of the ℘-Weierstraß function is defined as

℘′(x) ≡ d
dx

℘(x) = −
√

4℘3(x)− g2℘(x)− g3. (1.59)

The integral (1.58) can be solved exactly in terms of the quasi-periodic functions

ζ-Weierstraß (ζ(τ)) and σ-Weierstraß (σ(τ)), which are associated with the ℘-

Weierstraß elliptic function, by ℘(τ) = −ζ ′(τ) and ζ(τ) ≡ σ′(τ)
σ(τ)

. Therefore, by means
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of the relation (Byrd & Friedman, 1971; Whittaker & McCrae, 1988)

℘′(λ)

℘(s)− ℘(λ)
≡ ζ(s − λ)− ζ(s + λ) + 2ζ(λ)

=
d
ds

ln
(

σ(s − λ)

σ(s + λ)

)
+ 2ζ(λ), (1.60)

we find the standard solution for the azimuth motion of the pendulum, as

e2iϕ(τ) = e2τ[ζ(κ)−ζ(λ)]

[(
σ(τ + ω3 + λ)σ(ω3 − λ)

σ(ω3 + λ)σ(τ + ω3 − λ)

)
×
(

σ(τ + ω3 − κ)σ(ω3 + κ)

σ(ω3 − κ)σ(τ + ω3 − κ)

)]
,

(1.61)

for which, it is readily verified that ϕ(0) = 0. Note that, Eq. (1.61) can be simplified

further by recalling that since the condition −1 < z3 ≤ ℘(τ + ω3) ≤ z2 < 1 holds for

τ ∈ R, there must be the imaginary numbers iα and iβ (α, β ∈ R), such that κ ≡ ω3 + iα

and λ ≡ ω3 + iβ. Applying the above substitutions, one can recast Eq. (1.61) as

e2iϕ(τ) = e2τ[ζ(κ)−ζ(λ)]

[(
σ(τ + 2ω3 + iβ)σ(−iβ)
σ(2ω3 + iβ)σ(τ − iβ)

)
×
(

σ(τ − iα)σ(2ω3 + iα)
σ(−iα)σ(τ + 2ω3 + iα)

)]
.

(1.62)

Making use of the identity σ(τ + 2ω3) ≡ − exp [2η3(τ + ω3)] σ(τ) (Whittaker & Wat-

son, 1996), where η3 ≡ ζ(ω3), we find that

σ(τ + 2ω3 + iβ)
σ(τ − iβ)

= −e2η3(τ+iβ) σ(τ + iβ)
σ(τ − iβ)

, (1.63a)

σ(−iβ)
σ(2ω3 + iβ)

= −e−2iη3β σ(−iβ)
σ(iβ)

≡ e−2iη3β, (1.63b)

obtaining which, we used the fact that σ(τ) is an odd function of τ (i.e. σ(−iβ) =

−σ(iβ)). We therefore obtain

e2iϕ(τ) ≡ e2τ[ζ(κ)−ζ(λ)]

[
σ(τ + iβ)σ(τ − iα)
σ(τ − iβ)σ(τ + iα)

]
. (1.64)

Now since the ratio σ(τ+iβ)
σ(τ−iβ) has a unit modulus for all τ ∈ R, we can then write

ln
(

σ(τ + iβ)
(σ(τ − iβ))

)
= i

∫ β

−β
ζ(τ + is)ds

= 2i
∫ β

0
Re [ζ(τ + is)]ds. (1.65)

Therefore, the solution (1.62) for the azimuth angle ϕ(τ) can be recast in the form

ϕ(τ) = iτ [ζ(ω3 + iβ)− ζ(ω3 + iα)] +
∫ β

α
Re [ζ(τ + is)]ds

≡ Re
[∫ β

α
[ζ(τ + is) + τ℘(ω3 + is)]ds

]
, (1.66)
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which is expressed in terms of the quasi-periodic function ζ(τ) and ℘(τ) = −ζ ′(τ).

After a full period 2ω1, when the (ρ, z) coordinates return to their initial values, the

azimuth angle is changed by an amount ∆ϕ ≡ ϕ(τ + 2ω1)− ϕ(τ), which is expressed

as

∆ϕ = 2ω1

∫ β

α
℘(ω3 + is)ds + 2η1(β − α), (1.67)

to obtain which, we have used the identity ζ(τ + 2ω1 + is) = ζ(τ + is) + 2η1 where

η1 ≡ ζ(ω1) (Whittaker & Watson, 1996). The problem of the spherical pendulum in

cylindrical coordinates, can be therefore solved by Eqs. (1.56) and (1.66), in terms of

the ℘-Weierstraß ℘(τ + γ) and the ζ-Weierstraß ζ(τ) elliptic functions.

1.3.3 Heavy symmetric top with one fixed point

As the last example, we take care of the motion of a symmetric top (I1 = I2 ̸= I3) with

one fixed point described in terms of the energy equation

E =
1
2

[
I1θ̇2 + I3ϖ2

3 +
(pϕ − pψ cos θ)2

I1 sin2 θ

]
+ Mgh cos θ, (1.68)

with E and φ3 denote, respectively, the total energy of the symmetric top and the

constant component of the angular velocity of a mass M with the principal moments

of inertia I1 = I2 ̸= I3. Furthermore, pϕ and pψ are the angular momenta associated

with the negligible Euler angles ϕ and ψ. Defining ϵ
.
=

E− 1
2 ϖ2

3
Mgh and (a, b) .

=
(

pϕ

I1v , pψ

I1v

)
with v2 = Mgh

2I1
, the differential equation for u = cos θ is obtained from Eq. (1.68) as(

u′)2
= 4

(
1 − u2) (ϵ − u)− (a − bu)2

≡ 4(u − u1)(u − u2)(u − u3), (1.69)

where prime denotes differentiation with respect to the dimensionless time τ = vt,

and u3 < u2 < u1 are the roots of the cubic polynomial on the right had side (r.h.s.)

of the equation, that because of its negativity at u = ±1, it is inferred that −1 < u3 <

u2 < 1 and u1 > 1 (which is a nonphysical solution for u = cos θ). The physical

motion is, therefore, periodic in θ and is bounded between u3 ≡ cos θ3 and u2 ≡ cos θ2

(implying θ2 < θ(τ) < θ3). Noe applying the change of variable u .
= ℘+ µ where µ =

1
12 (4ϵ+ b2), the differential equation (1.69) changes its form to the standard differential

equation (1.38) for the ℘-Weierstraß elliptic function, for which

g2 = 2(2 − ab + 6µ2), (1.70a)

g3 = (a2 + b2) + 2µ(4µ2 − 4 − ab), (1.70b)
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and ∆ ≡ ∆(ϵ, a, b) for this particular problem. The solution is, therefore, expressed in

terms of the ℘-Weierstraß elliptic function as

u(τ) ≡ cos θ(τ) = ℘(τ + γ) + µ, (1.71)

where γ is determined from the initial condition θ(0). For the case of −1 < u3 =

e3 + µ < u2 = e2 + µ < 1, we choose u(0) = e3 + µ = u3 (which means that −1 − µ <

e3 < 1 − µ), so that γ = ω′. Accordingly, at the half-period τ = ω, we find that, as

expected, u(ω) = ℘(ω + ω′) + µ = e2 + µ = u2. The solution in Eq. (1.71) for θ(τ)

can be used to integrate the differential equations for the remaining Euler angles. We

have

ϕ′(τ) =
a − b cos θ(τ)

1 − cos2 θ(τ)

≡ i
2

[
℘′(κ)

℘(τ + ω3)− ℘(κ)
− ℘′(λ)

℘(τ + ω3)− ℘(λ)

]
, (1.72)

χ′(τ) =
b − a cos θ(τ)

1 − cos2 θ(τ)

≡ i
2

[
℘′(−κ)

℘(τ + ω3)− ℘(−κ)
− ℘′(λ)

℘(τ + ω3)− ℘(λ)

]
, (1.73)

to obtain which, we have defined ψ′ ≡
(ϖ3

v − b
)
+ χ′, where ℘(κ) = 1− µ and ℘(λ) =

−(1 + µ), with ℘′(κ) = i(a − b) and ℘′(λ) = i(a + b). Note that, the sign of ϕ′ in

Eq. (1.72) depends on the sign of a − b cos θ2 < a − b cos θ < a − b cos θ3. If a > b cos θ2

(or a < b cos θ3), then ϕ′ does not change its sign as θ bounces between θ2 and θ3

and the motion in ϕ involves monotonic azimuth precession. If a = b cos θ2 (or a =

b cos θ3), ϕ′ vanishes at θ = θ2 (or θ = θ3) and the motion in ϕ exhibits a cusp at that

angle (since both θ′ and ϕ′ vanish). If a < b cos θ2, then ϕ′ vanishes at an angle θ2 <

θ0 < θ3 and the motion in ϕ exhibits retrograde motion between θ0 < θ < θ3. Note

that, since the Eqs. (1.72) and (1.58) are the same, the solution to Eq. (1.72) is the same

as that of Eq. (1.66) (even if the constants κ and λ are different). This same solution

can also be applied to the solution in Eq. (1.73), if the transformation (a, b) → (b, a)

is applied to Eq. (1.72), and also by taking into account that ℘(τ) is of even parity,

whereas ℘′(τ) is of odd parity.
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1.4 Some further physical applications of elliptic

functions

Beside the more generalized appellations of elliptic functions in classical Hamiltonian

dynamics in the context of Newtonian mechanics, these functions have appeared to be

of rigorous applications in the analysis of light and particle trajectories in spacetimes

inferred from general relativity and extended theories of gravity. Further in this thesis,

this will be dealt with extensively. However, for now, and before closing this chapter,

let us discuss as the last example, the exact solutions of the Korteweg–de Vries (KdV)

equation (Gratton & Delellis, 1989)

∂tu + u∂xu + ∂x,x,xu = 0, (1.74)

which describes the nonlinear evolution of the field u(x, t). This nonlinear equation

appears in many areas of physics and is a member of an important class of nonlin-

ear partial differential equations that possesses soliton solutions (Giambó et al., 1984;

Gardner et al., 1967; Olver, 1986; Degasperis, 1998). In fact, a travelling-wave solution

of the KdV equation (1.74) is a function of the form u(x, t) = v(ξ), where ξ = κ(x − ct)

denotes the wave phase (with constants κ and c that need to be determined). Substitut-

ing this travelling solution into the KdV equation, we obtain an ordinary differential

equation for v(ξ) as

(v − c)v′ + κ2v′′′ = 0, (1.75)

which can be integrated with respect to ξ to yield

κ2v′′ = α + cv − 1
2

v2, (1.76)

where α is a constant of integration. Multiplying Eq. (1.76) by v′ and then, integrating

again with respect to ξ, we obtain

κ2

2
(v′)2 = (αv + β) +

c
2

v2 − 1
6

v3, (1.77)

where β is the second constant of integration. One can now see immediately that

v(ξ) ≡ A℘(ξ) + B, which can be expressed in terms of the elliptic functions (where

A ≡ −12κ2 and B ≡ c), because the r.h.s. of Eq. (1.77) involves a cubic polynomial in

v. The travelling-wave solution of the KdV equation is then

u(x, t) = A℘ (κ(x − ct) + γ) + B, (1.78)
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where the constant γ is determined from the initial condition u(x, 0) = u0(x). Using

the relation between the Weierstraß and Jacobi elliptic functions (as described on ap-

pendix A.1), the travelling-wave solution to the KdV equation may be also expressed

as (Olver, 1986; Cervero, 1986)

u(x, t) = acn 2 [κ(x − ct) + γ|m] + b (1.79)

where m =
√

r3−r2
r3−r1

, a = r3 − r2, b = r2, and κ =
√

1
6 (r3 − r1). Note that, here r1 <

r2 < r3 are the roots of the cubic polynomial on the r.h.s. of Eq. (1.77). This second

representation is known as the periodic cnoidal-wave solution to the KdV equation. Note

that, for he special case of α = 0 = β in Eq. (1.77), for which r3 = 3c and r1 = 0 = r2,

we then find m = 1, a = 3c, b = 0 and κ =
√ c

2 . In this case, the travelling-wave

solution becomes

u(x, t) = 3csech 2
[√

c
2
(x − ct)

]
, (1.80)

that describes the well-known localized soliton solution of the KdV equation.

1.5 Summary

The review given in this chapter, highlights some basic properties of the elliptic func-

tions, especially the Weierstraß elliptic functions. The more specific applications of

these functions, requires particular treatments of the elliptic integrals of the first, sec-

ond and third kinds which depending on the physical problem in hand, can be ex-

pressed in terms of the elliptic integrals, themselves, or in terms of the Jacobi or

Weierstraß elliptic functions. This latter is widely used in this thesis and as we go

further into particular relativistic problems that include analytical treatments of parti-

cle geodesics in curved spacetimes, appropriate methods of treatments of complicated

integrals are presented in details, and the ways they are simplified to known elliptic

functions are discussed extensively. We therefore close this chapter at this point, and

begin the discoveries of this thesis, after a short chapter on Hamiltonian dynamics and

geodesic equations.
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CHAPTER 2

The Lagrangian and Hamiltonian

dynamics and the calculation of

geodesics in black hole spacetimes

In this chapter, some well-known notions on the Hamilton-Jacobi equation, La-

grangian dynamics and Euler-Lagrange equation are restated. This latter is of ex-

tensive use in classical mechanics, and therefore, can be regarded as an alternative ap-

proach in the derivation of geodesic equations. In the forthcoming sections, we recall

some basic methods of variations in the derivation of the Euler-Lagrange equation and

we state the mathematical way in the derivation of the geodesic equations as available

in the Riemannian geometry. The application of this latter in the Schwarzschild black

hole (SBH) spacetime is discussed as well. We close this chapter by discussing the

method of separation of variables in the Hamilton-Jacobi equation which leads to the

introduction of the Carter’s constant. This is of crucial importance in the investigation

of geodesics in stationary black hole spacetimes.
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CHAPTER 2. THE LAGRANGIAN AND HAMILTONIAN DYNAMICS AND THE
CALCULATION OF GEODESICS IN BLACK HOLE SPACETIMES

2.1 Lagrange’s equation of motion

Based on the Hamilton’s principle, the motion of a system from time t1 to time t2 is

such that the action

I =
∫ t2

t1

L dt, (2.1)

with L termed as the Lagrangian of the system1, has a stationary value along the

actual path of the motion. This means that, out of all possible paths, by which, the

system point could travel from its position at time t1 to its position at time t2, it will

actually travel along the path, for which, the value of the integral (2.1) is stationary,

i.e. the value of I along the given path has the same value to within first-order in-

finitesimals as that along all neighboring paths. In the mathematical language, this is

asserted as the vanishing variation of I, or (Landau & Lifschits, 1975)

δI = δ
∫ t2

t1

L (q1, . . . , qn, q̇1, . . . , q̇n, t) = 0, (2.2)

where qi (i = 1, . . . , n) are the generalized coordinated and q̇i ≡ dqi
dt . In the case that we

can can deduce the state of the system by knowing only information about the change

of positions of the components of the system over time (i.e. the system constraints

are holonomic), the Hamilton’s principle is then both a necessary and sufficient condi-

tion for the Lagrange’s equations. We therefore proceed with deriving the Lagrange’s

equations of motion, applying the Hamilton’s principle.

To elaborate this, let us consider a function f (yi, ẏi), where yi ≡ yi(x), with x

assumed as being the parameter, and ẏi ≡ dyi
dx . Then, a variation of the integral J

δJ = δ
∫ 2

1
f (y1(x), . . . , ẏ1(x), . . . , x)dx, (2.3)

is obtained by expanding each of the curves yi(x; α) with α being the label of the

curves, in the form (Goldstein et al., 2011)

y1(x; α) = y1(x; 0) + αη1(x),

y2(x; α) = y2(x; 0) + αη2(x),
...

...
...

(2.4)

where yi(x; 0) are solutions to the extremum problem, and ηi(x) are independent func-

tions of x that vanish at the end points and are continuous through the second deriva-

1In Newtonian mechanics, this quantity is defined as L = T − V, where T and V are, respectively,

the kinetic and potential energies of a body in a closed dynamical system.
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tive, but otherwise are completely arbitrary. Now, varying J in terms of α yields

∂J
∂α

dα =
∫ 2

1
∑

i

(
∂ f
∂yi

∂yi

∂α
dα +

∂ f
∂ẏi

∂ẏi

∂α
dα

)
dx. (2.5)

Integrating, by parts, the second term in the right hand side (r.h.s.) of Eq. (2.5) yields

∫ 2

1

δ f
∂ẏi

∂2yi

∂α∂x
dx =

∂ f
∂ẏi

∂yi

∂α

∣∣∣∣2
1
−
∫ 2

1

∂yi

∂α

d
dx

(
∂ f
∂ẏi

)
dx. (2.6)

The first term in the r.h.s. of the above equation vanishes, since all the curves pass

through the fixed end points. Now, substituting Eq. (2.6) in Eq. (2.5) results in

δJ =
∫ 2

1
∑

i

(
∂ f
∂yi

− d
dx

∂ f
∂ẏi

)
δyidx, (2.7)

where once can infer the relation

δyi =

(
∂yi

∂α

)
0

dα, (2.8)

for the variation δyi, where the subscript 0 indicates infinitesimal departure of the

varied path from the correct path. Note that, since the y variables are independent, the

variations δyi will be independent, as well. Once can, therefore, extend the condition

δJ = 0 (the Hamilton’s principle) to the following condition:

∂ f
∂yi

− d
dx

∂ f
∂ẏi

= 0, (2.9)

with i = 1, 2, . . . , n, which is known as the Euler-Lagrange differential equation. So-

lutions to this equation represent the curves, for which, the variation of an integral of

the form given in Eq. (2.2) vanishes.

Now, replacing yi → qi and x → t, and consequently, f (yi, ẏi, x) → L (qi, q̇i, t), the

Hamilton’s principle integral (2.1) can be recast as

I =
∫ 2

1
L (qi, q̇i, t)dt. (2.10)

The Euler-Lagrange equation is therefore transforms to the Lagrange’s equation of

motion
d
dt

∂L

∂q̇i
− ∂L

∂qi
= 0, (2.11)

with i = 1, 2, . . . , n.

27



CHAPTER 2. THE LAGRANGIAN AND HAMILTONIAN DYNAMICS AND THE
CALCULATION OF GEODESICS IN BLACK HOLE SPACETIMES

2.1.1 From Lagrangian to Hamiltonian in the language of dif-

ferential forms

Here, we bring a brief geometrical description of Hamiltonian dynamics, in the context

of manifold theory. In the forthcoming chapters, these notions are approached, once

again. This subsection is generally based on the outstanding books by T. Frankel, M.

Nakahara, and S. Hassani (Frankel, 2011; Hassani, 2013; Nakahara, 2018).

Hamiltonian mechanics takes place in the phase space of a system. The phase

space is derived from the configuration space as follows. The generalized coordinates

qi (i = 1, . . . , n) of a mechanical system, describe an n-dimensional manifold N. The

dynamics of the system is described by the time-dependent Lagrangian L , which

is a function of (qi, q̇i). But q̇i ≡ dqi

dt are the components of a vector at (q1, . . . , qn).

Therefore, in the language of manifold theory, a Lagrangian is a function on the tan-

gent bundle of the manifold, T(N). In other words L : T(N) → R. On the other

hand, the Hamiltonian H is obtained from the Lagrangian by a Legendre transforma-

tion, i.e. H = ∑n
i=1 pi q̇i −L , where pi are the components of the momentum covector

(p1, . . . , pn). The first term can be thought of as the pairing of an element of the tangent

space (i.e. q̇i) with its dual (i.e. pi). In fact, for a point P at the coordinates (q1, . . . , qn),

we have then q̇ ≡ q̇i∂i ∈ TP(N), in which TP(N) is the tangent space of manifold N

at point P. Hence, if we pair this with the dual vector (covector) pjdxj ∈ T ∗
P (N), with

T ∗
P (N) being the cotangent space of manifold N at point P, we then obtain the first

term in the definition of the Hamiltonian. The effect of the Legendre transformation

is to replace q̇i by pi as the second set of independent variables. This way, we replace

T(N) with T∗(N), where T∗(N) is the cotangent bundle of manifold N. Accordingly,

the manifold of Hamiltonian dynamics (or the phase space) is T∗(N) with the coordi-

nates (qi, pi), on which, the Hamiltonian H : T∗(N) → R is defined.

In fact, T∗(N) is 2n-dimensional, and is, therefore, a symplectic manifold. Indeed,

it can be shown that the 2-form

ω ≡
n

∑
i=1

dqi ∧ dpi, (2.12)

is non-degenerate, and is therefore, a symplectic 2-form on T∗(N). The phase space,

equipped with a symplectic form, turns into a geometric arena, in which, Hamiltonian

mechanics unfolds. As described above, a Hamiltonian is a function on the phase

space. In general, for the symplectic manifold (M,ω), the Hamiltonian is a real-valued

function, i.e. H : M → R. Now, given this Hamiltonian, one can define a vector field
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by taking into account the fact that dH ∈ T∗(M). Since the manifold is symplectic,

we can consider a natural isomorphism ω♯ between T∗(M) and T(M). This way, there

will be a unique vector field XH associated with dH , such that XH ≡ ω♯(dH ) ≡
(dH )♯, that is called the Hamiltonian vector field with the energy function H . One can

then define a Hamiltonian system by the triplet (M,ω,XH ). Note that, the vector field

XH is the generator of the integral curve, which is the evolution path of the system in

the phase space. In other words, for (q1, . . . , qn, p1, . . . , pn) as the canonical coordinates

for ω, we have that

XH =
∂H

∂pi

∂

∂xi −
∂H

∂qi
∂

∂pi
≡
(

∂H

∂pi
,−∂H

∂qi

)
. (2.13)

In fact, one can write

dH =
∂H

∂qi dqi +
∂H

∂pi
dpi. (2.14)

For the case of a stationary Hamiltonian (i.e. dH
dt = 0), it is then followed that

∂qi

∂t
=

∂H

∂pi
, (2.15a)

∂pi

∂t
= −∂H

∂qi , (2.15b)

for i = 1, . . . , n, which are called the Hamilton’s equations. This way, (q(t), p(t)) will

be an integral curve of XH , if the above equations hold.

2.1.2 Derivation of the geodesic equation from the Lagrange’s

equation of motion

The geodesic equations, describe the path of a freely-falling object in purely gravita-

tional force field. These equations are intended to give the path, on which, the princi-

ple of least action (the less used energy) is respected. In section 2.1, this principle led

to the Lagrange’s equation (2.11), and here, we argue that this equation reproduces

the geodesic equations, as known in the Riemannian geometry.

Considering the Riemannian manifold (M, g) with gµν being its associated metric,

we define the Lagrangian

L =
1
2

gµν ẋµ ẋν, (2.16)

for a particle at the coordinates xµ(τ) moving in a vacuum, where ẋµ ≡ dx
dτ with τ

being the trajectory parametrization, and throughout this thesis, is regarded as the
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particle’s proper time. Now to apply Eq. (2.11), we first consider the second term of

its r.h.s., that yields
∂L

∂xλ
=

1
2

gµν,λ ẋµ ẋµ, (2.17)

since xµ ≡ xµ(τ) and here we have defined gµν,λ ≡ ∂gµν

∂xλ . The first term of the r.h.s. of

Eq. (2.11) includes

∂L

∂ẋλ
=

1
2

gµν

[
δ

µ
λ ẋν + δν

λ ẋµ
]
=

1
2

gµν [2δν
λ ẋµ] = gµλ ẋµ, (2.18)

since g ≡ g(x(τ)), and δ
µ
λ is the Kronecker delta. Now, a parametric differentiation of

the above equation results in

d
dτ

∂L

∂ẋλ
=

d
dτ

[
gµλ ẋµ

]
= gµλ,ν ẋν ẋµ + gµλ ẍµ =

1
2

gµλ,ν ẋν ẋµ +
1
2

gνλ,µ ẋν ẋµ + gµλ ẍµ.

(2.19)

Now, considering the results in Eqs. (2.17) and (2.19), in the Lagrange’s equation (2.11),

we get

gµλ ẍµ + Γλ,µν ẋµ ẋν = 0, (2.20)

where we have used the definition

Γλµν =
1
2
[
gµλ,ν + gνλ,µ − gµν,λ

]
, (2.21)

for the Christoffel symbol (?). Hence, one finally gets the to the geodesic equations

ẍσ + Γσ
µν ẋµ ẋν = 0, (2.22)

by applying a gσλ multiple. Note that, if the above relation is respected, the integral

curves (the geodesics) are said to be affinely parametrized in terms of the parameter τ.

2.2 Overview of geodesic motion in Schwarzschild

spacetime

The static and stationary spacetimes are good examples of the study of the particle

geodesics. In particular, the SBH raises much of interest, because it teaches us a lot

about the spacetime causality and the critical motion for mass-less and massive parti-

cles. These kinds of critical motion, could be used to locate the photon sphere and the

accretion disk around the black hole. In this section, we study the null and time-like

geodesics in SBH spacetime. Note that, unless it is supposed otherwise in a particular
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case, throughout this thesis, a geometric unit is taken into account, according to which

c = G = h̄ = 1.

The SBH spacetime is described by the line element (Wald, 1984)

ds2 = gµνdxµdxν = −B(r)dt2 + B(r)−1dr2 + r2dθ2 + r2 sin2 θdϕ2, (2.23)

in the spherical coordinates xµ = (x0, x1, x2, x3) = (t, r, θ, ϕ), where

B(r) =
r − r+

r
, (2.24)

and r+ = 2M indicates the event horizon hypersurface of a static spherically symmet-

ric black hole of mass M. From now on, and for the sake of convenience, we consider

equatorial geodesics by letting θ = π
2 . Now, applying the definition in Eq. (2.16) to the

line element (2.23), one has (Wald, 1984; Chandrasekhar, 1998; Misner et al., 2017)

2L ≡ −ϵ = − E2

B(r)
+ B(r)−1ṙ2 +

L2

r2 , (2.25)

in which

E ≡ −g00 ṫ = B(r)ṫ, (2.26a)

L ≡ g33ϕ̇ = r2ϕ̇, (2.26b)

are, respectively, the energy and the angular momentum of the test particles, and cor-

respond to the Killing symmetries of the spacetime. Accordingly, these quantities are

regarded as the constants of motion. Furthermore, the parameter ϵ, characterizes the

types of the test particles, in the sense that ϵ = 1 defines the time-like geodesics (for

massive test particles), whereas ϵ = 0 defines the null geodesics (for mass-less parti-

cles). One can recast Eq. (2.25) as

ṙ2 = E2 − V(r), (2.27)

where

V(r) = B(r)
[

ϵ +
L2

r2

]
, (2.28)

is known as the gravitational effective potential. This potential is crucial to the classi-

fication of the possible orbits of the moving test particle in the spacetime around the

black hole. Bringing together Eqs. (2.26) and (2.27), two extra equations are generated,

reading as (
dr
dt

)2

=
B(r)2

E2

[
E2 − V(r)

]
, (2.29)(

dr
dϕ

)2

=
r4

L2

[
E2 − V(r)

]
, (2.30)
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that give the evolution of the radial coordinate in terms of the coordinate time and

the azimuth angle. These equations are indeed the first order differential equations

of motion for the test particles. Note that, based on the Eqs. (2.29) and (2.30), particle

orbits are possible only for the case of E2 > V(r).

2.2.1 Radial motion

For the case of L = 0, the test particle pursue purely radial motion, and from Eqs. (2.27)

to (2.29), we get to the integrals

τ =
∫ dr√

E2 − ϵ
( r−r+

r

) , (2.31)

t =
∫ rdr

(r − r+)
√

1 − ϵ
( r−r+

E2r

) . (2.32)

These integrals lead to the radial behaviors of the proper and coordinates times.

Time-like geodesics

For the case of ϵ = 1 and by applying the change of variable x .
= r+

r , the integral (2.31)

can be recast as

τ = −r+
∫ dx

x2
√

E2 − (1 − x)
. (2.33)

A second change of variable u .
= 1 − x, will then yield

τ = r+
∫ du

(1 − u)2
√

E2 − u
, (2.34)

which has the solution

τ(u) =
√

E2 − u
(1 − u)(1 − E2)

+ (1 − E2)−
3
2 arctan

√E2 − u
1 − E2

 . (2.35)

A sequence of the same changes of variables, helps us recasting the integral (2.32) as

t = Er+
∫ du

u(1 − u)2
√

E2 − u
, (2.36)

which has the solution

t(u) =
E2

1 − E2

√E2 − u
E(1 − u)

+
3 − 2E2

E
√

1 − E2
arctan

√E2 − u
1 − E2


−2
(

1 − 1
E2

)
arctanh

(
1
E

√
E2 − u

)]
. (2.37)
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Figure 2.1: The radial behavior of τ(r) and t(r) for time-like geodesics near a SBH.

Taking into account the applied changes of variables these solutions have been plotted

together in Fig. 2.1, indicating the behaviors of τ(r) and t(r). As it is seen from the

figure, a comoving observer sees himself passing the horizon and falling onto the

singularity. This is while for a distant observer, the time-like geodesics never passes

the horizon and is maintained frozen.

Null geodesics

If we pursue the same method for the case of ϵ = 0, we obtain the solutions

τ(r) =
r
E

, (2.38)

t(r) =
r

r+
+ ln

(
r − r+

r+

)
. (2.39)

These solutions have been plotted in Fig. 2.2, and as we expected the distant observers

do not detect any horizon crossing.

2.2.2 Angular motion

For a non-zero angular momentum for the test particles (L = 0), the evolution of the

ϕ-coordinate needs to be taken into account. From Eq. (2.30), we have

ϕ =
∫ r

rt

dr

r2
√

1
b2 −

(
1 − r+

r

) (
ϵ

E2b2 +
1
r2

) , (2.40)
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Figure 2.2: The radial behavior of τ(r) and t(r) for null geodesics near a SBH.

in which, rt is the turning point of the trajectories and b = L
E is known as the impact

parameter. It is, however, important to note that the motions have to be classified

regarding the effective potential V(r), according to which, the turning point of the

particles’ motion is determined by means of the equation E2
t = V(rt) (or dr

dϕ = 0).

These turning points, together with the possible extremums of V(r) (where V ′(r) = 0),

characterize the particle orbits.

Time-like geodesics

For the case of ϵ = 1 in Eq. (2.28), a typical effective potential has been plotted in

Fig. 2.3 for a definite value of the angular momentum. This effective potential has

a maximum at rM and a minimum at rm. We can therefore expect critical orbits and

stable circular orbits for the test particles. The former refers to those trajectories that

are unstable and will either fall into the black hole or escape to infinity, and the latter,

are completely stable at a definite distance rm from the singularity. These particular

orbits, correspond to the innermost stable circular orbits (ISCO) that correspond to the

possibility of the formation of accretion disks around the black holes. On the other

hand, the critical orbits determine a furthest near-horizon boundary around the black

hole, from which, one can receive particles. For the case of null geodesics, this bound-

ary introduces a photon ring that confines the black hole shadow. In Fig. 2.3, the particle

energies that correspond to these radial distances have been notated by Em and EM,

and accordingly, the orbits of the approaching particles are classified. There are, how-
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Figure 2.3: The gravitational effective potential for time-like geodesics approaching a SBH,

plotted for L = 3.9. The unit along the axes has been taken to be M.

ever, two other energy levels E1 and E2 correspond to several more turning points. For

the case of E = E1, the particles can approach the black hole at the points ra, rp and r f ,

that correspond respectively, to the apoapsis, the periapsis, and the point of infall. Hence,

there orbits are indeed bound orbits. When E = E2, the turning points are rd and rc,

which indicate the orbits of the first kind (OFK) and orbit of the second kind (OSK). The

former is an unbound orbit and results in deflection of the trajectories, or their scatter-

ing. The latter, however, is again a bound orbits an similar to the case of r = r f , results

in capturing the trajectories onto the singularity. Note that, for E > EM, the particles

coming from infinity fall directly onto the singularity. For E < Em, the particles can

approach the black hole at an infall point, and then, will fall onto the singularity.

Now, let us rewrite the integral (2.40) as

ϕ(r) =
∫ r

rt

dr√
p4(r)

, (2.41)

where p4(r) = αr4 + βr3 − r2 + r+r, and

α =
1
b2

(
1 − 1

E2

)
, (2.42a)

β =
r+

b2E2 . (2.42b)

As mentioned before, the solutions to the equation p4(r) = 0, give the turning points
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rt. Applying the change of variable u .
= rt

r , then changes the above integral to

ϕ(u) = −
∫ u

1

du√
r+
rt

u3 − u2 + rtβu + r2
t α

, (2.43)

in which we have used the fact that u(rt) ≡ ut = 1. Now, the second change of

variable u .
= 4rt

r+

(
U + 1

12

)
, yields

ϕ(U) = −
∫ U

Ut

dU√
4U3 − g2U − g3

, (2.44)

in which Ut =
r+
4rt

− 1
12 , and

g2 =
1
12

(1 − 3r+β), (2.45a)

g3 =
1

432
(2 − 27r2

+α − 9r+β). (2.45b)

The above integral can be separated in the form

ϕ(U) =
∫ ∞

U

dU√
4U3 − g2U − g3

−
∫ ∞

Ut

dU√
4U3 − g2U − g3

. (2.46)

According to Eq. (1.41a), the above integrals are indeed have the form of the real pe-

riod of the ℘-Weierstraß function. We, however, write the first integral in the r.h.s. of

Eq. (2.46), as the inverse ℘-Weierstraß function, ß(U) ≡ ℘−1(U; g2, g3), and the sec-

ond one as ß(Ut) = ϕ0, namely, the initial angle. Accordingly, and by performing an

inversion, this integral equation results in

U(ϕ) = ℘ (ϕ + ϕ0) , (2.47)

from which, and by taking into account the applied changes of variables, we get the

angular solution

r(ϕ) =
r+

4℘(ϕ + ϕ0) +
1
3

. (2.48)

The equatorial orbits are therefore given by this solution. However, they have to be

classified in terms of the turning point rt and its corresponding energy. To obtain

the turning points, we consider solutions to p4(r) = 0, for which, r = 0 is a trivial

solution. We are therefore left with the equation p3(r) = αr3 + βr2 − r + r+. To solve

this equation, we first apply the change of variable r .
= 4

α

(
s − β

12

)
, that provides the

alternative form 4s3 − µ2s − µ3 = 0, where

µ2 =
1

12
(3α + β2), (2.49a)

µ3 =
1

432
(27r+α2 + 9αβ + 2β3). (2.49b)
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One should note that, the number of real solutions of this equation, depends on the

sign of its discriminant ∆ = µ3
2 − 27µ2

3. This way, for ∆ > 0, the equation has three real

roots, whereas for ∆ < 0, it has two complex conjugate roots and one real roots. For

the case of ∆ = 0, a multiple root is obtained. In order to obtain the general solutions

to this equation, we apply the Cardano’s method (Cardano, 1993), by recasting the

equation in the form

4λz3 cos3 θ − λµ2z cos θ − λµ3 = 0, (2.50)

to obtain which, we have used the definition s .
= z cos θ, and λ is a Legendre multiply.

Now, by doing a comparison with the available trigonometric identity

4 cos3 θ − 3 cos θ − cos(3θ) = 0, (2.51)

we get

λ =
1
z3 , (2.52a)

z =

√
µ2

3
, (2.52b)

cos(3θ) = λµ3, (2.52c)

that provide the angle

θn =
1
3

arccos

([
3
µ2

] 3
2

µ3

)
+

2πn
3

, (2.53)

for n = 0, 1, 2. According to the definition for s in terms of θ, this now results in

sn =

√
µ2

3
cos

(
1
3

arccos

([
3
µ2

] 3
2

µ3

)
+

2πn
3

)
, (2.54)

and finally, this yields the solution

rn =
4
α

[√
µ2

3
cos

(
1
3

arccos

([
3
µ2

] 3
2

µ3

)
+

2πn
3

)
− β

12

]
. (2.55)

The values of rt are therefore given in terms of the above solutions, which at most, can

be of three real values.

Note that, for the case of critical orbits and the ISCO, one can calculate directly the

radial distances by solving V ′(r) = 0, which give the radial distances

rm =
L2

r+

1 +

√
1 −

3r2
+

L2

 , (2.56a)

rM =
L2

r+

1 −

√
1 −

3r2
+

L2

 , (2.56b)
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that correspond to the energies

E2
m =

1 +
r2
+

L2

(
1 +

√
1 − 3r2

+

L2

)2


1 − r2

+

L2

(
1 +

√
1 − 3r2

+

L2

)
 , (2.57a)

E2
M =

1 − r2
+

L2

(
1 −

√
1 − 3r2

+

L2

)2


1 − r2

+

L2

(
1 −

√
1 − 3r2

+

L2

)
 . (2.57b)

Applying the above information to the angular solution given in Eq. (2.48), some pos-

sible time-like orbits have been shown in Fig. 2.4.

Null geodesics

The same procedure as applied in the previous subsection, if applied to the case of

ϵ = 0, results in the angular solution

r(ϕ) =
r+

4℘(ϕ + ϕ̃0) +
1
3

, (2.58)

where ϕ̃0 = ß
(

1
12

[
3r+
rt

− 1
])

, and the corresponding Weierstraß invariants are

g̃2 =
1

12
, (2.59a)

g̃3 =
r2
+

16r2
t

(
2r2

+

27r2
t
− r2

t E2

L2

)
, (2.59b)

with rt being the appropriate turning point for the null trajectories. A typical effective

potential for the null trajectories (by letting ϵ = 0 in Eq. (2.28)) has been shown in

Fig. 2.5. As inferred from this effective potential, no planetary bound orbits can be

available. The only possible orbits are then, critical orbits at rM = 3M for the energy

E2
M = 4

27
L2

r2
+

, OFK at r = rd and OSK at r = r f , for the energy E1. These last radial

distances are given as

rd =

√
ξ2

3
sin

(
1
3

arcsin

(
ξ3

[
3
ξ2

] 3
2
)
+

2π

3

)
, (2.60a)

r f =

√
ξ2

3
sin

(
1
3

arcsin

(
ξ3

[
3
ξ2

] 3
2
))

, (2.60b)

where ξ2 = 4b2 and ξ3 = 4r+b2. In Fig. 2.6, some possible null orbits have been plotted

in accordance with the above certain distances and energies.
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Figure 2.4: Some possible time-like orbits on a SBH, plotted for M = 1 and L = 3.9, in ac-

cordance to the radii and energies in Fig. 2.3. The diagrams correspond to (a) planetary orbits

oscillating between rp and ra, (b) terminating bound orbit from r f , (c) OFK from rd (the particle

approaches from rd, but after passing rm in goes to infinity), (d) OSK from rc, (e) ISCO at rm,

and (f) critical orbits at rM. The dashed red circle indicates the event horizon.
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Figure 2.5: The gravitational effective potential for null geodesics approaching a SBH, plotted

for L = 4.1. The unit along the axes has been taken to be M.
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Figure 2.6: Some possible null orbits on a SBH, plotted for M = 1 and L = 4.1, in accordance

to the radii and energies in Fig. 2.5. The diagrams correspond to (a) OFK from rd, (b) OSK from

r f , and (c) critical orbits at rM. The dashed red circle indicates the event horizon.
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2.3 The modified Newman-Janis algorithm to ob-

tain the Kerr solution

The famous Newman-Janis algorithm (NJA) (Newman & Janis, 1965), has been used

for several decades in obtaining the rotating counterparts of static spacetimes. For the

SBH spacetime, this leads naturally to the Kerr solution. This method has been also

generalized for static spherically symmetric spacetimes with different metric compo-

nents (Shaikh, 2019). However in this section, we review an alternative algorithm

proposed by Azreg-Aı̈nou (Azreg-Aı̈nou, 2014; Azreg-Aı̈nou, 2014).

Let us consider the spacetime metric

ds2 = − f (r)dt2 +
dr2

f (r)
+ r2 (dθ2 + sin2 θdϕ2) , (2.61)

in the spherical coordinates. Now, moving to the Eddington–Finkelstein coordinates

(EFC) (u, r, θ, ϕ) by applying to the transformation

du .
= dt − dr

f (r)
, (2.62)

leaves us with the line element

ds2 = − f (r)du2 − 2dudr + r2 (dθ2 + sin2 θdϕ2) . (2.63)

In fact, to follow with the procedure, we need to apply the Newman-Penrose (NP)

formalism, to obtain the null tetrad Zµ
α = (ℓµ, nµ, mµ, m̄µ), such that (Chandrasekhar,

1998; Misner et al., 2017)

gµν = −ℓµnν − ℓνnµ + mµm̄ν + mνm̄µ, (2.64)

with

ℓµℓ
µ = nµnµ = mµmµ = ℓµmµ = nµmµ = 0, (2.65a)

ℓµnµ = −mµm̄µ = −1, (2.65b)

and m̄ is the complex conjugate of m. Applying the line element (2.63), one gets the

corresponding null tetrad as

ℓµ = δ
µ
r , (2.66a)

nµ = δ
µ
u − f (r)

2
δ

µ
r , (2.66b)

mµ =
1√
2 r

(
δ

µ
θ +

i
sin θ

δ
µ
ϕ

)
. (2.66c)
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Now to proceed with the modified version of the NJA (MNJA), we do the complex

transformations

δ
µ
r −→ δ

µ
r , (2.67a)

δ
µ
u −→ δ

µ
u , (2.67b)

δ
µ
θ −→ δ

µ
θ + ia sin θ

(
δ

µ
u − δ

µ
r
)

, (2.67c)

δ
µ
ϕ −→ δ

µ
ϕ . (2.67d)

The relation in Eq. (2.67a) indicates that the MNJA does not require complexification

of the r-coordinate. This way, we will have the transformations f (r) −→ F(r, a, θ) and

r2 −→ H(r, a, θ). Hence, the null tetrad (2.66) changes to

ℓ′µ = δ
µ
r , (2.68a)

n′µ = δ
µ
u − F(r, a, θ)

2
δ

µ
r , (2.68b)

m′µ =
1√

2H(r, a, θ)

(
δ

µ
θ + ia sin θ

(
δ

µ
u − δ

µ
r
)
+

i
sin θ

δ
µ
ϕ

)
, (2.68c)

and accordingly,

g̃µν = −ℓ′µn′ν − ℓ′νn′µ + m′µm̄′ν + m′νm̄′µ. (2.69)

Therefore, the following line element is obtained in the EFC:

ds̃2 = −F(r, a, θ)du2 − 2dudr + 2a sin2 θ [F(r, a, θ)− 1]dudϕ + 2a sin2 θdrdϕ

+ H(r, a, θ)dθ2 + sin2 θ
[
H(r, a, θ)− a2 sin2 θ (F(r, a, θ)− 2)

]
dϕ2. (2.70)

Now we just need to do a global transformation to go to the Boyer–Lindquist coordi-

nates (BLC). In fact, because of the existence of the cross terms dud r and drdϕ, we will

be in need of transforming the two coordinates u and ϕ. We then apply the definitions

du .
= dt′ + λ(r)dr, (2.71a)

dϕ
.
= dϕ′ + χ(r)dr, (2.71b)

that do the transformations form the EFC (unprimed) to the BLC (primed). We assign

the expressions (Azreg-Aı̈nou, 2014)

λ(r) = − r2 + a2

f (r)r2 + a2 , (2.72a)

χ(r) = − a
f (r)r2 + a2 . (2.72b)
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The important step here is that we need to get rid of the dtdr and dϕdr terms, which

appear after doing the transformations. In fact, applying the transformations (2.71) in

the line element (2.70), we get

ds̃2
BL = −F(r, a, θ) [dt + λ(r)dr]2 + 2a [F(r, a, θ)− 1] sin2 θ [dt + λ(r)dr] [dϕ + χ(r)dr]

− sin2 θ
[
−H(r, a, θ) + a2 sin2 θ (F(r, a, θ)− 2)

]
[dϕ + χ(r)dr]2

+
[
−2 (dt + λ(r)dr) + 2a sin2 θ (dϕ + χ(r)dr)

]
dr + H(r, a, θ)dθ2, (2.73)

in the BLC. Now, by eliminating the cross-term drdt, we obtain the equation

− 2 − 2λ(r)F(r, a, θ)− 2aχ(r) sin2 θ + 2aχ(r) sin2 θF(r, a, θ) = 0, (2.74)

which by applying the definitions (2.72), yields

F(r, a, θ) =
r2 f (r) + a2 cos2 θ

r2 + a2 cos2 θ
. (2.75)

Furthermore, by eliminating drdϕ in Eq. (2.73), we get to the equation

2a sin2 θ + 2aλ(r) sin2 θF(r, a, θ)− 2aλ(r) sin2 θ − 2a2χ(r) sin4 θF(r, a, θ)

+ 4a2χ(r) sin4 θ + 2χ(r) sin2 θH(r, a, θ) = 0, (2.76)

which in the same way, results in the expression

H(r, a, θ) = r2 + 2a2 cos2 θ + r2 f (r)−
(
r2 + a2 cos2 θ

)
F(r, a, θ). (2.77)

Now, using Eq. (2.75) together with Eq. (2.77), we get

H(r, a, θ) = r2 + a2 cos2 θ. (2.78)

Considering the above results in the line element (2.73), we come up with the form

ds̃2
BL = −

(
∆ − a2 sin2 θ

Σ

)
dt2 +

Σ
∆

dr2 − 2a sin2 θ

(
1 − ∆ − a2 sin2 θ

Σ

)
dtdϕ

+ Σdθ2 + sin2 θ

[
Σ + a2 sin2 θ

(
2 − ∆ − a2 sin2 θ

Σ

)]
dϕ2 (2.79)

where we have defined ∆ = a2 + r2 f (r) and Σ = r2 + a2 cos2 θ. It is straightforward to

verify that for the case of f (r) = 1 − 2M
r , the above line element provides

ds̃2
BL = −

(
1 − 2Mr

Σ

)
dt2 +

Σ
∆

dr2 + Σdθ2 + sin2 θ

(
r2 + a2 +

2Mra2 sin2 θ

Σ

)
dϕ2

− 4Mra sin2 θ

Σ
dtdϕ, (2.80)

which is the Kerr solution, and here, has been obtained as the stationary (rotating)

counterpart of the SBH spacetime, by means of the MNJA.
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2.4 Summary

In this chapter, we provided instructive reviews on several concepts, including the

Hamiltonian approach to the calculation of particle geodesics and as an example, we

applied them to the simplest case, i.e. to the SBH spacetime. Accordingly, we also

made use of the previously learnt algebraic notions on elliptic integrals that we dis-

cussed in chapter 1. Furthermore, for the future purposes, we introduced and re-

viewed the MNJA in obtaining the stationary counterparts of static spherically sym-

metric spacetimes, which will be used in the next chapter.
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CHAPTER 3

The case of a charged Weyl black

hole

In this chapter, a charged static spherically symmetric solution, derived from the Weyl

conformal theory of gravity (WCG), is taken into account. This charged Weyl black

hole (CWBH) will be then discussed in detail, in terms of the particle geodesics. After

a brief introduction to the method of derivation of this solution, we proceed with an-

alyzing the trajectories of mass-less and massive particles while moving in this space-

time, by applying the Lagrangian dynamics discussed in the previous chapter. These

studies, also include several general relativistic tests which will be applied to CWBH

spacetime (Fathi et al., 2020). Furthermore, the scattering of neutral and charged par-

ticles is also studied (Fathi et al., 2020, 2021c). We continue with the calculation of

the gravitational lensing caused by the CWBH inside an electronic plasma (Fathi &

Villanueva, 2021). We finally apply the MNJA this spacetime, in order to obtain its

rotating counterpart, and accordingly, the shadow of this stationary black hole is also

investigated (Fathi et al., 2021b).

3.1 The spacetime and its derivation

Ever since the late 1990’s, the dark matter (DM) and dark energy (DE) scenarios has

undergone vigorous efforts to be decoded. The observation of the flat galactic rotation
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curves (Rubin et al., 1980), the unexpected gravitational lensing (Massey et al., 2010),

and the anti-lensing (Bolejko et al., 2013) effects are all related to impacts of an un-

known source of mass around the galaxies, the so-called DM halo. This is much more

complicated when a highly functioning energy source, i.e. the DE, is assumed to be

causing the universe’s global geometry to expand rapidly. (Riess et al., 1998; Perlmut-

ter et al., 1999; Astier, 2012). These scenarios taken together constitute the most mys-

terious problems of contemporary cosmology and astrophysics. On the other hand,

some believe that these scenarios stem from our lack of knowledge about the behavior

of the gravitational field, as a glue to attach each segment of the universe. This opinion

has led to a huge number of proposals for extended theories of gravity, mostly includ-

ing alternatives to Einstein’s general relativity (GR). These vary from the most natural

ones, i.e., the f (R) theories, to more complicated ones like scalar-tensor, vector-tensor

and (non)metric-theories.

In recent decades, these proposed gravitational theories have been applied to cos-

mological models (see Ref. (Clifton et al., 2012) for a review), avoiding the need to

include DM and DE. In the late 1980’s, providing a spherically symmetric vacuum so-

lution to the field equations of the fourth order WCG, which had been introduced in

1918 by H. Weyl (Weyl, 1918) and had been revived by R.J. Riegert in 1984 (Riegert,

1984), P.D. Mannheim and D. Kazanas showed that the controversial problem of flat

galactic rotation curves could be explained by relating it to a specific term included in

their solution (Mannheim & Kazanas, 1989). Their solution could also regenerate the

usual Schwarzschild-de Sitter (SdS) spacetime. This theory is a natural extension of

GR and proposed as an alternative to the DM/DE scenarios (Mannheim, 2006), and

since then, it has been studied from several points of view (Knox & Kosowsky, 1993;

Edery & Paranjape, 1998; Klemm, 1998; Edery et al., 2001; Pireaux, 2004b,a; Diaferio &

Ostorero, 2009; Sultana & Kazanas, 2010; Diaferio et al., 2011; Mannheim, 2012; Tan-

hayi et al., 2011; Said et al., 2012; Lu et al., 2012; Villanueva & Olivares, 2013; Mohseni

& Fathi, 2016; Horne, 2016; Lim & Wang, 2017). This theory was also considered a pos-

sibility for understanding the quantum cosmology related to the fluctuations of the

early universe (Varieschi, 2010; ’t Hooft, 2010b,a; ’t Hooft, 2011; Varieschi & Burstein,

2013; Varieschi, 2014b; de Vega & Sanchez, 2013; Varieschi, 2014a; Hooft, 2014).

Although it may or may not be the proper alternative theory to general relativity,

the WCG exhibits interesting properties. Most importantly, because of its conformal

invariance, it has more conformity with the quantum association of the gravitational

field, namely, the graviton.
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In this chapter, this theory is taken into account while a particular choice for an

analytic solution of the extra DM-related term in the solution is considered. This

choice, was proposed by Payandeh and Fathi in 2012 (Payandeh & Fathi, 2012), and in

this chapter, it is investigated regarding the motion of mass-less and massive particle

in the exterior geometry of a charged black hole, which described by this solution (i.e.

the CWBH).

The WCG is a theory of fourth order in the metric and is given by the action

IW = −K
∫

d4x
√
−g CµνρλCµνρλ, (3.1)

where g = det(gµν),

Cµνλρ = Rµνλρ −
1
2
(

gµλRνρ − gµρRνλ − gνλRµρ + gνρRµλ

)
+

R
6
(

gµλgνρ − gµρgνλ

)
(3.2)

is the Weyl conformal tensor and K is a coupling constant. The conformal invariance

of the Weyl tensor causes IW to remain unchanged under the conformal transforma-

tion gµν(x) = e2α(x)gµν(x), in which the exponential coefficient indicates local space-

time stretching. The action in Eq. (3.1) can be rewritten as

IW = −K
∫

d4x
√
−g

(
RµνρλRµνρλ − 2RµνRµν +

1
3

R2
)

. (3.3)

Since the Gauss-Bonnet term
√−g (RµνρλRµνρλ − 4RµνRµν + R2) is a total divergence,

it does not contribute to the equation of motion. We can therefore simplify the action

as (Mannheim & Kazanas, 1989; Kazanas & Mannheim, 1991)

IW = −2K
∫

d4x
√
−g

(
RαβRαβ −

1
3

R2
)

. (3.4)

Applying the principle of least action in the form δIW
δgαβ

= 0, leads to the vacuum Bach

equation Wαβ = 0, in which the Bach tensor is defined as

Wαβ = ∇σ∇αRβσ +∇σ∇βRασ −□Rαβ − gαβ∇σ∇γRσγ − 2RσβRσ
α +

1
2

gαβRσγRσγ

− 1
3

(
2∇α∇βR − 2gαβ□R − 2RRαβ +

1
2

gαβR2
)

. (3.5)

The general spherically symmetric solution to the Bach equation has been obtained

and discussed (Mannheim & Kazanas, 1989), where Mannheim and Kazanas, in addi-

tion to recovering all spherically symmetric solutions to Einstein field equations, in-
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cluding the Schwarzschild and Schwarzschild-(Anti-)de Sitter (SAdS) solutions, pro-

posed the possibility of explaining the flat galactic rotation curves, which is claimed

to be a significant feature of the DM scenario.

Now to obtain the analytical solution of the CWBH, let us consider the general

spherically symmetric line element (by retrieving the Newton’s constant G)

ds2 = −
(

1 − 2GM
r

− 1
3

f (r)
)

dt2 +
dr2

1 − 2GM
r − 1

3 f (r)
+ r2 (dθ2 + sin2 θdϕ2) , (3.6)

in which, f (r) is an arbitrary r-dependent function, and has to be determined. The

Ricci tensor components of this metric will be then

R00 =

(
−r2 + 2GMr +

1
3

f r2
)
×
[

1
12

(
f ′r2 + 2 f r

)2

f
+

1
3

√
3 f r2

(
− 1

12

√
3
(
f ′r2 + 2 f r

)2

( f r2)
3
2

+
1
6

√
3
(
f ′′r2 + 4f ′r + 2 f

)√
f r2

)
r2 − 1

3
(
f ′r2 + 2 f r

)
r +

1
3

f r2

]
r−6, (3.7)

R11 = −
[

1
12

(
f ′r2 + 2 f r

)2

f
+

1
3

√
3 f r2

(
− 1

12

√
3
(
f ′r2 + 2 f r

)2

( f r2)
3
2

+
1
6

√
3
(
f ′′r2 + 4f ′r + 2 f

)√
f r2

)
r2 − 1

3
(
f ′r2 + 2 f r

)
r +

1
3

f r2

]
r−2

×
(
−r2 + 2 GMr +

1
3

f r2
)−1

, (3.8)

R22 = −1
3

√
3 f r2

(
−1

3

√
3
(
f ′r2 + 2 f r

)
r√

f r2
+

1
3

√
3
√

f r2

)
r−2, (3.9)

R33 = R22 sin2 θ, (3.10)

where the primes indicate differentiation with respect to the the variable r. Accord-

ingly, the Ricci scalar R = gαβRαβ = Rα
α becomes

R =
1
3

f ′′ r2 + 4 f ′r + 2 f
r2 . (3.11)

Now, employing these values in the components of the Bach tensor (3.5), results in the
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components

W00 =
r−5

324

[
72 f ′r2 − 72 f r − 24GMf ′2r2 + 288GMf ′′r2 − 6GMf ′′2r4 − 432rG2m2f ′′

−360GMf ′r + 360r2G2M2f ′′′ − 12f ′2r3 + 4 f 3r + 36f ′′r3 − 36r5f ′′′′ − 108r4f ′′′

−3 f ′′2r5 − 120GMf ′r f − 12r4GMf ′f ′′′ − 132r3 f GMf ′′′ + 96GM f f ′′r2

−48r4GM f f ′′′′ − 24GMf ′r3f ′′ − 2r5 f f ′′′f ′ + 396r3f ′′′GM − 144 r3G2M2f ′′′′

+144r4f ′′′′GM − 4 f r4f ′f ′′ + 12f ′r4f ′′ + 24r5f ′′′′ f + 72r4 f f ′′′ − 4r5 f 2f ′′′′

−12r4 f 2f ′′′ + 24GM f 2 + 4 f r3f ′2 − 8 f 2r2f ′ + 48f ′r2 f − 144GM f + 6f ′r5f ′′′

−24r3 f f ′′ + f r5f ′′2 − 432G2M2 f ′
]
, (3.12)

W11 = − 1
36

1
r3 (−3r + 6GM + f r)

[
− 4r3f ′′′ f + 24 f + 12f ′′r2 − 24f ′r

−4f ′2r2 − 4 f 2 + 8f ′r f + 2f ′r4f ′′′ − 72rf ′′GM + 4r3f ′f ′′ − 4 f f ′′r2

−36r2f ′′′GM − f ′′2r4 + 72GMf ′
]
, (3.13)

W22 = − 1
108r2

[
− 24f ′r − 4 f 2 + 8f ′r f + 72GMf ′

−4 f f ′′r2 + 2r4 ( f ) f ′′′′ + 4r3f ′′′ f + 4r3f ′f ′′

+2f ′r4f ′′′ + 12f ′′r2 − 4f ′2r2 − f ′′2r4 − 6r4f ′′′′

−12r3f ′′′ − 72rf ′′GM + 12r3f ′′′′GM + 24 f
]

(3.14)

W33 = W22 sin2 θ. (3.15)

As it is expected Wα
α = 0. Applying the above components to the vacuum Bach

equation, we obtain the solution

f (r) = −c1r2 − c2r − 6GM
r

, (3.16)

substitution of which in Eq. (3.6), yields

ds2 = −
(

1 +
1
3

c2r +
1
3

c1r2
)

dt2 +
dr2

1 + 1
3 c2r + 1

3 c1r2
+ r2 (dθ2 + sin2 θdϕ2) . (3.17)

Now, in order to determine the intergation constants c1 and c2 in Eq. (3.16), we use the

background field method in the weak field limit. The 00 component of the metric (3.6)

can be rewritten as g00 = η00 + h00, for small fluctuations h00 = 2GM
r + 1

3 f (r), with

ηαβ being the Minkowski metric in the spherical coordinates. The r-component of the

Poisson’s equation implies that

∇2h00 ≡
(

d2

dr2 +
2
r

d
dr

)
h00 = 8π (T00 + E00) , (3.18)
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in which, T00 is the scalar component of the energy-momentum tensor related to the

mass of the source, which in accordance with the spherical symmetry, becomes

T00 = ρ0 =
M0

4
3 πr3

0
, (3.19)

where ρ0 is the mass density of a source of mass M0 and radius r0. Furthermore, in Eq.

(3.18), the E00 term is the scalar component of the electromagnetic energy-momentum

tensor, associated with the total charge amount Q0 of the massive object. Here, since

the source is assumed to be static, we consider the vector potential Aµ = (Φ(r), 0, 0, 0),

where Φ(r) is the electric potential at point r in the exterior geometry of the total

charge Q0, distributed in a certain volume (i.e. Φ(r) = Q0
r ). We have (Jackson, 1999):

E00 =
1

8π

(
Q0

r2

)2

+
1

4π

∂

∂r

(
Φ(r)× Q0

r2

)
=

1
8π

Q2
0

r4 . (3.20)

Considering Eqs. (3.16), (3.19) and (3.20) in Eq. (3.18), and solving for c1 or c2, one

obtains the expressions

c1 = −3
M0

r03 − 1
2
(Q0)

2

r4 − 1
3

c2

r
. (3.21a)

c2 = −9
rM0

r03 − 3
2
(Q0)

2

r3 − 3c1r. (3.21b)

In this study, we only take into account the expression for constant c2 given Eq. (2).

This way, the tt component of line element (3.17) takes the form

g00 = −
(

1 − 3r2M0

r03 − 1
2

Q2
0

r2 − 2
3

c1r2
)

. (3.22)

Defining

1
λ2 =

3M0

r3
0

+
2c1

3
, (3.23a)

Q =
√

2Q0, (3.23b)

we end up with a line element of the form

ds2 = −B(r)dt2 +
dr2

B(r)
+ r2 (dθ2 + r2 sin2 θdϕ2) , (3.24)

with the lapse function

B(r) = 1 − r2

λ2 − Q2

4r2 , (3.25)
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that describes the exterior geometry of the CWBH. If the condition Q < λ is satisfied,

this spacetime allows for two horizons; the event horizon r+ and the cosmological

horizon r++, located at

r+ =
λ√
2

√√√√1 −

√
1 −

(
Q
λ

)2

, (3.26)

r++ =
λ√
2

√√√√1 +

√
1 −

(
Q
λ

)2

. (3.27)

Obviously, the extremal black hole is obtained when λ = Q, possessing a unique

horizon at rex = r+ = r++ = λ√
2
, whereas the naked singularity appears when λ < Q.

It is worth making some clarifications regarding the relevance of the solution given

in Eq. (3.25) and the well-known static solutions of general relativity. In the ab-

sence of electric charge, when the vacuum case in considered, the known radius r0

changes to the free radial distance r. Then, by substituting 3M0 → 2M and c1 → 0,

we re-obtain the SBH spacetime, whereas the SAdS spacetime is regained by letting

2c1 → ±Λ (with Λ as the cosmological constant). The corresponding horizons can

be then regenerated by solving B(r) = 0. The relation to the Reissner-Nordström-

(Anti-)de Sitter spacetime (RNAdS), however, requires the imaginary transformation

Q → 2iQ0. Based on the above types of transformation, it is apparent that the transi-

tion from the CWBH to the known spherically symmetric spacetimes offered by GR, is

not trivial. This stems from the mathematical method applied in the derivation of the

charged Weyl black hole solution. Let us now continue our discussion on the infalling

geodesics on this black hole.

3.2 Motion of mass-less particles on the CWBH

Based on the discussions given in section 2.2 on the Lagrangian methods, which were

exemplified for the case of the SBH, the equatorial geodesic equations can be recast as

(
dr
dτ

)2

= E2 − V(r), (3.28)(
dr
dt

)2

= B2(r)
(

1 − V(r)
E2

)
, (3.29)(

dr
dϕ

)2

=
r4

b2

(
1 − V(r)

E2

)
, (3.30)
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in which

V(r) = L2 B(r)
r2 , (3.31)

corresponds to the null geodesics, and has been depicted in Fig. 3.1. This essentially

shows same features as that of the de Sitter spacetime in the sense of the existence

of two horizons, r+ and r++. In the forthcoming subsections, we will discuss this

potential in more detail.

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20

V(r)

r

b=bc

b>bc

b<bc

Figure 3.1: Plot of the effective potential V(r) versus the radial coordinate r, for fixed parame-

ter L = 10−1, λ = 2 × 10−1 and Q = 10−1 (in arbitrary units).

3.2.1 Radial geodesics

Mass-less particles (e.g. photons) with zero impact parameter (i.e. L = 0), perform

a radial motion either towards the event horizon or the cosmological horizon. In this

case clearly, the effective potential vanishes, such that Eqs. (3.28) and (6.51) become

dr
dτ

= ±E, and
dr
dt

= ±B(r). (3.32)

Note that, the sign + (−) corresponds to photons falling onto the cosmological (event)

horizon. Choosing the initial condition r = ri when t = τ = 0 for the photons, a

straightforward integration of the first in Eq. (3.32) yields

τ(r) = ± r − ri

E
, (3.33)

which in the proper frame of the photons, indicates that they arrive at the event (cos-

mological) horizon within a finite proper time. On the other hand, to integrate the

second relation in Eq. (3.32), let us rewrite the lapse function (3.25) as

B(r) =
(r2 − r2

+)(r2
++ − r2)

λ2r2 . (3.34)
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This way, the second relation of Eq. (3.25) becomes

±dt =
λ2r2

(r2 − r2
+)(r2

++ − r2)
dr. (3.35)

One can decompose the r.h.s. of the above equation as

1
(r2 − r2

+)(r2
++ − r2)

=
A

r2 − r2
+

+
B

r2
++ − r2

=
Ar2

++ − Br2
+ + (B − A)r2

(r2 − r2
+)(r2

++ − r2)
, (3.36)

which results in A = B = (r2
++ − r2

+)
−1. This way, Eq. (3.35) yields the integral

equation

t(r) = ±
∫ t

0
dt =

λ2

(r2
++ − r2

+)

[∫ r

ri

r2dr
r2 − r2

+

+
∫ r

ri

r2dr
r2
++ − r2

]
. (3.37)

To do integrations by part for each of the integrals, let us consider the first integral

by applying the changes of variables u .
= r ( or du = dr), and dv .

= rdr
r2−r2

+
(or v =

1
2 ln(r2 − r2

+)). This way, the first integral results in

I1 ≡
∫ r

ri

r2dr
r2 − r2

+

.
= uv −

∫
vdu =

r
2

ln
(
r2 − r2

+

)∣∣∣r
ri

−
∫ r

ri

ln
(
r2 − r2

+

)
dr. (3.38)

Now, taking into account he formula
∫ r

ri
ln(r2 − r2

+)dr = r ln(r2 − r2
+) − 2r +

r+ ln
(

r+r+
r−r+

)
, we obtain

I1 =
r
2

ln
(
r2 − r2

+

)
− r

2
ln
(
r2 − r2

+

)
+ r − r+

2
ln
(

r + r+
r − r+

)∣∣∣∣r
ri

= r − r+
2

ln
(

r + r+
r − r+

)∣∣∣∣r
ri

= −(r − ri)
r+
2

ln
([

r + r+
r − r+

] [
ri − r+
ri + r+

])
. (3.39)

Pursuing the same procedure, the second integral in Eq. (3.37) provides the value

I2 ≡
∫ r

ri

r2dr
r2
++ − r2

= −
∫ r

ri

r2dr
r2 − r2

++

= −
[
(r − ri)−

r++

2
ln
(∣∣∣∣ r + r++

r++ − r

∣∣∣∣ ∣∣∣∣ r++ − ri

r++ + ri

∣∣∣∣)] . (3.40)

Getting together the derived expressions for I1 and I2 in Eq. (3.37), we obtain the result

t(r) = ± [t+(r) + t++(r)] , (3.41)

where

t+(r) =
λ2r+

2(r2
++ − r2

+)
ln
∣∣∣∣ r − r+
ri − r+

,
ri + r+
r + r+

∣∣∣∣ , (3.42a)

t++(r) =
λ2r++

2(r2
++ − r2

+)
ln
∣∣∣∣ r++ − ri

r++ − r
r++ + r
r++ + ri

∣∣∣∣ . (3.42b)
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Note from Eqs. (3.42) that the coordinate time in Eq. (3.41) diverges for r → r+ or

r → r++. Thus, an observer at r = ri essentially notes the same behavior for photons

crossing either of the horizons in a similar manner as in the spherically symmetric

spacetimes in the context of general relativity (Chandrasekhar, 1998; Cruz et al., 2005).

The same holds for uncharged Weyl black holes (Villanueva & Olivares, 2013) (see

Fig. 3.2). Horizon-crossing, however, can be done in more complex ways once the

angular momentum plays its role. This is addressed in the next subsection.

τ
τ

t

t

rrir+ r

+

+

++

++

++

Figure 3.2: Temporal behavior for radial null geodesics on the CWBH. In the proper system,

photons can cross the horizons in a finite time (in accordance with Eq. (3.33)), whereas regard-

ing Eq. (3.41), an observer at ri measures an infinite time for r → r+ or r → r++. The same

behavior is seen in the study of photon motion in static spherically symmetric spacetimes in

the context of GR.

3.2.2 Angular geodesics

The angular motion of mass-less particles, whose constants of motion are different

from zero is well described by the effective potential (3.108). As can be seen in

Fig. 3.1, the effective potential possesses a maximum at rc = Q√
2

(obtained by solv-

ing V ′(r) = 0), which is independent of λ. In order to obtain the critical value of the

impact parameter, bc, let us reconsider Eq. (3.28) at the point rc. This yields

(
dr
dτ

)2

rc

= 0 = E2
c − V(rc)

= E2
c − B(rc)

L2

r2
c

. (3.43)
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Multiplying both sides by a factor of 1
E2

c
, we get

0 = 1 − B(rc)

r2
c

b2
c , (3.44)

that results in

bc =

√
r2

c
B(rc)

. (3.45)

This way, and taking into account the lapse function (3.25), we obtain

bc =
λ Q√

λ2 − Q2
. (3.46)

Comparing the impact parameter of the test particles to this value, we can obtain qual-

itative descriptions of the angular motions for photons allowed in the exterior space-

time of a charged Weyl black hole. In what follows, we bring detailed discussions

about each of these possibilities:

1. Critical Trajectories: If b = bc, an unstable circular orbit of radius rc is allowed

as a subset of the null geodesics family. To obtain the proper period in such

orbits, let us once again, consider Eq. (3.28) at the radial distance rc, but for now,

we do not let it to be zero. We therefore have(
dr
dτ

)2

rc

= E2
c − V(rc) =

[(
dr
dϕ

)(
dϕ

dτ

)]2

rc

=

 r2

bc

(
E2

c − V(rc)

E2
c

) 1
2 dϕ

dτ

2

=
r4

b2
c

E2
c − V(rc)

E2
c

(
dϕ

dτ

)2

. (3.47)

in which, we have used the relation in Eq. (6.52) in the second line. Now the

factor E2
c − V(rc) is eliminated between the l.h.s. and the r.h.s. of the above

equation, and we are left with

r4

b2
c

1
E2

c

(
dϕ

dτ

)2

= 1. (3.48)

Now, one can infer from Eq. (2.26b) that, for one stable period (i.e. ∆ϕ = 2π) at

rc, we have 2π
∆τ = L

r2
c
. This way, and renaming ∆τ ≡ Tτ (i.e. the proper period of

the unstable orbits), we can write Tτ = 2π
L r2

c , or taking into account the value of

rc,

Tτ = π
Q2

L
, (3.49)

55



CHAPTER 3. THE CASE OF A CHARGED WEYL BLACK HOLE

which is independent of λ. To obtain the coordinate period, let us decompose(
dϕ

dτ

)
rc

=
L
r2

c
=

dϕ

dt
dt
dτ

=
dϕ

dt
Ec

B(rc)
(3.50)

to obtain which, we have used the relation (2.26a). This way, the above equation

yields (
dϕ

dt

)
rc

=
bc

r2
c

B(rc) =
1
bc

, (3.51)

for which, we have used Eq. (3.45) in the last step. Now, once again, for a com-

plete period we get 2π
∆t = 1

bc
. Renaming ∆t = Tt (i.e. the coordinate period of the

unstable orbits), we finally get

Tt = 2π bc = 2π
λ Q√

λ2 − Q2
. (3.52)

which depends on both λ and Q. It is straightforward to check that

Tt =
L

Q

√
1 −

(
2Q
λ

)2
Tτ, (3.53)

which implies Tt > Tτ.

To obtain the analytical solution of the unstable orbits, we return to the angular

equation of motion (6.52), which by means of the relations in Eqs. (3.108) and

(3.25), yields (
dr
dϕ

)2

=
r4

b2

(
1 − b2

r2 +
b2

λ2 +
b2Q2

r4

)
= r4

(
1
b2 +

1
λ2

)
− r2 + Q2. (3.54)

Note that, using the value of bc in Eq. (3.411), one can recast

1
b2

c
+

1
λ2 =

λ2 − Q2

Q2λ2 +
1

λ2 =
1

Q2 . (3.55)

Hence, to obtain the equation of motion for the case of critical (unstable) orbits,

by letting b = bc in Eq. (3.54) and using the relation in Eq. (3.55), we obtain the

differential equation (
dr
dϕ

)2

=
Pc

4(r)
Q2 , (3.56)

where

Pc
4(r) = r4 − Q2r2 +

Q4

4
=

(
r2 − Q2

2

)2

= [(r + rc)(r − rc)]
2 . (3.57)
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So, combining Eqs. (3.56) and (3.57), we get

dr
dϕ

= ± 1√
2
(r + rc)|r − rc|

rc
. (3.58)

For those photons initiating from outside of rc (i.e. rc < ri < r++), we can then

recast Eq. (3.58) as
dr
dϕ

= ± r2 − r2
c√

2 rc
, (3.59)

which explains the critical trajectories of the first kind, while the relation

dr
dϕ

= ± r2
c − r2
√

2 rc
, (3.60)

describes those of the second kind for photons initiating their motion from inside

of rc (i.e. r+ < ri < rc). Solutions to these equations can be obtained by direct

integration. For the case of Eq. (3.59), let us apply the change of variable φ
.
= ϕ√

2
,

we get to the differential equation dr
dφ = ± r2−r2

c
rc

. Now a second change of variable

x .
= r

rc
provides

dx
dφ

= ±
(
x2 − 1

)
, (3.61)

which, by adopting the positive part, has the solution φ(x) = coth x. Taking into

account the applied changes of variables, we obtain the solution to the first kind

motion as

r(ϕ) = rc coth
(

ϕ√
2

)
. (3.62)

Pursuing the same procedure for Eq. (3.60), the second kind solution becomes

r(ϕ) = rc tanh
(

ϕ√
2

)
. (3.63)

In Fig. 7.6, the critical trajectories (3.177) and (3.178) have been plotted.

2. Deflection Zone. Light deflection in WCG, in the context of the Mannheim-

Kazanas solution, has been discussed (Sultana & Kazanas, 2010; Cattani et al.,

2013; Sultana, 2013). Here, address the same problem, for the CWBH under

study. When photons attain the impact parameter bc < b < ∞, they are de-

flected due to the effective potential barrier. Thus, and as in the previous case,

they encounter orbits of the first and second kind (OFK and OSK). Photons com-

ing from a finite distance ri (r+ < ri < rc or rc < ri < r++) to the distance r = r f

or r = rd (which are obtained from the relation V(r f ) = V(rd) = E2) are then
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rc

Figure 3.3: Critical trajectories of photons with b = bc. Orbits of the first and the second kinds

are allowed for test particles that approach by spiraling to the unstable circular orbit at r = rc.

pulled back to either of the two horizons and are, in fact, deflected. To calculate

the turning points, we therefore take care of the equation

E2 − L2B(r)
r2 = 0 (3.64)

in which, B(r)
r2 = 1

r2 − 1
λ2 − Q2

r4 . Dividing by a factor E2, the above equation yields

1
β2 =

1
r2 − Q2

r4 , (3.65)

where the anomalous impact parameter is defined as

1
β2 =

1
b2 +

1
λ2 . (3.66)

To obtain the roots of Eq. (3.65), we apply the change of variable x .
= 1

r2 , which

then leads to the equation 1
β2 = x − Q2x2. This equation, after reconsideration of

the applied change of variable, result sin the turning points

r f =
β√
2

√√√√1 −

√
1 −

(
Q
β

)2

, (3.67)

rd =
β√
2

√√√√1 +

√
1 −

(
Q
β

)2

. (3.68)

Note that in the limit b → ∞, the anomalous impact parameter becomes β = λ

and we obtain the identities r f (b = ∞) = r+ and rd(b = ∞) = r++ (see Eqs.

(3.26), (3.142) and Eqs. (3.27), (3.143)). The equations of motion are once again

obtained by integrating the general radial relation in Eq. (6.52) for both kinds

of orbits. To do this, we perform the change of variable r = β
√

u + 1/3, which

generates the equation

± du
dϕ

=
√

4u3 − g2u − g3. (3.69)
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This leads to the integrals

ϕ =
∫ u

ud

du′√
4u′3 − g2u′ − g3

(with ud < u), (3.70a)

ϕ =
∫ u f

u

du′√
4u′3 − g2u′ − g3

(with u f > u), (3.70b)

for OFK and OSK, respectively. The above integrals yield

r(ϕ) = β

√
1
3
+ ℘(ωd − ϕ) (3.71)

for OFK, and

r(ϕ) = β

√
1
3
+ ℘(ω f + ϕ), (3.72)

for OSK, were the Weierstraß invariants are

g2 =
4
3
− Q2

β2 , (3.73a)

g3 =
8
27

− Q2

3β2 . (3.73b)

Furthermore, the phase parameters are given by

ωd = ß

(
r2

d
β2 − 1

3

)
, (3.74a)

ω f = ß

(
r2

f

β2 − 1
3

)
, (3.74b)

The qualitative behavior of OFK and OSK is shown in Fig. 7.7. We should note

here that the signature of the above coefficients affects the polynomial on the

right hand side of Eq. (3.69). Letting βc = β|b=bc we get βc = Q and based on

Eqs. (3.73) we have:

• For g2 > 0 we have β̄2 < β < βc,

• For g3 > 0 we have β > β̄3 > βc, in which β̄2 = 3βc

2
√

3
=
√

2
3 β̄3.

Since we are interested in the region inside the effective potential, we disregard

the first case above. We can therefore categorize the following conditions on the

coefficients:

Condition 1) for β > β̄3 we have g2 > 0 and g3 > 0.
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r++

rc
r+

(a)

rc

r+

(b)

Figure 3.4: The deflecting trajectories governed by equations of motion given in Eqs. (3.154)

and (3.72). The plots demonstrate (a) OFK and (b) OSK. As we can see, the hyperbolic form

of OFK allows incoming trajectories to enter the cosmological horizon before their escape to

infinity. On the other hand, those that follow OSK, will rapidly enter the event horizon and

fall onto the singularity.

Condition 2) for βc < β < β̄3 we have g2 > 0 and |g3| > 0.

It is worth mentioning that, as appears in the decreasing segment of Fig. 3.1, the

effective potential can change its type of curvature in an inflection point. This

appears at the point r0, for which V ′′(r0) = 0, giving r0 = ±
√

5
6 Q, where

V0 ≡ V(r0) = L2
(

21
25Q2 − 1

λ2

)
. (3.75)

Moreover, applying the definition in Eq. (3.66) to the turning points (where

V(r) = E2), we get
1
β2 =

1
r2

t

(
1 − 2β̄2

3

9r2
t

)
, (3.76)

where rt indicates the turning points, implying that the above relation is valid

only on the curve given by the effective potential. From Eq. (3.76) we infer that

β0 =
10
√

2
3
√

21
β̄3, (3.77)

in which β0 ≡ β|r=r0 . This provides β0 ≈ 1.03 β̄3. Therefore, the effective

potential’s value corresponding to β̄3 is larger than V0. However, regarding the

small difference between β̄3 and β0, geodesics following the OFK described by

Eq. (3.72) are more likely to fall to bound orbits, as the potential changes from

being concave to being convex at r0.
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r+

rc

(a)

r+

rc

(b)

Figure 3.5: The capturing process for particles possessing b ≤ bc. The figures indicate ap-

proaching particles with (a) b < bc and (b) b = bc.

3. Capture Zone: Particles with the impact parameter 0 < b = ba < bc will experi-

ence an inevitable infall onto black hole horizons. Obviously, the above depends

on the initial conditions, specifically on the direction of the velocity at the mo-

ment of starting the description of the trajectory. In both cases, the cross-section

is given by (?)

σ = π b2
c =

πλ2Q2

λ2 − Q2 . (3.78)

In a similar way as discussed before, we integrate Eq. (6.52) to obtain the equa-

tion of motion, which reads

r(ϕ) = β

√
1
3
+ ℘(ωa + ϕ), (3.79)

where ωa = ß( r2
a

β2 − 1
3 ) is the phase parameter corresponding to the point of ap-

proach ra. Note that, depending on the impact parameter, capturing can happen

in different ways. As we can see in Fig. 3.19, for b < bc, the trajectories coming

from infinity are captured directly on the event horizon. This is while those with

b = bc follow a spiral-formed trajectory toward the horizon.

Now that the angular motions have been discussed, we can make use of them to

relate the features of a CWBH to the classical test of GR. We start from gravita-

tional lensing.

3.2.3 Bending of light and the lens equation

Regarding the deflection of light in the OFK, gravitational lenses can form. Gravi-

tational lensing of spherically symmetric black holes has been widely studied in the
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ϑ

α̂−ψo

ψs

φ = 0
rd

φs

−φo

α̂

b

b
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ro

S

O

L

Figure 3.6: A schematic illustration of the lensing phenomena. The shortest distance rd to the

lens L, has been taken to be the turning point in the OFK, lying on the ϕ = 0 line. The source

and the observer are located at S(rs, ϕs, b) and O(ro, ϕo, b).

literature, for example for the case of the SBH (Virbhadra & Ellis, 2000) and for more

general cases where theoretical aspects of this phenomenon have been developed to

compare the predicted higher order images with those of realistic observations (Bozza,

2010). In particular, for charged black holes in the context of RN geometry, this effect

has been applied to study the intrinsic characteristics of the background spacetime

(Zhao et al., 2016). There are also some interesting discussions using which, one can

obtain greater insight into the various types of lensing and their applications in astro-

physics and cosmology (Treu & Ellis, 2015).

Now let us construct the geometry of the problem and apply it to the spacetime

under study. Consider the diagram in Fig. 3.6. The source and the observer, charac-

terized by their position, angle and the impact parameter of the light passing them,

are respectively located at S(rs, ϕs, b) and O(ro,−ϕo, b). The shortest distance rd to the

lens is the turning point given in Eq. (3.143) and r = rd indicates ϕ = 0. Regarding the

figure, we can infer that:

ϑ = ϕs − ψs + |ϕo| − |ψo|, (3.80)
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and ϑ + α̂ = π relates the deflection angle α̂ to the position angles ϕo and ϕs. It is

straightforward to calculate:

ψs = α̂ − arcsin(
b
rs
), (3.81)

|ψo| = α̂ − arcsin(
b
ro
). (3.82)

Once again, applying appropriately Eqs. (6.52) and (3.69), we obtain the angles ϕs and

ϕo and therefore the lens equation is obtained as:

α̂ = arcsin
(

b
ro rs

[√
r2

o − b2 +
√

r2
s − b2

])
+ 2ωd

−
[

ß
(

r2
s

β2 − 1
3

)
+

∣∣∣∣ß( r2
o

β2 − 1
3

)∣∣∣∣]− π, (3.83)

where ωd is the same as that in Eq. (3.74a). The above relation, gives the lens equation

for light rays passing a CWBH. During the lensing process, as light deflects from the

black hole, it experiences a temporal dilation. This causes another important effect

which is discussed as the second test in the next section.

3.2.4 Gravitational time delay

One interesting relativistic effect associated with the propagation of photons, is the ap-

parent delay in the time of propagation for a light signal passing the Sun’s proximity.

Known as the Shapiro time delay (?), this effect is a relevant correction for astronomi-

cal observations. The time delay of radar echoes corresponds to the determination of

the time delay of radar signals which are transmitted from the Earth through a region

near the Sun to another planet or to a spacecraft, and are then reflected back to Earth

(see Fig. 3.7). The time interval between emission and return of a pulse as measured

by a clock on Earth is given by

t12 = 2 [t(r1, ρ0) + t(r2, ρ0)], (3.84)

where ρ0 corresponds to the closest proximity to the Sun. Returning to Eq. (6.51):

ṙ = ṫ
dr
dt

=
E

B(r)
dr
dt

=

√
E2 − L2

r2 B(r) . (3.85)

Taking into account the fact that at ρ0 the radial velocity dr
dt vanishes, the following

relation is obtained:
L2

E2 ≡ b2 =
ρ2

0
B(ρ0)

. (3.86)
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Figure 3.7: Scheme for the gravitational time delay effect. A light signal is emitted from P1 at

r1 to P2 at r2 and returns to P1. Here, ρ0 is the closet approach to the Sun, and t12 is the time

interval between emission and return of the pulse as measured by a clock on Earth.

Now, using Eq. (3.86) in Eq. (6.49), the coordinate time which the light requires to go

from ρ0 to r is

t(r, ρ0) =
∫ r

ρ0

dr

B(r)
√

1 − ρ2
0

B(ρ0)
B(r)

r2

. (3.87)

So, in the first order of corrections, we get

t(r, ρ0) ≈
√

r2 − ρ2
0 + tQ + tλ, (3.88)

where

tQ =
3 Q2

2 ρ0
arcsec

(
r

ρ0

)
, (3.89a)

tλ =
1

3λ2

√
r2 − ρ2

0

[
r2 +

ρ2
0

2

]
. (3.89b)

In the non-relativistic context, light travels in Euclidean space and we can calculate

the time interval between emission and reception of the pulse as

tE
12 = 2

(√
r2

1 − ρ2
0 +

√
r2

2 − ρ2
0

)
. (3.90)

Therefore, the expected relativistic time dilation in the journey 1 −→ 2 −→ 1 can be

defined as:

∆t := t12 − tE
12 , (3.91)

which, by exploiting Eqs. (3.84) and (3.88) to (3.90), yields

∆t = ∆tQ + ∆tλ , (3.92)
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where

∆tQ =
3 Q2

ρ0

[
arcsec

(
r1

ρ0

)
+ arcsec

(
r2

ρ0

)]
, (3.93a)

∆tλ =
2

3λ2

[√
r2

1 − ρ2
0

(
r2

1 +
ρ2

0
2

)
+
√

r2
2 − ρ2

0

(
r2

2 +
ρ2

0
2

)]
. (3.93b)

For a round trip in the solar system, we have (ρ0 ≪ r1, r2)

∆t⊙ ≈ 3 Q2

ρ0

[
arcsec

(
r1

ρ0

)
+ arcsec

(
r2

ρ0

)]
+

2
3λ2

(
r3

1 + r3
2
)

. (3.94)

The above time dilation depends separately on terms relevant to the electric charge

and the cosmological constant. However, the closest approach (ρ0) only contributes to

the charge-relevant terms, confirming that the electric charge has only short-distance

effects, whereas the cosmological term is effective in long distance.

The time delay in propagating beams is a completely relativistic effect. In the next

section and as the third test, we discuss another specific experiment, relevant to this

effect.

3.2.5 The Sagnac effect

The Sagnac effect (Sagnac, 1913) is one of the most fascinating classical tests to prove

the geometrical nature of gravitation, although it was firstly proposed as a disapproval

of the special theory of relativity (SR). In the current era, however, the study of this

phenomena is favored because of numerous interesting phenomenon, to which, it can

be related. For example, it can be treated as a formal analogy of the Aharonov-Bohm

effect (Sakurai, 1980; Rizzi & Ruggiero, 2003b,a; Ruggiero, 2005; Ruggiero & Tartaglia,

2014), in the sense that the standard dynamics which raise the natural splitting de-

veloped by Cattaneo (Cattaneo, 1958, 1959a,c,b; Cattaneo et al., 1963), is described in

terms of analogue gravito-electromagnetic potentials. Thus, the dynamics of test par-

ticles (massive or mass-less), relative to a given time-like congruence Γ of the rotating

frame of an ideal interferometer, can be written in terms of gravito-electromagnetic

fields. Therefore, in a rotating frame fixed to the rotating interferometer, the con-

travariant and covariant components of the unit tangent vector γ(x) to the time-like
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congruence Γ are given by

γt = 1/
√
−gtt, γi = 0, (3.95a)

γt = −
√
−gtt, γi = gitγ

t, (3.95b)

where the index i indicates the spatial coordinates. Here gµν corresponds to the metric

components of the (pseudo-)Riemannian manifold M in the rotating frame. In this

way, the gravito-electromagnetic potentials are defined by (Rizzi & Ruggiero, 2004)

ΦG = −c2γt, (3.96)

AG
i = c2 γi

γt
, (3.97)

which make it possible to calculate the gravito-magnetic Aharonov-Bohm time differ-

ence between the counter-propagating matter or light beams detected by a comoving

observer, by means of the relation

∆τ =
2γt

c3

∫
C

A⃗G · d⃗ℓ =
2γt

c3

∫
S

B⃗G · d⃗a. (3.98)

In what follows, we calculate the Sagnac effect using the above expression for the exte-

rior spacetime of a charged Weyl black hole, considering counter-propagating beams

on an equatorial plane (θ = π
2 ) along fixed circular trajectories (r = R).

In order to apply this formalism, let us rewrite the CWBH metric by retrieving c in

the non-rotating coordinates xα′ = (ct′, r′, θ′, ϕ′):

ds2 = −
(

1 − r′2

λ2 − Q2

4r′2

)
c2dt′2 +

dr′2

1 − r′2
λ2 − Q2

4r′2
++r′2(dθ′2 + sin2 θ′ dϕ′2). (3.99)

The transformation to the local frame of the rotating interferometer (described in xα =

(ct, r, θ, ϕ)) is written as xα = eα
α′xα′ , in which

eα
α′ ≡

∂xα

∂xα′
=


1 0 0 0

0 1 0 0

0 0 1 0

−Ω 0 0 1

 (3.100)

is the frame transformation Jacobian, and Ω represents the constant angular velocity

of the physical system. Thus, we get

ct = ct′, r = r′, θ = θ′, ϕ = ϕ′ − Ωt′. (3.101)
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Applying this, and letting r = R and θ = π
2 , the line element (3.99) can be recast in xα

as

ds2 = −
(

1 − R2

λ2 − Q2

4R2 − R2Ω2

c2

)
c2dt2 + 2ΩR2dϕdt + R2dϕ2. (3.102)

Therefore, the components of the vector field γ(x), in the rotating frame, are given by

γt = γJ , γt = −γ−1
J , γϕ =

Ω
ΩR

R γJ , (3.103)

with

γJ =
ΩR√

Ω2
0 − Ω2

, (3.104)

where Ω0 is given by

Ω0 ≡
√

Ω2
R − Ω2

λ − Ω2
Q, (3.105)

and

ΩR ≡ c
R

, Ωλ ≡ c
λ

, ΩQ ≡ c Q
2R2 . (3.106)

So, using the above results in Eq. (3.97), we obtain that the only non-zero component

of the gravito-magnetic potential is AG
ϕ = −cΩR2γ2

J , and the proper time delay be-

tween the counter-propagating beams relative to a comoving observer on the rotating

frame is given by

∆τ =
4π

ΩR

Ω√
Ω2

0 − Ω2
. (3.107)

The variations of this time difference in terms of Ω have been compared for three

different constant spatial separations between the source and the interferometer in

Fig. 3.8. As we can see, the most intense increase in ∆τ can happen for smaller Ω for

larger separations. Hence, the same time difference values can be measured in slower

rotating interferometers at larger distances from the black hole, as in those with faster

rotation at shorter distances. Note that, since ∆τ must be positive, an interferometer at

a specific distance from the black hole can possess only a definite range of Ω to work

properly. This kind of confinement for the same range of separations and angular ve-

locities used in Fig. 3.8 has been demonstrated in Fig. 3.9. Essentially, the functional re-

lationship between ∆τ and Ω is the same as that found by Hu and Wang (Hu & Wang,

2006). However, there is a natural shift in the value of the constant Ω0 compared to the

RN case. Clearly, this difference comes from the positivity of the term associated with

the electric charge (given by substituting ΩRN → iΩ0), and also the specific relations

to R, as the radius of the circular orbits of counter-propagating beams (see Eq. (19) of

the above paper). One important implication of Eq. (3.107) is that, putting aside the
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Figure 3.8: Time difference ∆τ between the counter-propagating beams detected by a comov-

ing observer as a function of the angular velocity Ω, for various separation distances between

the source and an ideal rotating interferometer. The plots are for R1 = 7 × 107, R2 = 3 × 107

and R3 = 2 × 107 considering λ = 2 × 1010 and Q = 2 × 107 (all values are in arbitrary length

units).
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Figure 3.9: Region plot for the condition ∆τ > 0 for the separation distances between the

source and the interferometer, R and the angular velocity of the comoving observer, Ω, for

λ = 2 × 1010 and Q = 2 × 107 (all values are in arbitrary length units).

Schwarzschild and the electric-charge-associated terms which are common between

the RN black hole (RNBH) and the CWBH, the cosmological contribution included

in Ω2
λ results in larger values of ∆τ compared to the RNBH case. This indicates that,

unlike the RN case, the CWBH can provide means of measuring the Sagnac effect at

large distances.
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Figure 3.10: The effective potential of the CWBH, plotted for with λ = 10 and Q = 1, spec-

ified for particles with different designations of angular momentum. The larger the angular

momentum, the more unstable is the potential’s apex. The values of the horizons correspond

to r+ ≃ 0.5 and r++ ≃ 10.

3.3 Motion of massive particles

Considering Eqs. (3.28), (6.51) and (6.52), and taking into account ϵ = 1, the effective

potential for time-like geodesics is given by

V(r) = B(r)
(

1 +
L2

r2

)
, (3.108)

which has been plotted in Fig. 3.10. As we can see, the intensity of the potentials’

maximum is rather sensitive to L. The radial and angular motions of the test particles

in this potential, are described by the following equations:(
dr
dt

)2

=
B2(r)

E2

[
E2 − V(r)

]
, (3.109)

(
dr
dϕ

)2

=
r4

L2

[
E2 − V(r)

]
. (3.110)

The effective potential in Eq. (3.108) is responsible for the determination of possible

orbits around the black hole. In the next subsection, we will discuss the possible orbits

in this potential, by presenting direct analytical solutions of the angular equations of

motion.

3.3.1 Angular Motion

In general, the most common trajectories followed by particles as they approach the

black hole, are angular trajectories (L ̸= 0). Once again, we drag the reader’s attention
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Figure 3.11: The effective potential for test particles with angular momentum. Based on the

values of E, several turning points (approaches) are available. These include the radius of

unstable circular orbits rU , and two other points, rP and rA. At these turning points, we have

E2 = V(rt).

to the radial behavior of the effective potential, as illustrated in Fig. 3.24. Correspond-

ing to the values of E, the turning points rt relate to different kinds of orbits and they

satisfy E2 = V(rt). To determine these points, we should take care of their relevant

orbital conditions. In fact, according to Fig. 3.24, three turning points are denoted;

rt = rU (for unstable circular orbits), rt = rP (the smallest orbital separation) and

rt = rA (the largest orbital separation). In the forthcoming subsections, we ramify the

relevant orbital conditions of approaching test particles and determine the mentioned

turning points in accordance with each particular type of motion. We begin with dis-

cussing the potential’s maximum and its relevant quantities. Afterwards, other kinds

of orbits are studied.

Unstable circular orbits

According to Fig. 3.24, the effective potential offers instability at its maximum, where

V ′(r) = 0. Form Eq. (3.108), this generates

L2Q2 −
(

2L2 − Q2

2

)
r2 − 2

λ2 r6 = 0, (3.111)

which is an equation of sixth order. Applying the Cardano’s method, we can obtain

three different radii for the unstable circular orbits, by solving Eq. (3.236). Let us ex-

plain the method.

Equation (3.236) can be reduced into an equation of the third order, by applying

the change of variable X .
= r2. Accordingly, the reduced equation becomes

4X3 + a1X − a2 = 0, (3.112)
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in which we have used

a1 = 4λ2
(

L2 − Q2

4

)
, (3.113)

a2 = 2λ2L2Q2. (3.114)

For a1 = 0 (i.e. L = Q
2 ), the equation is easily solved as X3 = a2/4. Since always

a2 > 0, the general form of the equation only varies depending on the sign of a1.

Accordingly, we compare Eq. (3.112) by two hyperbolic identities

4 sinh3 ϑ + 3 sinh ϑ − sinh(3ϑ) = 0, (3.115)

4 cosh3 ϑ − 3 cosh ϑ − cosh(3ϑ) = 0. (3.116)

The following two cases are available:

• For L > Q
2 : Since (a1, a2) > 0, then defining X .

= Ξ0 sinh ϑ, we recast Eq. (3.112)

as

ℓΞ3
0 sinh3 ϑ + a1ℓΞ0 sinh ϑ − a2 ℓ = 0, (3.117)

in which, ℓ is a Legendre coefficient. Comparing Eqs. (3.117) and (3.115), we get

ℓ =
4

Ξ3
0

, (3.118a)

Ξ0 =

√
4a1

3
, (3.118b)

sinh(3ϑ) =

√
27a2

2

4a3
1

.
= Ξ1. (3.118c)

It is therefore inferred that ϑ = 1
3 arcsinh Ξ1, resulting in

X = Ξ0 sinh
(

1
3

arcsin Ξ1

)
. (3.119)

• For L < Q
2 : This time, since a1 < 0 and a2 > 0, the comparison is made to

Eq. (3.116), by means of the definition X .
= Ξ0 cosh ϑ. Pursuing the same proce-

dure as the previous case, we obtain

X = Ξ0 cosh
(

1
3

arccosh(Ξ1)

)
. (3.120)

Applying the above method and by appropriate substitutions, we obtain the three
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solutions

rU =

(
Ξ0 sinh

[
1
3

arcsinh(Ξ1)

]) 1
2

, L >
Q
2

(3.121)

rU =

(
Q4λ2

8

) 1
6

, L =
Q
2

(3.122)

rU =

(
Ξ0 cosh

[
1
3

arccosh(Ξ1)

]) 1
2

, L <
Q
2

(3.123)

to Eq. (3.236), where

Ξ0 = 4λ

√
|L2 − Q2/4|

3
, (3.124)

Ξ1 =
3Q2L2

8λ

√
3

|L2 − Q2/4|3
. (3.125)

One can also calculate the period of the above orbits, measured by the test particles

(proper period) and a distant observer (coordinate period) (Chandrasekhar, 1998). In

the same way as we pursued in subsection 3.2.2, one can obtain the following relations

for a long term circular orbit:

∆τU =
r2

U
LU

∆ϕU , (3.126)

∆tU =
EU

LU

r2
U

B(rU)
∆ϕU . (3.127)

For one complete orbit, we have ∆ϕU = 2π, and we define the proper and coordinate

periods as

Tτ =
2π r2

U
LU

, (3.128)

Tt =
2π r2

UEU

B(rU)LU
. (3.129)

The expression for LU is calculated by solving Eq. (3.236) for the angular momentum

at the fixed circular radius rU . We have

LU =
1√
2

√√√√4r4
U − Q2λ2

Q2λ2

r2
U

− 2λ2
. (3.130)

This, together with the condition E2
U = V(rU) at the distance rU , provides

Tτ = 2πλ rU

√
4r2

U − 2Q2

Q2λ2 − 4r4
U

, (3.131)
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Tt =
4πλ r2

U√
λ2Q2 − 4r4

U

. (3.132)

Further in this section, we will discuss the critical trajectories corresponding to the

above radii of unstable orbits. However for now, let us continue our discussion by

studying the hyperbolic motions around the black hole.

Orbits of the first kind and the scattering zone

In the case that, for orbiting test particles, the condition E < EU is satisfied, they can

approach the black hole at two distinct points. Referring to Fig. 3.24, these points are

determined by rt = rP and rt = rA, at which dr
dϕ |rt = 0 or E2 = V(rt). The angular

equation of motion in Eq. (3.110) can be recast as(
dr
dϕ

)2

=
r6 − α r4 − β r2 + γ

L2λ2 ≡ P(r)
L2λ2 , (3.133)

where

α = λ2(1 − E2)− L2, (3.134a)

β = λ2(L2 − Q2), (3.134b)

γ = λ2L2Q2. (3.134c)

The determination of the turning points rP and rA can be done by solving P(rt) = 0

which is again an equation of sixth order and can be solved by means of the Cardano’s

method. The equation P(r) = 0 produces

X3 − αX2 − βX + γ = 0, (3.135)

where X .
= r2. Now performing the Tschirnhaus transformation S = X − α

3 , we get

S3 − ā1S − ā2 = 0, (3.136)

in which

ā1 =
4
3
(
α2 + 3β

)
, (3.137a)

ā2 = 4
(

2α3

27
+

αβ

3
− γ

)
. (3.137b)

Considering the trigonometric identity

4 cos3 ϑ − 3 cos ϑ − cos(3ϑ) = 0, (3.138)
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we define S = ξ0 cos ϑ and recast Eq. (3.136) as

ℓ ξ3
0 cos3 ϑ − ℓ ā1ξ0 cos ϑ − ℓ ā2 = 0. (3.139)

As in the previous cases, comparing the above equations we obtain

ξ0 = 2

√
β

3
+

α2

9
, (3.140a)

ξ1 =

(
8α3

9
+ 4αβ − 12γ

)√
3

(4β + 4α2

3 )3
, (3.140b)

where 2nπ indicates the periodic symmetry of the cosine function. Accordingly, and

using the reverse transformations, the solutions to P(r) can be given as

rn =

[
ξ0 cos

(
1
3

arccos ξ1 +
2nπ

3

)
+

α

3

] 1
2

. (3.141)

The above solution results in positive values for n = 0, 2 and is periodically repeated

as n → n + 3. We can therefore take two different values as physically meaningful so-

lutions to our equation, by designating rA = rn=0 and rP = rn=2 which is in agreement

with rA > rP. This procedure results in

rA =

(
ξ0 cos

[
1
3

arccos ξ1

]
+

α

3

)1/2

, (3.142)

rP =

(
ξ0 cos

[
1
3

arccos ξ1 +
4π

3

]
+

α

3

)1/2

. (3.143)

Particles reaching rA can experience a hyperbolic OFK which has the significance of

scattering. To find the explicit angular equation of motion for this process, we directly

integrate Eq. (3.244). In fact, the change of variables applied in solving P(r) = 0 can

not make a simple reduction of order to solve the differential equation in Eq. (3.244).

This kind of definition provides a fourth order elliptic integral equation which, al-

though doable, is hard to solve. We therefore propose a more efficient method for this

particular case. Since the scattering happens at rA, we instead, define the following

non-linear change of variable:

x .
=
( rA

r

)2
, (3.144)

producing dr = −rA

(
dx

2x
3
2

)
, which reduces Eq. (3.244) to

dϕ = ±Lλ
−rA dx

2
√

γ P̃(x)
, (3.145)
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in which

γ P̃(x) ≡ x3P(x) = γ
(
x3 − α̃x2 − β̃x + γ̃

)
, (3.146)

where

α̃ =
β r2

A
γ

, (3.147a)

β̃ =
α r4

A
γ

, (3.147b)

γ̃ =
rA

γ
. (3.147c)

A further change of variable

u .
=

1
4

(
x − α̃

3

)
, (3.148)

leads to the following reduced integral form of Eq. (3.145):∫ ϕ

ϕ0

dϕ′ = ±
2
√

γ

Lλ rA

∫ u

uA

−du′√
P(u′)

, (3.149)

in which uA = 1
4 (1 −

β r2
A

3γ ), and

P(u) = 4u3 − g2u − g3, (3.150)

where

g2 =
1
4

(
α̃

3
+ β̃

)
, (3.151a)

g3 =
1

16

(
2α̃3

27
+

α̃ β̃

3
− γ̃

)
, (3.151b)

are the Weierstraß coefficients, associated with the third order polynomial P(u). Re-

casting Eq. (3.149), we have

±
2
√

γ

Lλ rA
(ϕ − ϕ0) = −

{∫ ∞

uA

du′√
P(u′)

−
∫ ∞

u

du′√
P(u′)

}
= −{ß(uA)− ß(u)} . (3.152)

Accordingly, using the values of γ̃ and γ, and defining φA = ß(uA), from Eq. (3.152)

we deduce

u(ϕ) =
1
4

(
r2

A
r2(ϕ)

− β r2
A

3γ

)
= ℘

(
±

2
√

γ

Lλ rA
(ϕ0 − ϕ) + φA

)
, (3.153)

which for ϕ0 = 0 results in the solution

r(ϕ) =
rA√

4℘(φA − κA ϕ) +
βr2

A
3γ

, (3.154)
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Figure 3.12: Scattering of particles for different impact parameters b = 1.36, 1.5 and 3.27. It is

observed that the scattering process can be attractive or repulsive, depending on the impact

parameter. The plots have been done for Q = 1 and λ = 10.

where

κA =
2Q
rA

, (3.155a)

φA = ß
(

1
4
− βr2

A
12γ

)
. (3.155b)

The OFK for particles around the CWBH has been plotted in Fig. 3.25, which has been

classified in terms of the impact parameter b, associated with the trajectories. we can

see that the lower b is, the more the trajectories are inclined to the black hole during

their scattering.

The scattering angle

During the scattering process, the particles experience an escape to the infinity. Let us

consider the scheme in Fig. 3.13. The particles commence their approach to the black

hole at point e and the scattered particles recede to infinity at point s, which are char-

acterized respectively by e(re, ϕe, b) and s(rs, ϕs, b). Letting r(ϕ)|ϕ=0 = rA, the shortest

distance to the black hole is taken to be rA, at which the scattering happens. According

to the figure, and in the same way we obtained the lens equation in subsection 3.2.3,

we have

δ = π − Θ = ϕe − ψe + |ϕs| − |ψs|. (3.156)

Any angle ϕ(r) observed by the moving particles in this kind of motion, is obtained

by reversing Eq. (3.154), giving

ϕ(r) =
1

κA

[
ß
(

1
4
− β r2

A
3γ

)
− ß

(
r2

A
4r2 − βr2

A
12γ

)]
. (3.157)
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Figure 3.13: A schematic illustration of the scattering phenomena. The shortest distance to the

black hole B, has been taken to be rA, lying on the ϕ = 0 line. The incident and the scattered

particles are located respectively at e(re, ϕe, b) and s(rs, ϕs, b).

Furthermore, according to the figure, it is easily inferred that

ψe = Θ − arcsin
(

b
re

)
, (3.158)

|ψs| = Θ − arcsin
(

b
rs

)
. (3.159)

Assuming that the incident particles are coming from infinity and escaping to infinity,

we have ψe = |ψs| = Θ and ϕe = |ϕs| = ϕ(∞) ≡ ϕ∞. At this limit we can recast

Eq. (3.156) as Θ = 2ϕ∞ − π, for which, applying Eq. (3.157), we obtain the scattering

angle as

Θ =
2

κA

[
ß
(

1
4
− β r2

A
12γ

)
− ß

(
−β r2

A
12γ

)]
− π. (3.160)

The evolution of the scattering angle has been plotted in Fig. 3.14 which has an asymp-

totic behavior as E → EU .

The differential cross section

Regarding the spherical symmetry of our problem, the angle Θ obtained above, in-

deed measures the deflection angle between the incident and the scattered beams,

that together with the azimuth angle ϕ, can construct the solid angle element dΩ =
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Figure 3.14: The behavior of Θ in terms of E2, demonstrated for L = 2, Q = 1 and λ = 10.

As it is expected, the scattering angle reaches its limit as E tends to EU which in this case is

around 1.496.

sin Θ dΘ dϕ as the differential angular range of the scattered particles at angle Θ. Fur-

thermore, since the impact parameter b is perpendicular to the incoming and scattered

trajectories, one can define the scattering cross section σ as the area covered by the

scattered particles in the plane of b. This way, σ has the differential size dσ = b dϕ db.

The differential cross section can be then expressed as

σ(Θ)
.
=

dσ

dΩ
=

b
sin Θ

∣∣∣∣ ∂b
∂Θ

∣∣∣∣ . (3.161)

In fact, from Eq. (3.160) we have

κA

2
(Θ + π) = φA0 + φA1 , (3.162)

in which

φA0

.
= ß

(
1
4
− β r2

A
12γ

)
, (3.163a)

φA1

.
= −ß

(
−β r2

A
12γ

)
. (3.163b)

We define

Ψ(L) .
= ℘

(κA

2
(Θ + π)

)
= ℘ (φA0 + φA1) , (3.164)

where (Byrd & Friedman, 1971)

Ψ(L) =
1
4

[
℘′(φA0)− ℘′(φA1)

℘(φA0)− ℘(φA1)

]2

− ℘(φA0)− ℘(φA1). (3.165)

Note that, using the definition in Eq. (3.260), we can recast Eq. (3.161) as

σ(Θ) = b csc Θ
∣∣∣∣ ∂Ψ
∂Θ

∣∣∣∣ ∣∣∣∣ ∂b
∂Ψ

∣∣∣∣ = κA

4
csc Θ

∣∣∣℘′
(κA

2
(θ + π)

)∣∣∣ ∣∣∣∣∂b2

∂Ψ

∣∣∣∣ , (3.166)
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Figure 3.15: The evolution of σ(Θ) in terms of E2, plotted for L = 0.8, Q = 0.5 and λ = 0.6.

For these values, E2
U ≈ 0.54.

for which, considering ∂b2

∂Ψ = ∂b2/∂L
∂Ψ/∂L , we finally obtain

σ(Θ) =
κAL
2E2 csc Θ

∣∣∣℘′
(κA

2
(θ + π)

)∣∣∣ ∣∣∣∣∂Ψ
∂L

∣∣∣∣−1

. (3.167)

The complexity of the relation of Ψ(L), makes the resultant expression of σ(Θ) rather

large and complicated. We however, have demonstrated the behavior of this function

in Fig. 3.15, in terms of the quantity E2. We have considered smaller values for the con-

stants to be able to generate a more perceptible plot. Note that, there is an asymptotic

behavior as E → 0, and σ(Θ) tends to zero, soon after E passes EU .

Radial acceleration

The equation of motion for the radial coordinate in Eq. (3.28), beside demonstrating

the way through which the particles approach the black hole, can also provide infor-

mation on the Newtonian centripetal effective force acting on the particles. This force

is indeed indicated by the radial acceleration ar which is defined as ar ≡ r̈ in terms of

the radial coordinate. Using Eq. (3.28) for the effective potential (3.108), we have

ar = −1
2

V ′(r) = −L2Q2

2r5 +
L2 − Q2

4
r3 +

r
λ2 . (3.168)

Introducing rmax and rmin, respectively as the turning points where ar reaches its max-

imum and minimum (by satisfying ∂rar = 0), we obtain

rmax =

(
η0 cos

[
1
3

arccos η1

])1/2

, (3.169)

rmin =

(
η0 cos

[
1
3

arccos(η1) +
4π

3

])1/2

, (3.170)
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where

η0 = 2λ

√
L2 − Q2

4
, (3.171a)

η1 = −5L2Q2

4λ

(
L2 − Q2

4

)− 3
2

, (3.171b)

and are valid only for Q < 2L. These distances have the identical value rL (corre-

sponding to η1 = ±1), when the angular momentum approaches the value L0 given

by

L0 =

√
χ1 + χ2 cosh

[
1
3

arccosh
[

χ3

χ3
2

]]
, (3.172)

where

χ1 =
9Q2

4
, (3.173a)

χ2 =
20Q

8
√

3 λ
, (3.173b)

χ3 =
25Q4

1024λ2 . (3.173c)

The equality rmax ≡ rmin = rL has been shown in Fig. 7.5, where we have plotted ar

for three different values of L. In accordance with the values chosen in the figure, the

L = 0.14 curve has only one extremum corresponding to rL ≈ 0.31. In this case, the

test particles will experience a constant effective force towards the black hole while

traveling on their trajectories.

So far, we have scrutinized the OFK for particles approaching from rA. However,

altering this point the OSK happens as we will discuss next.

Orbits of the second kind

Once the approaching point to the black hole coincides with the turning point rP in

Eq. (3.143) (r+ < rP < rU), the OSK occurs. Pursuing the same method, applied in

deriving the equation of motion for the OFK, we obtain

r(ϕ) =
rP√

4℘(φP + κPϕ) +
βr2

P
3γ

, (3.174)

with the corresponding Weierstraß coefficients

g22 =
r4

P
4

[
β2

3γ2 +
α

γ

]
, (3.175a)

g33 =
r6

P
16

[
2β3

27γ3 +
αβ

3γ2 − 1
γ

]
, (3.175b)
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Figure 3.16: The evolution of the radial acceleration ar ≡ r̈ inside the casual region r+ < r <

r++ plotted for Q = 0.2, λ = 1 and three different values of L. The case of L = 0.2 has two

extremums at rmin ≈ 0.21 and rmax ≈ 0.52. The case of rmin = rmax = rL happens for L = 0.14

where rL ≈ 0.31.

and

κP =
2Q
rP

, (3.176a)

φP = ß
(

1
4
− βr2

P
12γ

)
. (3.176b)

In Fig. 7.7 we have demonstrated the OSK for particles with three different impact

parameters. The larger the impact parameter is, the more the trajectories need to curve

in their final segment, before their in-fall to the black hole.

Now that the deflecting trajectories have been discussed, we will pay attention to

the case that the particles’ impact parameter raise to that of unstable circular orbits.

Critical trajectories

In the case of E = EU , the particles can be confined on unstable circular orbits of the

radius rU . This kind of motion is indeed ramified into two cases; critical trajectories

of the first kind (CFK) in which the particles come from a distant position R̃ to rU and

those of the second kind (CSK) where the particles start from an initial point R̃0 at the

vicinity of rU and then tend to this radius by spiraling. Applying the angular equation

of motion and pursuing the same methods as in the case of deflecting trajectories, we

obtain the following equations of motion for the aforementioned trajectories:

rI(ϕ) =
R̃√

(1 + R̃2

r2
U
) tanh2 (φC1 + κCϕ)− 1

(3.177)
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Figure 3.17: Orbits of the second kind for particles approaching the black hole at r = rP,

for three different impact parameters, b = 1.3, 1.5 and 2.7. As we can see, smaller impact

parameters in this kind of orbit result in larger paths for the orbiting particles before their fall

into the event horizon, and therefore, a more intense change in the shape of orbit in the final

segment. The plots have been done for Q = 1 and λ = 10.

for the CFK, and

rI I(ϕ) =
R̃0√

(1 + R̃2
0

r2
U
) tanh2 (φC2 + κCϕ)− 1

(3.178)

for the CSK. Here,

κC =
rU

√
R̃2 + r2

U

λL
, (3.179a)

φC1 = arctanh

 rU√
R̃2 + r2

U

 , (3.179b)

φC2 = arctanh

 rU

√
R̃2 + R̃2

0

R̃0

√
R̃2 + r2

U

 . (3.179c)

In Fig. 3.18, the CFK and CSK have been demonstrated in a single figure to indicate

their difference in approach to the region of the circular orbits.

Capture zone

In addition to the OSK, terminating orbits can also occur when the value of E for the

approaching particles exceeds that of unstable circular orbits; i.e. E > EU . If we

consider approaching particles with the same angular momentum, this corresponds

to particles with b < bU , where bU = LU
EU

is the critical impact parameter possessed by

particles traveling on the unstable circular orbits. The equation of captured trajectories

is similar to that for the deflecting trajectories and is obtained by replacing rA or rP by a
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Figure 3.18: The critical trajectories rI(ϕ) (blue) and rI I(ϕ) (orange) plotted for Q = 1, λ = 10

and L = 2. For this values, EU ≈ 1.5 and rU ≈ 1.6 and the trajectories have been plotted for

R̃ ≈ 7.67 and R̃0 = 1.3.
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Figure 3.19: The captured trajectories for particles approaching from r0 = 5, plotted for Q = 1,

λ = 10 and L = 2. Accordingly, the critical impact parameter is bU ≈ 2 and the trajectories

plotted here correspond to b = 1.18, 1 and 0.67.

constant initial distance, say r0, as an arbitrary starting point. This kind of motion, has

been plotted in Fig. 3.19 for three different impact parameters in the allowed range.

3.3.2 Radial Trajectories

In this subsection, a similar phenomenon, as studied in subsection 3.2.1 will be studied

for radially moving massive particles in the exterior geometry of the CWBH.

The radial motion of particles is characterized by the condition L = 0, for which

the effective potential reduces to

Vr(r) = 1 − r2

λ2 − Q2

4r2 . (3.180)

which allows a maximum at ru =
√

Qλ
2 , having the value

Vr(ru) ≡ E2
u = 1 − Q

λ
. (3.181)
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Before going any further, let us ramify the types of possible radial motions, based on

the value of E2 compared with the above E2
u.

• Frontal scattering: When E < Eu, particles approaching the black hole from a fi-

nite distance, are diverted at ra (or rp) towards the black hole’s horizons. Since

no angular motion is considered for the particles, this kind of scattering is com-

pletely frontal.

• Critical radial motion: For E = Eu, particles can stay on an unstable radial distance

of radius r = ru. Therefore, particles coming from an initial distance ri or di

(ru < ri < r++ and r+ < di < ru) will ultimately fall on ru.

• Radial capture: If E > Eu, particles coming from a finite distance ρ0 (r+ < ρ0 <

r++), are pulled towards the horizons from the same distance.

We will study these types of radial trajectories which are classified in terms of E. For

now, let us rewrite the radial velocity relations given in Eqs. (3.28) and (3.109) as

(
dr
dτ

)2

=
r4 + (E2 − 1)λ2r2 + Q2λ2

4
λ2r2 ≡ p(r)

r2 , (3.182)(
dr
dt

)2

=
(r2 − r2

+)
2(r2

++ − r2)2 p(r)
E2λ4r6 . (3.183)

These are the key relations in scrutinizing the radial trajectories of different kinds. As

before, the possible motions are studied regarding the time measurements done by

observers comoving with the trajectories (τ) and distant observers (t).

Frontal scattering

Two turning points are available at either sides of ru, namely rp < ru < ra (see Fig. 7.4).

Since they are turning points, these distances are identified by solving p(r) = 0, from

which we obtain

rp = λ
√

1 − E2 sin
(

1
2

arcsin
(

1 − E2
u

1 − E2

))
, (3.184)

ra =
√

1 − E2 cos
(

1
2

arcsin
(

1 − E2
u

1 − E2

))
. (3.185)

In the case of E = 0, the above radial distances tend to the event and cosmological hori-

zons. In Fig. 7.4, the effective potential Vr(r) has been plotted, where the extremum ru

and the turning points rp and ra are indicated. Since these turning points are solutions

84



3.3. MOTION OF MASSIVE PARTICLES

0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

r

Vr(r)

r++r+ ru

rp ra

Figure 3.20: The effective potential for radial trajectories plotted for Q = 1 and λ = 10. The

radial distances ru, rp and ra have been indicated.

to p(r) = 0, we can therefore rewrite Eq. (6.58) as(
dr
dτ

)2

=
(r2 − r2

a)(r2 − r2
p)

r2 ≡ ps(r)
λ2r2 , (3.186)

which implies p(r) = ps(r)
λ2 . The first kind of scattering, happens when the particles

approach at ra. Let us assume that for comoving and distant observers, the particles

are at r = ra, when τ = t = 0. Accordingly, exploiting Eqs. (3.186) and (6.59), we

obtain the following radial dependencies for the time parameters:

τ(r) =
λ

2
ln

∣∣∣∣∣∣
2
(√

ps(r) + r2
)
− (1 − E2)

2r2
a − (1 − E2)

∣∣∣∣∣∣ (3.187)

for the comoving, and

t(r) =
λ3E

2(r2
++ − r2

+)

[
r2
++ ln |F1(r)|√

ps(r++)
− r2

+ ln |F2(r)|√
ps(r+)

]
(3.188)

for the distant observers, where

F1(r) =
(r2

++ − r2
a)

(r2
++ − r2)

F++(r)
F++(ra)

, (3.189a)

F2(r) =
(r2

a − r2
+)

(r2 − r2
+)

F+(r)
F+(ra)

, (3.189b)

in which,

F++(r) = 2ps(r++) + (1 − E2 − 2r2
++)(r

2
++ − r2) + 2

√
ps(r++) P++(r), (3.190a)

F+(r) = 2ps(r+)− (1 − E2 − 2r2
+)(r

2 − r2
+) + 2

√
ps(r+) P+(r), (3.190b)
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Figure 3.21: The radial behavior of the proper and coordinate times in the two kinds of frontal

scattering, plotted for Q = 0.2, λ = 1 and E2 = 0.6. After being scattered from ra (or rp), the

comoving observers see a horizon crossing. This is while a distant observer never observe this

(frozen falling particles).

and

P++(r) = ps(r++) + (1 − E2 − 2r2
++)(r

2
++ − r2) + (r2

++ − r2)2, (3.191a)

P+(r) = ps(r+)− (1 − E2 − 2r2
+)(r

2 − r2
+) + (r2 − r2

+)
2. (3.191b)

To obtain the radial behavior of the time parameters in the second kind scattering

(scattering from rp), it suffices to change ra → rp in the above relations and reverse

the evolution. In Fig. 3.21, the radial behaviors of t(r) and τ(r) have been plotted for

a specific value of E for the two kinds of scattering. As we can see, the comoving

observers see particles crossing the horizons, whereas, according to the distant ob-

servers, the particles will never cross the horizons. In this regard, at the vicinity of the

horizons, the particles appear frozen to the distant observers.

Critical radial motion

Motion of particles with E = Eu, coming from ri > ru or di < ru (respectively, regions

(I) and (I I) in Fig. 3.29), depends on the initial conditions at these points. According

to Fig. 3.29, the discontinuity of dτ
dr and dt

dr , at ri and di, tell us about the final fate of

the approaching particles. In this regard, they can either fall on r = ru or be pulled

towards the horizons. Both fates can be obtained by integrating the equations of mo-

tion for the time parameters. For particles coming from ri, we derive the following
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Figure 3.22: Plot of the critical radial motion in regions (I) and (I I), plotted for Q = 0.2, λ = 1

and E2 = 0.8. It is assumed ri = 0.6 and di = 0.2. In both cases, the comoving and distant

observers see that the particles approach ru asymptotically, whereas once again, the horizon

crossing is seen only for comoving observers.

temporal relations in accordance with the comoving and distant observers:

τI(r) = ±λ

2
ln
∣∣∣∣ r2 − r2

u

r2
i − r2

u

∣∣∣∣ , (3.192)

tI(r) = ±λ3E
2

[tu(r)− t++(r)− t+(r)] , (3.193)

where

t++(r) =
r2
++

(r2
++ − r2

+)(r2
++ − r2

u)
ln
∣∣∣∣ r2

++ − r2

r2
++ − r2

i

∣∣∣∣ , (3.194a)

t+(r) =
r2
+

(r2
++ − r2

+)(r2
u − r2

+)
ln
∣∣∣∣ r2 − r2

+

r2
i − r2

+

∣∣∣∣ , (3.194b)

tu(r) =
r2

u

(r2
++ − r2

u)(r2
u − r2

+)
ln
∣∣∣∣ r2 − r2

u

r2
i − r2

u

∣∣∣∣ . (3.194c)

The corresponding evolution of these coordinates has been demonstrated in Region

(I) of Fig. 3.29. The temporal equations of motion for particles coming from di are

similar to the last ones and are given by considering the exchanges τI I(r) = −τI(r),

tI I(r) = −tI(r) and ri → di. Region (I I) of Fig. 3.29, indicates their radial evolution.

Radial capture

In the case that E > Eu, the particle trajectories are inevitably pulled towards the hori-

zons; the particles are captured. To solve Eq. (6.58) for the comoving time parameter,

we consider a reference value E = 1 + Q
λ which is in general, larger than Eu. If we
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assume that at τ = 0, the particles are at a finite distance ρ0 (i.e. τ(ρ0) = 0), then the

solutions are classified as

• For E2
u < E2 < 1 + Q

λ :

τ(r) = ±λ

2

[
arcsinh

(
2r2 + E2 − 1

ηE

)
− k0

]
. (3.195)

• For E2 = 1 + Q
λ :

τ(r) = ±λ

2
ln
∣∣∣∣ 2r2 + Q
2ρ2

0 + Q

∣∣∣∣ . (3.196)

• For E2 > 1 + Q
λ :

τ(r) = ±λ

2
ln

∣∣∣∣∣ 2
√

p(r) + 2r2 + E2 − 1
2
√

p(r) + 2ρ2
0 + E2 − 1

∣∣∣∣∣ . (3.197)

In above, we have defined

ηE =

√
(E2 − E2

u)(1 +
Q
λ
− E2), (3.198a)

k0 = arcsinh
(

2ρ2
0 + E2 − 1

ηE

)
. (3.198b)

The relation of the time parameter for the distant observers can be considered the same

as that in Eq. (6.67), and we just need to replace ra → ρ0. In Fig. 3.23 we have plotted

the behavior of the above coordinates in the radial capture process. The behavior is

more or less like the radial scattering, except the fact that in both kinds of trajectories

(towards r++ or r+), the trajectories are being captured from the initial distance ρ0.

3.3.3 Geodetic precession

In 1916, de Sitter imposed a relativistic correction to the gyroscopic precession of the

Earth-Moon system in its orbiting motion in the curved spacetime around the sun

(de Sitter, 1916). This correction, known as geodetic effect (or geodetic precession, de

Sitter precession or de Sitter effect), does not take into account the rotation of the cen-

tral mass. The inclusion of this latter for rotating objects, results in a more general

effect, called the dragging of inertial frames (or the Lense-Thirring effect) (Lense &

Thirring, 1918). The geodetic precession effect has had a great influence in astrophysi-

cal observations and in fact constitutes one of the significant tests of general relativity.

From a theoretical viewpoint, however, there are several methods in the derivation of
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Figure 3.23: Plot of the radial capture for particles. With Q = 0.2, λ = 1 and ρ0 = 0.5.

The way of the behavior of the time parameters are similar to those in the radial scattering.

The plots have been done for three different values of E > Eu and are classified as dotted:

E2 = 1 < 1 + Q
λ , dashed: E2 = 1.2 = 1 + Q

λ and solid: E2 = 2 > 1 + Q
λ .

geodetic precession and frame dragging (Schiff, 1960; Ashby & Shahid-Saless, 1990;

Krisher, 1997; Jonsson, 2007; Wohlfarth & Pfeifer, 2013; Lämmerzahl et al., 2001; Will,

2014). Here, we pursue a well-known method, consisting of a transformation to the

local frame of an orbiting gyroscope in the curved spacetime generated by metric po-

tential (3.25). Same method has been employed to calculate the geodetic precession

in the Mannheim-Kazanas solution of the WCG (Said et al., 2013). Other methods, in-

cluding the parameterized post-Newtonian (PPN) formalism can be found extensively

in the available literature (Misner et al., 2017).

Now we calculate the geodetic precession of the spin vector S̄ of a gyroscope an-

gular motion which is orbiting with the angular velocity ω. To proceed with this, let

us identify the local frame of the gyroscope, by introducing the rotating coordinate

system, characterized by the new angular coordinate

dφ = dϕ − ω dt. (3.199)

This changes the non-rotating metric of the CWBH to that in rotating coordinates,

which for θ = π
2 reads as

ds2 = −
[
B(r)− r2ω2] (dt − r2ω

B(r)− r2ω2 dφ

)2

+
dr2

B(r)
+

r2B(r)
B(r)− r2ω2 dφ2. (3.200)

Comparing to the canonical form (Rindler, 2006)

ds2 = −e2Φ(dt − S̄idxi)2 + hijdxidxj, (3.201)
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where xi = (r, φ), we infer

Φ =
1
2

ln
(

B(r)− r2ω2) , (3.202)

S̄1 = 0, (3.203)

S̄2 =
r2ω

B(r)− r2ω2 , (3.204)

h11 =
1

B(r)
, (3.205)

h22 =
r2B(r)

B(r)− r2ω2 . (3.206)

We assume that all the possible non-gravitational forces acting on the gyroscope are

applied at its center of mass, so no torques are available in its rotating rest frame.

In this regard, the spin vector S̄ is Fermi-Walker transported along the gyroscope’s

world-line. Furthermore, if we consider the orbits are on a circle of constant radius rg,

then it is inferred that

∂Φ
∂r

∣∣∣∣
r=rg

= 0 =⇒ ω2
g =

Q2

4r4
g
− 1

λ2 . (3.207)

This also indicates that the curve r = rg is a geodesic and the gyroscope is indeed free

falling. The above angular velocity is essentially the Kepler frequency of the orbits.

The corresponding rotational rate of the gyroscope in its rest frame is given by (Schiff,

1960; Misner et al., 2017)

Ω2 =
e2Φ

8
hikhjl

[(
∂S̄i

∂xj −
∂S̄j

∂xi

)(
∂S̄k

∂xl −
∂S̄l

∂xk

)]
, (3.208)

which is calculated at r = rg. Therefore, applying Eqs. (3.202)–(3.206) in Eq. (3.208),

we obtain

Ωg = ωg, (3.209)

as the rotational rate of a gyroscope orbiting in the gravitational field of a CWBH. The

gyroscope is at rest in its proper frame, however, a distant observer will detect a time

dilation, which according to Eq. (3.200) is characterized by

∆τ =
√

B(rg)− r2
gω2

g ∆t =

√
1 − Q2

2r2
g

∆t. (3.210)

After a complete revolution, the orientation of the gyroscope’s spin vector, relative to

its rest frame, is changed by the angle

α̂rev = Ωg∆τrev = Ωg

√
1 − Q2

2r2
g

∆trev, (3.211)
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where ∆trev = 2π
ωg

is the coordinate time measured in one revolution. Hence, the

observed precession in the course of one orbit is calculated as α̂′
rev = 2π − α̂rev, that

by exploiting Eqs. (3.209) and (3.211) yields

α̂′
rev = 2π

[
1 −

√
1 − Q2

2r2
g

]
. (3.212)

In the case that rg ≫ Q, to the first order of approximation, the precession in Eq. (3.212)

becomes

α̂′
rev ≈ πQ2

2r2
g

(
rad
rev

)
, (3.213)

where ”rad” and ”rev” stand for ”radians” and ”revolution”. The above relation has

been obtained in geometric units. The value of α̂′
rev is however dimensionless and can

be used to compare with the general relativistic results within proper conditions.

The general relativistic precession for a gyroscope rotating a mass m̃ in a circular

orbit of radius rg, is given by (Rindler, 2006)

α̂′
rev(gen) ≈

3πm̃
rg

(
rad
rev

)
(3.214)

in geometric units (for a guide to the change of units see appendix B.1). The period of

the gyroscope’s orbit is easily obtained as

T̃rev(gen) = 2π

√
r3

g

m̃

( m
rev

)
. (3.215)

Hence, using Eq. (3.214) and (3.215) we have

α̂′
rev(gen) ≈

3m̃
3
2

2r
5
2
g

(
rad
m

)
. (3.216)

For the Earth of mass m̃e ≈ 4.43× 10−3 m, and radius Re = 6371× 103 m (Luzum et al.,

2011), if we let rg = Re, then T̃rev(gen) ≈ 1.52 × 1012 m, and the gyroscope will have

approximately 6.22 × 103 orbits around the Earth in one year. Using the above values

in Eq. (3.216) gives α̂′
rev(gen) ≈ 4.32 × 1021 rad

m ≈ 8.41 arcsec
yr

1 (see appendix B.1). In the

Gravity Probe B (GP-B) mission, a satellite containing four gyroscopes, was set to orbit

around the Earth at the altitude rh = 642 km. The general relativistic prediction of the

geodetic precession in the gyroscopic spin is therefore obtained by considering this

altitude, giving

α̂′
rev(gen) ≈ 8.41

[
Re

Re + rh

] 5
2

≈ 6.62
(

arcsec
yr

)
, (3.217)

11 rad = 206265 arcsec.
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which is equal 6620 mas
yr

2. This value is confirmed by the reported value, 6602± 18 mas
yr ,

from the GP-B mission in 2011 (Everitt et al., 2011, 2015).

Turning back to the problem of an orbiting gyroscope around a charged source

in WCG, it is plausible to adopt rg ≡ rU , where rU is the radius of circular orbits,

discussed in sub-subsection 3.3.1 and derived in Eqs. (3.121)–(3.123). Accordingly, the

period of the orbits, measured by a distant observer, is that given in Eq. (3.239). If we

apply these to the precession in Eq. (3.213), and re-scale the result, we get

α̂′
rev ≈

(
1.95 × 1024

) Q2bU

4r4
U

|B(rU)|
(

mas
yr

)
, (3.218)

in which the numerical factor is inferred from the earlier notes in the general relativis-

tic case and the explanations given in appendix B.1. In this relation, as introduced

before, bU is the impact parameter associated with the circular trajectories. Exploiting

Eq. (3.130) and the fact that E2
U = V(rU), yields

bU ≡ LU

EU
=

∣∣∣∣∣∣ ωU

ω2
U + 2

λ2 − 1
r2

U

∣∣∣∣∣∣ (m) , (3.219)

where we have defined

ω2
U =

Q2

4r4
U
− 1

λ2

(
1

m2

)
. (3.220)

To apply a numerical assessment of α̂′
rev, we need a spherically symmetric gravitating

system with positive net charge. For this reason, we use the presented data for the

case that the stability of charged white dwarfs with masses comparable to that of the

sun (M⊙) (Carvalho et al., 2018). To elaborate this, let us consider the gyroscope is

rotating such a white dwarf in a circular orbit of radius rU , given in Eq. (3.123). In

Table 3.1, the physical properties of the massive sources have been given. There, we

have also presented the calculated values of the precession in Eq. (3.218) for each case.

Note that, the central density ρ̃w has been considered in identifying the parameter λ

of the spacetime lapse function and the value of c1 has been specified in accordance to

the original article where the solution of the CWBH has been presented (Payandeh &

Fathi, 2012) (see appendix B.1 for more details). As it is expected from Eq. (3.218), the

precession vanishes for Q = Qw = 0. Adopting a very small angular momentum (of

order ∼ 10−8 m), we can see rather large precessions when Qw ̸= 0.

It is of worth to, once again, discuss the general relativistic approach. To do that

however, we need to consider static charged sources whose exterior geometry is given

2”mas” is an abbreviation for milliarcsec, and 1 mas = 4.848 × 10−9 rad
yr .
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Mw/M⊙ Rw (×103 m) ρ̃w (×10−14 m−2) Qw (m) α̂′
rev (mas/yr) α̂′

rev(RN) (mas/yr)

1.416 1021 1.71316 0 0 7.86833 × 1013

1.532 1299 2.25971 349.676 1.02422 × 1013 5.48841 × 1013

1.698 1539 2.5664 699.267 2.32618 × 1013 4.49524 × 1013

1.928 1336 4.91076 1053.77 6.70766 × 1013 6.69618 × 1013

2.203 1166 14.4211 1411.64 2.63875 × 1014 1.01421 × 1014

2.203 916.8 29.7037 1774.68 6.83293 × 1014 1.79096 × 1014

Table 3.1: The properties of the charged white dwarfs (Carvalho et al., 2018) (given in geomet-

ric units), and the values of precessions inferred from Eqs. (3.218) and (3.222). For the case of

precession in the CWBH geometry, we have let L = 10−7.6 m, and the radius of orbits for the

gyroscopes in the RN geometry has been put rg = Rw + rh for each of the cases.

by the RN metric with the lapse function (Ryder, 2009)

BRN(r) = 1 − 2m̃
r

+
Q2

0
r2 , (3.221)

describing spherically symmetric sources with charge Q0. As mentioned before, the

transition between the charged Weyl and the general relativistic geometries is not triv-

ial. Hence, we pursue the same method as introduced earlier, to obtain the general

relativistic precession in the context of charged sources. Accordingly, one obtains

α̂′
rev(RN) ≈

(
1.95 × 1024

) √m̃
(
3m̃rg − Q2

0
)

2r
7
2
g

 (
mas
yr

)
, (3.222)

assuming that rg ≫ m̃ and rg ≫ Q0. Supposing that the gyroscope is orbiting at

the altitude rh = 642 km around the same white dwarfs of the previous case, then

rg = Rw + rh. Taking into account m̃ = Mw, Q0 = Qw and M⊙ = 1.48 × 103 m, the

calculated general relativistic precessions have been given in the last column of Table

3.1. One can observe a remarkable conformity with the results inferred from WCG for

the case of Qw ̸= 0.

3.4 Motion of charged particles

The scattering of charged particles in electric fields is indeed one of the most re-known

phenomena in physics and has had numerous applications in small and large scale ob-

servations. Regarding the former, and without loss of generality, the famous Ruther-

ford scattering experiment that led to the discovery of the atomic nucleus, is described
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in terms of elastic deflecting trajectories of charged particles from a heavy charged cen-

tral mass. Such particle trajectories, beside being well-known in small atomic scales,

have been also investigated widely in black hole spacetimes. In fact, the study of mo-

tion of test particles in the gravitational field of black holes, dates back to the early days

of general relativity and ever since, it has found its way in classic textbooks (Misner

et al., 2017; Futterman et al., 1988; Chandrasekhar, 1998) and reviews (Poisson et al.,

2011; Blanchet et al., 2011). The interest in performing such studies, beside their ap-

plicability in testing general relativity and modified theories of gravity, stems mostly

in the opportunity that they provide to correctly analyze the dynamics of extremely

warped regions around black holes. In these regions, based on the effective gravita-

tional potential that affects the particles, they can lie on different types of orbits, among

which, and in particular, the deflecting trajectories relate tightly to the scattering phe-

nomena. It is well-known that the charge parameter of charged black hole spacetimes

(like the RN and Kerr-Newman (KN) geometries), contributes in the gravitational po-

tential of the black hole and therefore, can affect the motion of neutral particles. In

the case of charged test particles moving around such black holes, the additional elec-

tromagnetic potential changes the nature of deflecting trajectories to a special form

of the Rutherford scattering. The importance of this kind of motion is such that it

has received a large number of performed studies in analyzing, numerically and an-

alytically, the respected equations of motion and the scattering cross-sections. These

studies have been done in the contexts of GR and alternative gravity (Bicak et al.,

1989; Karas & Vokrouhlicky, 1990; Aliev & Özdemir, 2002; Pugliese et al., 2011; Oli-

vares et al., 2011; Fathi, 2013; Hackmann & Xu, 2013; Lim, 2015; Garcı́a et al., 2015;

Pugliese et al., 2017; Das et al., 2017; Iftikhar, Sehrish, 2018; Vrba et al., 2020; Khan

& Ren, 2020; Yi & Wu, 2020; Abdujabbarov et al., 2020; Javlon et al., 2020; Anacleto

et al., 2020; Villanueva & Olivares, 2015; Sarkar et al., 2018; Zhao et al., 2018; González

et al., 2018; Shaymatov et al., 2020; Narzilloev et al., 2020). Moreover, regarding the

chaotic nature of particle scattering (Stuchlı́k, Zdenek & Kolos, Martin, 2016), realistic

astrophysical situations can be found that also demonstrate the creation of ultra-high

energy particles (Stuchlı́k et al., 2020; Tursunov et al., 2020).

Although black holes with net electric charge are still remained as purely theo-

retical objects, however, studying them can pave the way in understanding physical

phenomena like radiation reaction of particles (Gal’tsov, 1982; Tursunov et al., 2018)

and black hole evaporation (Chen & Huang, 2019). Hence, the interest in investigating

particle motion around charged black holes becomes more justified and, as well as in
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general relativity, it has found its way into alternative theories of gravity.

Along the same effort, in this section, we investigate the motion and the scattering

of charged test particles, as they travel in the exterior of the CWBH, and as before,

we study different types of orbits, for the both cases of angular and radial motion.

Additionally, assuming the congruence deviation of a bundle of infalling world-lines,

we discuss the internal interactions between the particles and point out their effects

on the kinematical congruence expansion.

3.4.1 The Lagrangian dynamics of charged test particles

The Hamilton-Jacobi method of describing the motion of particles of mass m and

charge q in an electromagnetic field, is based on the superhamiltonian (Misner et al.,

2017)

H =
1
2

gµν pµ pν, (3.223)

in which the 4-momentum p satisfies pµ pµ = −m2 and is defined as

pµ = gµν
dxν

dτ
=
(
πµ + qAµ

)
, (3.224)

in terms of the affine parameter τ, the vector potential A and the generalized momen-

tum π, which is given according to the canonical Hamilton equation

dπµ

dτ
= − ∂H

∂xµ
. (3.225)

Recasting H in terms of the characteristic Hamilton function (i.e. the Jacobi action)

H = −∂S
∂τ

, (3.226)

we have πµ = ∂S
∂xµ and the Hamilton-Jacobi equation of the wave crests can be written

as
1
2

gµν

(
∂S
∂xµ

+ qAµ

)(
∂S
∂xν

+ qAν

)
+

∂S
∂τ

= 0. (3.227)

The generalized momentum π is indeed responsible for the possible constants of mo-

tion. For stationary spherically symmetric spacetimes, such as that of the CWBH, these

constants are

πt
.
= −E = gtt

dt
dτ

− qAt, (3.228a)

πϕ
.
= L = gϕϕ

dϕ

dτ
− qAϕ. (3.228b)
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As stated in section 3.1, the only non-zero term of the vector potential for the CWBH

is At =
q̃
r = Q√

2r
. One can therefore specify Eq. (3.227) for the equatorial orbits as

−1
B(r)

(
∂S
∂t

+
qQ√

2r

)2

+ B(r)
(

∂S
∂r

)2

+
1
r2

(
∂S
∂ϕ

)2

+ 2
∂S
∂τ

= 0. (3.229)

Based on the method of separation of variables of the Jacobi action, Eq. (3.229) can be

solved by defining (Carter, 1968)

S = −Et + S0(r) + Lϕ +
1
2

m2τ, (3.230)

for which, interpolation in Eq. (3.229) results in

S0(r) = ±
∫ dr

B(r)

√
(E − V−)(E − V+), (3.231)

where the radial potentials are given by

V±(r) = Vq(r)±

√
B(r)

(
m2 +

L2

r2

)
, (3.232a)

Vq(r)
.
=

qQ√
2r

. (3.232b)

Note that, both of the ± branches of V±(r) converge to the value E+ = qQ√
2r+

at r = r+,

which can be either positive or negative, depending on the sign of the electric charges,

q and Q. Here we adopt the condition qQ > 0, so that the V− branch is always negative

(in the causal region r+ < r < r++), and we can consider the positive branch as the

effective potential, i.e. Ve f f
.
= V+ ≡ V. Furthermore, applying Eqs. (3.230) and (3.231),

it is possible to obtain the following three velocities:

u(r) ≡ dr
dτ

= ±
√
(E − V−)(E − V), (3.233)

vt(r) ≡
dr
dt

= ± B(r)u(r)
E − Vq (r)

, (3.234)

vϕ(r) =
dr
dϕ

= ± r2u(r)
L

. (3.235)

The zeros of the above velocities do correspond to the so-called turning points, rt,

which are specified by the condition V(rt) = Et. Additionally, these equations lead to

the quadratures that determine the evolution of the trajectories. This is dealt with in

the forthcoming subsections and the corresponding analytical solutions are obtained.
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Figure 3.24: The effective potential for test particles with angular momentum, plotted for m =

1, L = 1, Q = 1, q = 0.5 and λ = 10. The turning points are determined by the intersection

of E and the effective potential (i.e. Et = V(rt)). These include the radius of unstable circular

orbits rU , and two other points, rS and rF.

3.4.2 Angular Motion

Here we focus on analyzing the trajectories followed by charged particles with non-

zero angular momentum (L ̸= 0). The effective potential in Eq. (3.232) has been plotted

in Fig. 3.24, in which the turning points rt correspond to the values of E = Et that

satisfy Et = V(rt). The significance of these points is that they do reveal the possible

orbits of the test particles. In fact, according to Fig. 3.24, three turning points are

highlighted; rt = rU (the radius of unstable circular orbits), rt = rS (the distance from

the point of scattering) and rt = rF (the point of no return, or the capturing distance).

Unstable circular orbits

As observed from the effective potential in Fig. 3.24, the orbits become unstable at the

a maximum, whose corresponding radius is limited from above to a circle of radius

rU , where the gravitational attraction caused by the mass of the source, is completely

replaced by the cosmological repulsion caused by the term ε̃. This radius of unstable

circular orbits, or the static radius (Stuchlı́k, 1983; Stuchlı́k & Hledı́k, 1999), is given by

the condition V ′(r) ≡ ∂V(r)
∂r

∣∣∣
rU

= 0. Hence, from Eq. (3.232) we get

(√
G(r; L)

B(r)
B′(r)

2
−

√
B(r)

G(r; L)
L2

r3 − qQ√
2r2

)∣∣∣∣∣
rU

= 0, (3.236)

97



CHAPTER 3. THE CASE OF A CHARGED WEYL BLACK HOLE

in which the function G(r; L) is defined as

G(r; L) = m2 +
L2

r2 . (3.237)

In fact, the left hand side of Eq. (3.236) leads to an incomplete polynomial of twelfth

degree in r, and hence, it can be solved only numerically. It is however still possible

to calculate the proper (Tτ) and the coordinate (Tt) periods of these orbits. Combining

Eqs. (3.233), (3.234) and (3.235), and the fact that for a complete orbit ∆ϕU = 2π, we

have

Tτ ≡ ∆τ =
2πr2

U
LU

, (3.238)

Tt ≡ ∆t =
2πr2

U
LU

EU − Vq(rU)

B(rU)
= Tτ

√
GU

BU
, (3.239)

where GU ≡ G(rU ; LU) and BU ≡ B(rU). Solving Eq. (3.236), we then obtain an ex-

pression for LU as (appendix B.2)

LU =

√
b−

√
b2 − 4ac
2a

, (3.240)

as the angular momentum for the circular orbits, where

a =
(Q2 − 2r2

U)
2

r6
U

, (3.241a)

b =
2Q2(1 + q2)

r2
U

− Q4(2 + q2)

2r4
U

− 8r2
U − 2Q2(1 − q2)

λ4 , (3.241b)

c =
Q4(1 + 2q2)

4r2
U

− 2q2Q2 +
4r6

U
λ4 − 2Q2r2

U(1 − q2)

λ2 . (3.241c)

Accordingly, one can obtain the proper frequency

ωτ =
2π

Tτ
=

√
b−

√
b2 − 4ac

2ar4
U

, (3.242)

straightly from Eqs. (3.238) and (3.240). The coordinate frequency can then be given

by the ratio

ωτ

ωt
=

√
GU

BU
. (3.243)

These values correspond to the velocity of particles on a surface, where they can main-

tain a circular orbit before falling into the event horizon or escape from it. In the study

of particle trajectories, the critical orbits can locate the innermost possible stable orbits
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around black holes and therefore are of great importance. The test particles, however,

can also be scattered at the turning point rS, pursue a hyperbolic motion and escape

the black hole. For electrically charged particles, this corresponds to the so-called

Rutherford scattering. We continue our discussion by analyzing this kind of orbit.

Orbits of the first kind and the gravitational Rutherford scattering

The particle deflection by the CWBH happens when the condition E+ < E < EU is

satisfied. This indeed results in two points of approach, rt = rS and rt = rF, at which,
dr
dϕ |rt = 0 or Et = V(rt) (see Fig. 3.24). The relevant equation of motion can be derived

from Eqs. (3.233) and (3.235), giving

(
dr
dϕ

)2

=
P(r)

υ2 , (3.244)

where

P(r) ≡ r6 +Ar4 + Br3 + Cr2 +D, (3.245a)

υ =
Lλ

m
, (3.245b)

with

A = υ2
(

E2 − m2

L2 +
1

λ2

)
, (3.246a)

B = −2Eυ2
(

qQ√
2L2

)
, (3.246b)

C =
D
L2 − B

2E
− υ2, (3.246c)

D = υ2
(

mQ
2

)2

. (3.246d)

To determine the turning points rS and rF, one therefore needs to solve P(rt) = 0,

which is an incomplete equation of sixth degree in r, and values of r(ϕ) can therefore

be obtained through numerical methods. To deal with this problem, we pursue the

inverse process and find an analytical expression for ϕ(r). The behavior of r(ϕ) can

then be demonstrated by means of numerical interpolations.

To proceed with this method, let us consider that P(r) has two distinct real roots,

corresponding to the turning points r1 = rS and r2 = rF, two equal and negative

real roots, say r3 = r4 < 0 , and finally, a complex conjugate pair r5 and r6 = r∗5 .
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Accordingly, we can recast P(r) as

P(r) =
6

∏
j=1

(r − rj)

= (r − rS)(r − rF)(r − r5)(r − r3)
2(r − r∗5). (3.247)

Taking into account the outgoing trajectories, the equation of motion (3.244) can then

be written as

ϕ(r) = υ
∫ r

rS

dr√
P(r)

. (3.248)

Particles reaching rS, experience an OFK that has the significance of gravitational

Rutherford scattering when the test particles are electrically charged. Considering

the change of variable

uj
.
=

1
rj
rS
− 1

, j = {2, 3, 5, 6}, (3.249)

the above integral results in (appendix B.3)

ϕ(r) = κ0

[
ß(U)− u3

4
F(U)

]
, (3.250)

where

F(U) =
1

℘′(ΩS)

[
2ζ(ΩS)ß(U) + ln

∣∣∣∣σ (ß(U)− ΩS)

σ (ß(U) + ΩS)

∣∣∣∣] , (3.251)

for which, the Weierstraß invariants are

g2 =
a2

12
− b

4
, (3.252a)

g3 =
1
16

(
ab
3

− 2a3

27
− c
)

. (3.252b)

Here, we have defined

U ≡ U(r) =
1

4
(

r
rS
− 1
) +

a
12

, (3.253a)

ΩS = ß

 a
12

− 1

4
[

r3
rS
− 1
]
 , (3.253b)

with

a = u2 + u5 + u6, (3.254a)

b = u2(u5 + u6) + u5u6, (3.254b)

c = u2u5u6. (3.254c)
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Figure 3.25: The Rutherford scattering plotted for m = 1, Q = 1, q = 0.5, λ = 10 and L = 1.

For these values, r+ = 0.50, rU = 0.69 and EU = 1.72. The trajectories have been plotted for

E1 = 0.88, E2 = 1.1, E3 = 1.3, E4 = 1.5 and E5 = 1.7, while their corresponding scattering

distance (rS) have been indicated by dashed circles. As it is observed, the condition E5 ≈ EU

has made the corresponding shape of the scattering to be of a convex form, showing an appeal

to the critical orbits.

The scattering angle in Eq. (3.250) gives the change in the particles’ orientation as they

approach and recede the black hole at the scattering point rS. To illustrate their corre-

sponding trajectories, we make a list of points (rt, ϕ(rt)) and then find the numerical

interpolating function of r(ϕ). The resultant OFK trajectories have been illustrated in

Fig. 3.25 for particles of different values for E. As it is observed, the scattering can

be formed convexly (approaching) or concavely (receding). For particles coming from

infinity, the scattering angle can be written as (Villanueva & Olivares, 2015)

ϑ = 2ϕ∞ − π, (3.255)

in which ϕ∞ ≡ ϕ(∞). Accordingly, from Eq. (3.250) we have

ϑ = −π + 2κ0

ß
( a

12

)
+

u3

4

 1√
1

432

(
4a3 − 18ab + 27u3

(
b − au3 + u2

3

))
×
[

2ζ(ΩS)ß
( a

12

)
+ ln

∣∣∣∣∣σ
(
ß
( a

12

)
− ΩS

)
σ
(
ß
( a

12

)
+ ΩS

) ∣∣∣∣∣
]}]

. (3.256)

The value of ϑ is specified directly by the initial E and the corresponding particular

solutions rj, which are determined by the equation E = V(r). These values there-

fore, cannot be considered to evolve in terms of a single variable. However, one can
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CHAPTER 3. THE CASE OF A CHARGED WEYL BLACK HOLE

calculate the scattering angle for each particular trajectory, by applying Eq. (3.256).

Additionally, the differential cross section (3.161) can be calculated for the charged

particles. To proceed with this, from Eqs. (3.250) and (3.255) we have

1
2κ0

(ϑ + π) = φ1 + φ2, (3.257)

in which

φ1 ≡ ß
( a

12

)
, (3.258a)

φ2 ≡ −u3

4
F
( a

12

)
. (3.258b)

We define

Ψ(L) .
= ℘

(
ϑ + π

2κ0

)
= ℘ (φ1 + φ2) , (3.259)

or (Byrd & Friedman, 1971)

Ψ(L) =
1
4

[
℘′(φ1)− ℘′(φ2)

℘(φ1)− ℘(φ2)

]2

− ℘(φ1)− ℘(φ2). (3.260)

Now, applying the definition in Eq. (3.260), we can recast Eq. (3.161) as

σ(ϑ) = b csc ϑ

∣∣∣∣∂Ψ
∂ϑ

∣∣∣∣ ∣∣∣∣ ∂b
∂Ψ

∣∣∣∣ = 1
4κ0

csc ϑ

∣∣∣∣℘′
(

ϑ + π

2κ0

)∣∣∣∣ ∣∣∣∣∂b2

∂Ψ

∣∣∣∣ , (3.261)

for which, the identity ∂b2

∂Ψ = ∂b2/∂L
∂Ψ/∂L yields

σ(ϑ) =
L

2κ0E2 csc ϑ

∣∣∣∣℘′
(

ϑ + π

2κ0

)∣∣∣∣ ∣∣∣∣∂Ψ
∂L

∣∣∣∣−1

. (3.262)

The expression of Ψ is analytically complicated. However, as before, the value of

Eq. (3.262) can be numerically calculated regarding definite initial values for distinct

scattered trajectories.

3.4.3 Radial Trajectories

The vanishing angular momentum of the radially moving particles, reduces the effec-

tive potential in Eq. (3.232) to

Vr(r) = Vq(r) + m
√

B(r), (3.263)

whose behavior has been plotted in Fig. 7.4. Accordingly, the motion becomes unsta-

ble where V ′
r (r) = 0, solving which, leads to the maximum distance of the unstable

motion, reading as

ru =

[
α̃ −

√
α̃2 − β̃

]1/2

, (3.264)
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Figure 3.26: The effective potential for radially moving particles plotted for m = 1, Q = 1,

q = 0.5 and λ = 10. The maximum distance of unstable motion, ru, and the two turning

points rs and r f have been indicated in accordance with their corresponding values of E. In

particular, the point Rs is related to the distance at which the particles of the constant of motion

E+, experience their Rutherford scattering.

where (see appendix B.4)

α̃ =

√
Ũ − ã

6
, (3.265a)

β̃ = 2α̃2 +
ã
2
+

b̃
4α̃

, (3.265b)

given that

Ũ = 2

√
η̃2

3
cosh

(
1
3

arccosh

(
3
2

η̃3

√
3
η̃3

2

))
, (3.266)

with

ã = −Q2λ2

2

(
1 − q2

m2

)
, (3.267a)

b̃ = −q2Q2λ4

2m2 , (3.267b)

c̃ =
Q4λ4

16

(
1 +

2q2

m2

)
, (3.267c)

η̃2 =
ã2

48
+

c̃
4

, (3.267d)

η̃3 =
ã3

864
+

b̃2

64
− ãc̃

24
. (3.267e)

Taking into account Eu ≡ Vr(ru), as in the angular case, possible motions are catego-

rized based on the value of E compared with its critical value, Eu:

• Frontal Rutherford scattering of the first and the second kinds (RSFK and RSSK): For

E++ < E < Eu, the potential allows for a turning point rs (ru < rs < r++) which
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CHAPTER 3. THE CASE OF A CHARGED WEYL BLACK HOLE

corresponds to the scattering distance (RSFK). In the case that E+ < E < Eu,

there is also another turning point r f (r+ < r f < ru), from which, the trajectories

are captured into the event horizon (RSSK).

• Critical radial motion: For E = Eu, the particles can stay on an unstable radial

distance of radius r = ru. Therefore, those coming from the initial distances ri

or di (ru < ri < r++ and r+ < di < ru respectively), will ultimately fall on ru, or

cross the horizons.

Now, let us rewrite the radial velocity relations, given in Eqs. (3.233) and (3.234), as(
dr
dτ

)2

=
m2p(r)

λ2r2 , (3.268)(
dr
dt

)2

=
m2(r2 − r2

+)
2(r2

++ − r2)2p(r)

E2λ6r4(r −
√

2qQ
E )2

, (3.269)

with

p(r) ≡ r4 + ār2 + b̄r + c̄, (3.270)

where

ā =
(E2 − m2)λ2

m2 , (3.271a)

b̄ = −
√

2qQEλ2

m2 , (3.271b)

c̄ =
Q2(m2 + 2q2)λ2

4 m2 . (3.271c)

Frontal scattering

As it is inferred from the effective potential in Fig. 7.4, particles can encounter two

turning points rs and r f which are located at either sides of the critical distance (r f <

ru < rs). These turning points do lead the trajectories to different fates. Particles with

E++ < E < E+, however, can only escape the black hole by being scattered at the only

possible turning point rs. Same as discussed in Sec. 6.2.3, the turning points are where

the particles’ coordinate velocity vanishes, which for the radial trajectories requires

p(r) = 0 in Eq. (6.71), giving

rs = ᾱ +
√

ᾱ2 − β̄, (3.272)

r f = ᾱ −
√

ᾱ2 − β̄. (3.273)

These radii are basically based on the same components as in Eqs. (3.265)–(3.267), and

we only need to replace ã → ā, b̃ → b̄ and c̃ → c̄, according to the values given in
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Eqs. (3.271). Having determined the turning points, the polynomial p(r) can be de-

composed accordingly. As described above, the first kind scattering (RSFK) happens

when the particles approach at rs, which is now considered as their initial position.

Therefore Eq. (6.58) can be solved as (appendix B.5)

τ(r) =
−λ

m
√

γ0

[
ß(U) +

1
4

F(U)

]
, (3.274)

where

F(U) =
1

℘′(Ωs)

[
2ζ(Ωs)ß(U) + ln

∣∣∣∣σ (ß(U)− Ωs)

σ (ß(U) + Ωs)

∣∣∣∣] , (3.275)

and the function U(r) and the Weierstraß coefficients are given as

U(r) =
rs

4(r − rs)
+

γ1

12γ0
, (3.276a)

Ωs = ß
(

γ1

12γ0

)
, (3.276b)

ḡ2 =
γ2

1

12γ2
0
− 1

γ0
, (3.276c)

ḡ3 =
1
16

(
4γ1

3γ2
0
−

2γ3
1

27γ3
0
− 1

γ0

)
, (3.276d)

with

γ1 = 6 +
ā
r2

s
, (3.277a)

γ0 = 4 +
2ā
r2

s
+

b̄
r3

s
. (3.277b)

The relation in Eq. (6.63) measures the radial change of the time parameter for ob-

servers comoving with the particles. For distant observers, such measurement is done

on the coordinate time, whose evolution can be obtained by exploiting the velocity in

Eq. (6.59). Applying the same method as before, we obtain

t(r) = −δ0

[
ß(U) +

1
4

4

∑
k=1

δkFk(U)

]
, (3.278)

where

Fk(U) =
1

℘′(Ωk)

[
2ζ(Ωk)ß(U) + ln

∣∣∣∣σ (ß(U)− Ωk)

σ (ß(U) + Ωk)

∣∣∣∣] , (3.279)

and

Ωk = ß
(

γ1

12 γ0
+

zk

4

)
, (3.280)
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Figure 3.27: The radial behavior of the proper and coordinate times in the RSFK, for three

scattering points and their corresponding values of E. After the scattering, the comoving ob-

servers (thick line) see a horizon crossing. This is while a distant observer (thin line) never

observes this (frozen falling particles). The plots have been done for m = 1, Q = 1, q = 0.5

and λ = 10.

in which zk
.
= 1

(rk/rs)−1 , with r1 ≡ r+, r2 ≡ −r+, r3 ≡ r++ and r4 ≡ −r++, and the

coefficients are expressed as

δ0 =
λ2 E

m
√

γ0

z1z2z3z4

z5r2
s

, (3.281a)

δ1 =
(z1 + 1)2z1(z1 − z5)

(z1 − z2)(z1 − z3)(z1 − z4)
, (3.281b)

δ2 =
(z2 + 1)2z2(z2 − z5)

(z2 − z1)(z2 − z3)(z2 − z4)
, (3.281c)

δ3 =
(z3 + 1)2z3(z3 − z5)

(z3 − z1)(z3 − z2)(z3 − z4)
, (3.281d)

δ4 =
(z4 + 1)2z4(z4 − z5)

(z4 − z1)(z4 − z2)(z4 − z3)
. (3.281e)

Since these trajectories escape the black hole, they will eventually confront the cosmo-

logical horizon. In Fig. 3.27, the temporal relations in Eqs. (6.63) and (6.67) have been

used to demonstrate the RSFK, as observed by comoving and distant observers, for

three different scattering distances.

Frontal scattering of the second kind

By switching the scattering distance to r f , the particles experience the RSSK and they

confront the event horizon. The corresponding equations of motion are the same as

those in the case of RSFK and are given by exchanging rs ↔ r f in the relations. The

corresponding temporal parameters have been demonstrated in Fig. 3.28. Same as be-
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Figure 3.28: The RSSK for two different scattering points and their corresponding values of E,

plotted for m = 1, Q = 1, q = 0.5 and λ = 10.

fore, the comoving and distance observers see different fates for the infalling particles,

but here, regarding the capture process by the event horizon.

Critical radial motion

In the case that E = Eu, the unstable (critical) motion of particles depends on whether

they approach from ri > ru or from di < ru. According to the discontinuity of dτ
dr and

dt
dr at ri and di, we can expect two different behaviors for the approaching particles, in

the sense that they either fall on r = ru (fate I) or be pulled towards the horizons (fate

I I). These are revealed by integrating the equations of motion for the time parameters.

For particles coming from ri, we obtain

τI(r) = ± λ

m
[τA(r)− τB(r)− τA(ri) + τB(ri)] , (3.282)

τI I(r) = ∓ λ

m
[τA(r)− τB(r)− τA(di) + τB(di)] , (3.283)

for the comoving observers, where

τA(r) = arcsinh

(
r + ru√
ā + 2r2

u

)
, (3.284a)

τB(r) =
ru√

6r2
u + ā

arcsinh

(
6r2

u + ā + 2ru(r − ru)

|r − ru|
√

ā + 2r2
u

)
. (3.284b)

For the distant observers, we get

tI(r) = ±λ3E
mr2

u

4

∑
n=0

ϖn [tn(r)− tn(ri)] , (3.285)

tI I(r) = ∓λ3E
mr2

u

4

∑
n=0

ϖn [tn(r)− tn(di)] , (3.286)
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Figure 3.29: The critical radial motion for fates I and I I, plotted for comoving (thick line) and

distant (thin line) observers, by letting m = 1, Q = 1, q = 0.5 and λ = 10. The trajectories have

been specified for particles approaching from (a) r = ri = 5 and (b) r = di = 0.68.

where

tn(r) =
ru√
R2

n
arcsinh

(
R2

n + (ru + rn)(r − rn)

|r − ru|
√

ā + 2r2
u

)
, (3.287a)

R2
n = 3r2

u + ā + 2rurn + r2
n, (3.287b)

and the coefficients are given as

ϖ0 =
r3

u(ru − r5)

(r1 − ru)(r2 − ru)(r3 − ru)(r4 − ru)
, (3.288a)

ϖ1 =
rur2

1(r1 − r5)

(r1 − ru)(r1 − r2)(r1 − r3)(r1 − r4)
, (3.288b)

ϖ2 =
rur2

2(r2 − r5)

(r2 − ru)(r2 − r1)(r2 − r3)(r2 − r4)
, (3.288c)

ϖ3 =
rur2

3(r3 − r5)

(r3 − ru)(r3 − r1)(r3 − r2)(r3 − r4)
, (3.288d)

ϖ4 =
rur2

4(r4 − r5)

(r4 − ru)(r4 − r1)(r4 − r2)(r4 − r3)
, (3.288e)

in which r0 ≡ ru, r1 ≡ r+, r2 ≡ −r+, r3 ≡ r++ and r4 ≡ −r++. The critical radial

behavior of temporal parameters, as measured by the comoving and the distant ob-

servers, have been plotted in Fig. 3.29, separately for the initial points ri and di. In each

of the diagrams, the cases I and I I have been demonstrated and the horizon crossing

is shown accordingly.

So far, both the angular and the radial trajectories of charged particles were studied

and possible analytical solutions to the equations of motion were given. It is however

worth mentioning that the study of the physical properties of moving particles is not

summarized to the evolution of a single particle’s trajectory. In the case that a bundle
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of trajectories is taken into account, definite kinematical parameters will play impor-

tant roles in the characterization of a flow of particle trajectories. Accordingly, and in

the next subsection, we consider such a flow of particles and study how it reacts to the

internal and external forces acting on the world-lines.

3.4.4 A congruence of infalling charged particles

We consider a bundle of particle trajectories, which together, constitute a congruence

of world-lines that fall onto the CWBH. Essentially, the congruence kinematics is a tool

to inspect the Penrose–Hawking singularity theorems (Penrose, 1965; Hawking, 1965,

1966; Penrose, 2002) and is accurately formulated by the well-known Raychaudhuri

equation (Raychaudhuri, 1955). This equation formulates the way the congruences

would evolve their cross-sectional (transverse) area (Kar & SenGupta, 2007).

Here, we switch our discussion to the possibility of applying some geometrical

methods in order to demonstrate the deviation of a congruence of time-like trajectories

while they pass the black hole. For particles passing a RN black hole, this deviation

has been studied in detail (Balakin et al., 2000; Heydari-Fard et al., 2019).

In the geometric sense, the congruence deviation gives the relative acceleration

between the curves that are generated by the tangential vector u, in terms of the Jacobi

(deviation) vector field ξ. This vector field resides on the curves that connect points of

equal τ on smooth planes of world-lines. These vectors satisfy (Wald, 1984; Poisson,

2009)

Luξ = Lξu, (3.289)

where LX indicates the Lie differentiation with respect to a vector field X . The above

equation therefore can be recast as

ξµ
;νuν = uµ

;νξν. (3.290)

In above, the semicolons correspond to covariant differentiation. Note that, the quan-

tity ξ · u3 varies along the congruence as (?)

D
dτ

(ξ · u) ≡ (ξ · u);ν uν

=
1
2
(u · u);ν ξν + aµ;νξµuν, (3.291)

where

aµ = uµ
;νuν, (3.292)

3Throughout this thesis, we notate x · y = gµνxµyν for two vectors x and y.
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is the four-acceleration of the non-inertial frames, according to non-gravitational ef-

fects. In this regard, a non-zero a corresponds to a vector field which is not parallel-

transported along the world-lines. Accordingly, the congruence deviation equation

can then be written as

Aµ .
=

D2ξµ

dτ2 ≡
(
ξµ

;νuν
)

;γ uγ

= aµ
;νξν − Rµ

ναβuνξαuβ. (3.293)

This vector, measures the relative acceleration between two world-lines, as measured

by the change in ξ, and connects it to the spacetime curvature (Pirani, 1956; Bażański,

1989).

According to the Eqs. (3.233), (3.234) and (3.235), we know that a congruence of

charged particles with angular motion, that fall onto the charged black hole, is gener-

ated by the following four-velocity:

uµ =

(
E − Vq(r)

B(r)
,
√
(E − V−)(E − V), 0,

L
r2

)
, (3.294)

which satisfies u · u = −m2 (we let m = 1). The congruence deviation (Jacobi) field,

related to the vector field (3.294), can then take the generic form

ξµ =
(

ξ0(r), ξ1(r), 0, ξ3(r)
)

, (3.295)

for which, the consideration of the Lie transportation condition (i.e. Luξ = 0), pro-

vides

ξ0(r) = 211/4λ2

 E − rVq(r)
4 − 4λ2 + Q2λ2 −

E − Vq(r)

r2
(

4 − 4λ2 + Q2λ2

r2

)
 , (3.296)

ξ1(r) = 23/4
√
(E − V)(E − V−), (3.297)

ξ3(r) = −25/4L
(

1 − 1
r2

)
. (3.298)

The above vector field results in a non-zero rate of change of ξ · u, indicating that the

Jacobi field ξ is nowhere orthogonal to the congruence.

The four-acceleration of the infalling charged particles in electromagnetic fields,

obey the following relation (Misner et al., 2017):

aµ = − q
m

gµνFναuα, (3.299)

which is given in terms of the field strength tensor

Fµν = Aν;µ − Aµ;ν. (3.300)
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Figure 3.30: The behaviors of ∥A∥ and Θ for 0.3 < E < 1.9, considering Q = 1, q = 0.5, λ = 10

and L = 1. The corresponding event and cosmological horizons are located respectively at 0.5

and 9.98. The contours indicate discrete values for the parameters for specific ranges of r and

E. In particular, the parameter Θ, beside discrete ones, can have very close values that reside

on a line tangent to the contours.

Accordingly, the congruence deviation equation (3.293) can be recast as (Balakin et al.,

2000; Heydari-Fard et al., 2019)

Aµ = −Rµ
ναβuνξαuβ − q

m
gµα

(
Fαβ;νuβξν + Fαβuβ

;νξν
)

. (3.301)

Since, this acceleration is related to the internal interaction of the world-lines, it nat-

urally affects the expansion of the congruence. This expansion is defined as the frac-

tional rate of change of the transverse subspace of the congruence, and in our case is

defined as (?)

Θ = uµ
;µ. (3.302)

Accordingly, we can compare the behavior of A with that of the congruence expan-

sion as the particle world-lines approach the black hole. For this, we consider the

norm of the aforementioned vector field, i.e. ∥A∥4, and plot it for a definite range of

E, inside the causal region. Same is done for the congruence expansion (see Fig. 3.30).

As it is seen in the figures, the approaching congruence is of positive expansion, so

that its transverse cross-section increases in area and the world-lines recede from each

other. This is in agreement with the positive acceleration between the world-lines, as

it is shown in the diagram of ∥A∥. As the particles approach the event horizon, the

4The norm of a vector X is defined as ∥X∥ .
=

√
X ·X .
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congruence’s internal acceleration merges to a single value at a specific E, which in-

dicates that only distinct particles can reach that region and there they will maintain

a constant mutual force. In other regions, distant from the event horizon, the parti-

cle deflection (and scattering) can happen under positive congruence expansion and

positive internal acceleration. According to the figures, for some fixed values of E, the

internal interactions between the world-lines remain repulsive at all distances, how-

ever, this repulsion is smaller at regions near the event horizon. This is while the con-

gruence expansion reaches its maximum values for the same initial conditions. This

is therefore a signature of scattering, where the expansion of the scattered congruence

is a result of interactions with the source. On the other hand, for higher E, the relative

acceleration and the congruence expansion take their maximum values near the black

hole. The expansion in this case is naturally a result of internal interactions between

the world-lines. We can therefore infer that the dynamical characteristics of a bundle

of infalling world-lines on the CWBH, can indicate the effect of such interactions on

the way the particles approach and recede the source, through their specific type of

orbit.

3.5 Gravitational lensing inside a plasma

This section is dedicated to the application of elliptic integrals in calculating the grav-

itational lensing of light rays passing the CWBH spacetime when it is immersed in

an inhomogeneous plasma, described by a coordinate-dependent refractive index. In

fact, the usage of elliptic integrals in studying the light deflection in black hole space-

times filled with plasma, has been dealt with for some regular black holes (Bisnovatyi-

Kogan & Tsupko, 2017b). We try to get more insights to the abilities of the elliptic in-

tegrals in the calculation of the deflection angles of light ray trajectories, by choosing

specific refractive ansatzes that are complicated enough, to be able to include a wide

range of dependencies of the black hole surroundings on the horizon distances. This is

done by considering two ansatzes for the plasmic refractive indices that are expressed

as functions of the black hole horizons. Beside calculating the deflection angle, we

also relate the aforementioned ansatzes to the black hole’s photon sphere and shadow.

The role of the elliptic integrals becomes more apparent in this regard, since without

knowing the ability of the black hole in bending of light, one cannot talk about related

features.
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3.5.1 Light propagation in plasmic medium

Some backgrounds

Light propagation in medium is indeed described in the phase space, whose Hamil-

tonian dynamics gives the structure of the manifold’s cotangent bundle. Given the

manifold (M, gαβ) expressed in the chart xα, the cotangent bundle T∗M provides the

means to define the Hamiltonian H ≡ H(xα, pα) where pα is the momentum (wave)

covector associated with the cotangent bundle. The Hamilton-Jacobi equation is there-

fore given in the form

H(xα, pα) =
1
2
gαβ pα pβ = 0, (3.303)

in which gαβ(xα) is the metric describing T∗M, and is called the optical metric. In

this sense, the wave (co)vector pα is considered parallel to the tangential velocity 4-

vector uα ≡ ẋα5 of the light congruence, i.e. pα = gαβuβ and according to Eq. (3.303),

the light propagates on null congruences with respect to the cotangent bundle. This

however is not what an observer on M would measure, because pα ̸= gαβuα and

gαβ pα pβ ̸= 0. This means that light behaves like massive particles during its propa-

gation in a medium. In general, such media are given the properties of dielectrics. In

fact, the connection between the light propagation in dielectric media and that in the

gravitational systems, was recognized in the early days of the advent of general rela-

tivity. According to Eddington, relativistic forms of light propagation near a massive

object, can be emulated in an appropriate refractive medium (Eddington, 1920). In re-

verse, Gordon pointed out that light propagation in a medium with specific refractive

properties, can be emulated in a curved spacetime background endowed with an op-

tical metric inferred from the optical properties of that medium (Gordon, 1923). This

connection was elaborated further in terms of the effect permittivity (ε) and perme-

ability (µ) of an arbitrary spacetime metric by Plebanski (Plebanski, 1960) and for the

first time, the Gordon’s optical metric was used by de Felice to construct (mathemat-

ically) a dielectric medium which could mimic a SBH (de Felice, 1971). The Gordon’s

optical metric is written as (Synge, 1960)

gαβ = gαβ +
(
1 − n2) vαvβ, (3.304)

where n(xα) ≡ √
εµ and vα are respectively the scalar refractive index and the tan-

gential velocity 4-vector of the dielectric in the comoving frame6. In order to include
5Here, over-dots indicate ∂τ where τ is the congruence affine parameter.
6In fact, since the observer moves on a time-like curve on M, then in the (−+++) sign convention,

gαβvαvβ = −1. In the same sense, the contraction vα pα should be normalized to a real value, which here

113



CHAPTER 3. THE CASE OF A CHARGED WEYL BLACK HOLE

anisotropy, birefringence and magnetoelectric couplings, the notion of the optical met-

ric has been given efforts to be generalized (Ehlers, 1968; Chen & Kantowski, 2009b,a;

Thompson, 2018). In the most covariant form, this metric is pseudo-Finslerian, accord-

ing to the relation

gαβ =
∂2H

∂pα∂pβ
. (3.305)

So far, we have presented some general information for light propagation inside non-

magnetized plasma. More technical and mathematical information will be given in

section 5.1.

In what follows, we consider that a spherically symmetric region (the exterior ge-

ometry of the CWBH) is filled with a dielectric material, in the form of an inhomoge-

neous cold plasma with a scalar refractive index. We can therefore assume that the

light follows the trajectories on the background described by Gordon’s optical metric

(3.304).

Light propagation in a spherically symmetric plasmic medium surrounding a

static black hole

The index of refraction of an inhomogeneous non-magnetized, optically-thin plasmic

shell is given by the relation

n2(r) = 1 −
ω2

p(r)
ω2(r)

, (3.306)

where ωp is the electron plasma frequency given by

ω2
p(r) = Ke N(r), Ke =

e2

ϵ0 me
= 3182.6 [m3/s2]. (3.307)

Here N(r) is the electron concentration in plasma, e is the electric charge of the electron

and me is the electron mass.

For the sake of simplicity, in what follows, we restrict our analysis to the equatorial

plane, hence, pϑ = 0. Under such condition, applying the optical metric (3.304) to the

Hamiltonian in Eq. (3.303) we get

H =
1
2

[
gαβ pα pβ + h̄2ω2

p(r)
]

=
1
2

(
− p2

t
B(r)

+ B(r)p2
r +

p2
ϕ

r2 + h̄2ω2
p(r)

)
, (3.308)

is the energy of a photon of frequency ω (E = h̄ω), evaluated by an observer, comoving with the plasma.
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in a spherically symmetric spacetime as in Eq. (3.24). Accordingly, the canonical

Hamilton’s equations

ṗα = − ∂H
∂xα

, ẋα =
∂H
∂pα

, (3.309)

in the cyclic coordinates (t, ϕ) yield

ṗt = −∂H
∂t

= 0 ⇒ pt = −h̄ω0 = cte., (3.310)

ṗϕ = −∂H
∂ϕ

= 0 ⇒ pϕ = ℓ = cte., (3.311)

regarding which, we can infer that h̄ω0 ≡ E0 and ℓ are constants of motion, associated

with its temporal and rotational invariance. The remaining equations read

ṗr = −∂H
∂r

=

=
ℓ2

r3 − d
dr

[
h̄2ω2

p(r)
2

]
− 1

2
dB(r)

dr

[
p2

r +
h̄2ω2

0
B2(r)

]
, (3.312)

ṫ =
∂H
∂pt

= − pt

B(r)
=

h̄ω0

B(r)
, (3.313)

ϕ̇ =
∂H
∂pϕ

=
pϕ

r2 =
ℓ

r2 , (3.314)

ṙ =
∂H
∂pr

= B(r) pr. (3.315)

There is also one extra condition

0 =
ℓ2

r2 + B(r) p2
r −

( h̄ω0√
B(r)

)2

− h̄2ω2
p(r)

 , (3.316)

inferred from the Hamilton-Jacobi equation. Note that, the radial dependence of the

photon’s frequency, measured by the comoving observer, is obtained by the redshift

formula

ω(r) =
ω0√
B(r)

. (3.317)

Therefore, it is no hard to see from Eqs. (3.316) and (3.317) that, in a given position r,

the photon frequency ω(r) is bigger than the plasma frequency ωp(r), i.e.

ω(r) > ωp(r), (3.318)

which is an empirical constraint for light propagation in plasma (?).

Now, turning to the subject in hand, we commence studying the light propagation

in the above system. Using Eqs. (3.314) and (3.315), the general orbits are governed by(
dr
dϕ

)2

=
ṙ2

ϕ̇2 = F(r), (3.319)

115



CHAPTER 3. THE CASE OF A CHARGED WEYL BLACK HOLE

with

F(r) = r2B(r)
[

h2(r)
h2(R)

− 1
]

, (3.320)

where

h2(r) =
r2 n2(r)

B(r)
=

r2

B(r)

(
1 −

ω2
p(r)

ω2(r)

)
, (3.321a)

h2(R) =
ℓ2

h̄2ω2
0

= b2. (3.321b)

Equation (3.321b) relates the closest approach to the source, R, to the impact parame-

ter b (another constant of motion). Therefore, for the case of the CWBH and exploiting

Eqs. (3.319) to (3.321b), the deflection angle for a light ray that travels from r++ to R
and returns again to r++, can be calculated as

α̂ = 2b
∫ r++

R

dr√
r2B(r)h2(r)− b2r2B(r)

− π

= 2b
∫ r++

R

dr√
r4n2(r)− b2r2B(r)

− π. (3.322)

The above deflection, relates to the lensing effect caused by massive sources. This

shows that how outermost objects can change their apparent position. The above

deflection angle however could be determined specifically, once n(r) is given an ap-

propriate algebraic expression, regarding the causality conditions.

3.5.2 Specific cases of n(r) for the CWBH

The casual connection in the spacetime constructed by the CWBH, suggests that an ob-

server inside the cosmological horizon cannot be aware of the events from the region

covered by r > r++ (see Fig. 3.31). For this reason, any algebraic assignment for the

refractive index n(r) should respect this kind of causality. This means that the refrac-

tion is well-defined only inside the boarders of the casual connection. Accordingly, we

propose relevant algebraic forms, regarding the boundaries of the causality.

First ansatz

Taking into account a case in which n(r++) = n(r+) = 0, we propose the following

ansatz:

n2(r) = B(r)
[

r2
++

r2 + 1
]

, (3.323)
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r++r+

r

B

Figure 3.31: The causal structure offered by a charged Weyl black hole. Events outside r++

does not have casual connections with the observers residing inside it.

which of course, has its maximum at r+ < rmax < r++. By means of Eq. (3.34), this can

be rewritten as

n2(r) =
(r4

++ − r4)(r2 − r2
+)

λ2r4 . (3.324)

The integrand in Eq. (4.49) is 1√
P(r)

, in which, according to the above definition, we

have

P(r) =
(r2

++ − r2)(r2 − r2
+)

λ2 (r2 −R2). (3.325)

Here, R =
√

b2 − r2
++ is the closest approach as appeared in Eq. (3.321b). This implies

that b > r++. Now, recasting

P(r) =
r6r2

++r2
+R2

λ2

(
1
r2 − 1

r2
++

)(
1

r2
+

− 1
r2

)(
1
R2 − 1

r2

)
, (3.326)

we can rewrite the deflection angle in Eq. (4.49) as

δ ≡ α̂ + π

=
bλ

r++r+R

∫ ξ++

0

dξ√
ξ(ξ++ − ξ)(ξ+ + ξ)

, (3.327)

for which, we have used the change of variable

ξ(r) .
=

1
R2 − 1

r2 , (3.328)

and have defined

ξ++ = ξ(r++), (3.329a)

ξ+ =
1

r2
+

− 1
R2 . (3.329b)
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The integral in Eq. (3.327) is in fact an elliptic integral of the first kind. We therefore

get

δ =
bλ

r++r+R
¯̄g K(k) (3.330)

in which (Byrd & Friedman, 1971)

¯̄g =
2√

ξ++ + ξ+
=

2r++r+√
r2
++ − r2

+

, (3.331a)

K(k) ≡ F (φ(ξ++), k) =
∫ π

2

0

dη√
1 − k2 sin2 η

, (3.331b)

where the latter is the complete elliptic integral of the first kind, given

φ(y) = arcsin

(√
ξ++ + ξ+

ξ++

y
y + ξ+

)
, (3.332a)

k =

√
ξ++

ξ++ + ξ+
=

r+
R

√
r2
++ −R2

r2
++ − r2

+

. (3.332b)

Regarding the relation between b and R, the deflection could be rewritten in terms of

either of the above parameters as

δ(λ, b) =
2bλ√

(b2 − r2
++)(r2

++ − r2
+)

K (k(b)) , (3.333a)

δ(λ,R) =
2λ

R

√
R2 + r2

++

r2
++ − r2

+

K (k(R)) . (3.333b)

Note that, not all values of b are allowed for the light ray trajectories. Since b > r++

and k > 0, regarding Eq. (3.332b), we have either
√

3
2 r++ ≤ b <

√
2 r++ or r++ <

b ≤
√

3
2 r++. This has been shown in Fig. 3.32. Also, the behavior of δ has been

demonstrated in Fig. 3.33, distinctly for the above two categories. The plots show that

the second kind of confinement for b, results in more fast varying deflections.

Second ansatz

As the second guess, we consider a more complicated algebraic form, reading

n2(r) =
B(r)

r2

[
b2 + (r2 + σ2)2

(
r2 − r2

++

(
1 − σ2

r2
+

))]
, (3.334)

in which σ ≡ σ(r+, r++) is a function whose value satisfies the condition 0 < σ < r+.

Exploiting this in the integrand, we get

P(r) =
1

λ2

[
(r2 − r2

+)(r
2
++ − r2)(r2 + σ2)2(r2 −R2)

]
, (3.335)
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Figure 3.32: The region of allowed values for b for which the condition k > 0 is satisfied. The

plot has been done for Q = 0.1. The considered range for b is from 1.02 r++ to 1.4 r++ for the

given λ and Q, so that it can cover the allowed values.

where the newly defined closest approach is R =

√
r2
++

(
1 − σ2

r2
+

)
. Upon recasting,

the above polynomial becomes

P(r) =
(

r5r+r++σ2R2

λ

)2 ( 1
r2
+

− 1
r2

)(
1
r2 − 1

r2
++

)
×
(

1
r2 +

1
σ2

)2 ( 1
R2 − 1

r2

)
. (3.336)

Applying the same change of variable as in Eq. (3.328), we get

δ =
bλ

r+r++Rσ
I1, (3.337)

where

I1 =
∫ ξ++

0

(
ξ − 1

R2

)
dξ

(ξ − ξ̄)
√

ξ(ξ+ + ξ)(ξ++ − ξ)
. (3.338)

Here we have defined

ξ̄
.
=

1
R2 +

1
σ2 , (3.339)

and other definitions remain the same as in the previous case. The integral in

Eq. (3.338) has an elliptic counterpart so that we can rewrite it as (Byrd & Friedman,

1971)

I1 =
¯̄g

R2ξ̄

∫ K(k)

0

1 − β2
1 sn2(η)

1 − β2sn2(η)
dη, (3.340)
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Figure 3.33: The range for the deflection angles obtained from the refractive index of the first

kind, for five given values for the impact parameter, within the allowed range for each case.

We have taken Q = 0.1 and the plots have been done for (a)
√

3
2 r++ ≤ b <

√
2 r++ and (b)

r++ < b ≤
√

3
2 r++. As it is seen, the second condition makes the deflection to change more

rapidly toward the stable value.

in which

β2 =
1
R2 (ξ+ + ξ̄)

ξ̄(ξ+ + 1
R2 )

β2
1 =

ξ++(ξ+ + ξ̄)

ξ̄(ξ++ + ξ+)
, (3.341)

and sn(η) is a Jacobi elliptic function, doubly periodic in η, and is defined as (Byrd &

Friedman, 1971)

sn(η) = sin(φ), (3.342)

with φ given in Eq. (3.332). Considering the above elliptic counterpart, we get

I1 =
¯̄g

R2β2µ̄

[
β2

1K(k) + (β2 − β2
1)Π(β2, k)

]
, (3.343)

where

Π(β2, k) =
∫ π

2

0

dη

(1 − β2 sin2 η)
√

1 − k2 sin2 η
(3.344)

is the complete elliptic integral of the third kind. With this in mind, and taking into

account the definition in Eq. (3.331), we finally get

δ =
2bλ

Rσ
(

1 + R2

σ2

) √
r2
++ − r2

+

(
r2
+ + σ2

R2 + σ2 K(k) +
R2 − r2

+

R2 + σ2 Π(β2, k)
)

, (3.345)

120



3.5. GRAVITATIONAL LENSING INSIDE A PLASMA

0.01 0.02 0.03 0.04 0.05 0.06
0

10

20

30

40

50

σ

δ

b = 0.1

b = 0.2

b = 0.3

b = 0.4

b = 0.5

Figure 3.34: The behavior of the deflection angle obtained from the refractive index of the

second kind, for five different impact parameters. The smaller the impact parameter is, the

faster δ increases. The asymptotic behavior however stems in the presence of elliptic integrals

in the description of δ. In this figure, we can see that for a certain value of σ, the light rays

escape from the black hole. The plots have been done for Q = 0.1 and λ = 0.25 (in arbitrary

length units).

which is compatible with

β2 =
R2 + σ2

r2
+ + σ2

β2
1 =

(r2
++ −R2)(r2

+ + σ2)

(r2
++ − r2

+)(R2 + σ2)
, (3.346)

and k = (r+/R)β1. Note that, since b does not have any contribution in the parameter

R, this angle does not put any restrictions on the impact parameter and the condition

k > 0 is always satisfied. The behavior of the deflection in Eq. (3.345) has been plotted

in Fig. 3.34 for some different impact parameter. The asymptotic behavior of the plots,

stems in the elliptic functions included in the description of δ. Similar behavior was

observed in Fig. 3.33. Physically, this means that light rays with definite impact pa-

rameters, can only contribute to the lensing process of black holes with definite phys-

ical properties (namely λ and Q). So, for certain black holes, not all rays can provide

imaging through gravitational lensing. In the plots of Fig. 3.34, light ray deflections

are given in terms of changes of the parameter σ.

3.5.3 The photon sphere

Photon spheres are those hypersurfaces, on which light rays can stay on a stable cir-

cular path. The innermost photon sphere has the radius R introduced above. The

photon surfaces however can be determined by analyzing purely angular light orbits.

This condition requires ṙ = r̈ = 0, that from Eq. (3.315) it follows that pr = 0. We

therefore can rewrite the Hamilton-Jacobi equation as

ℓ2 = h̄2r2
[

ω2
0

B(r)
− ω2

p(r)
]

. (3.347)
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Furthermore, differentiating Eq. (3.315) with respect to the affine parameter, results in

ṗr =
1

B(r)

(
r̈ − dB(r)

dr
ṙpr

)
, (3.348)

according to which, the zero radial velocity condition implies ṗr = 0. Hence,

Eq. (3.312) can be recast as

ℓ2 =
h̄r3

2

[
dω2

p(r)
dr

+
dB(r)

dr

(
ω2

0
B2(r)

)]
. (3.349)

Subtracting the above equations and after some manipulations, we get the equation

governing the radius of the circular light orbits

d
dr

h2(r) = 0. (3.350)

Solutions to this equation determine the radius of photon spheres. Satisfaction of

Eq. (3.350) is done by letting h2(r) = c = const. Applying this in Eq. (3.321a) and

taking into account the redshift in Eq. (3.317) we get

ω2
p(r) =

ω2
0

B(r)

(
1 − c B(r)

r2

)
. (3.351)

This demands the following condition for r > r+:

r2

B(r)
> c. (3.352)

Furthermore, considering Eq. (3.306) in Eq. (3.350) we get

0 =

(
2B(r)− r

(
d
dr

B(r)
))(

1 − B(r)
ω2

p(r)

ω2
0

)

− r B(r)

[(
d
dr

B(r)
)

ω2
p(r)

ω2
0

+
2B(r)ωp(r)

ω2
0

(
d
dr

ωp(r)
)]

. (3.353)

In the case of no plasmic surroundings, we have ωp(r) = 0, yielding the following

photon sphere radius in vacuum:

r(vac)
ph =

√
2 r+ r++√
r2
+ + r2

++

. (3.354)

From the values in Eqs. (3.26) and (3.27), this gives r(vac)
ph = Q√

2
, which is the same

as the radius of the critical orbits, rc obtained before for the CWBH in vacuum (Fathi

et al., 2020)7.
7Note that, the radius in Eq. (3.354) will never regain the famous Schwarzschild r = 3M photon

sphere, by letting r+ = r++ = 2M. This is because the metric potential in Eq. (3.25) is totally different in

structure, regarding the presence and the definition of the λ parameter.
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However, in the presence of plasma, this photon sphere is characterized by solving

Eq. (3.353), which yields

ω2
p(r) =

λ2ω2
0
(
r2(r2

+ + r2
++)− r2

+r2
++

)
r2(r2 − r2

+)(r2
++ − r2)

. (3.355)

Note that, as long as the condition λ > Q is satisfied, the positivity of the right hand

side of the above relation is guaranteed.

Given the frequency in Eq. (3.355), the radius rph now depends on one other

characteristic of the plasmic medium, namely the refractive index. This can be seen

through Eq. (3.306), providing ω2
p(r) =

ω2
0 [1−n2(r)]

B(r) . This, together with Eq. (3.355),

results in the following alternative for the refractive index:

n2(r) = 1 − (r2
+ + r2

++)

r2 +
( r+r++

r2

)2
. (3.356)

The determination of rph, however, requires other definitions for n2(r). To deal with

this, we therefore recall the specific cases discussed previously.

• For the first ansatz in Eq. (3.324) (plasma of the first kind (PFK)), Eq. (3.356)

provides rph = r+. This means that the corresponding hypersurface, formed as

the 3-dimensional (3D) closure of the 2D circles characterized by r = r+, is in-

deed a null surface. Although this result could seem unexpected, we here refer

the reader to the fact that this photon surface is observed through a dispersive

medium (plasma) that based on the geometric structure of the respected refrac-

tive index, could affect the photon surface to be located differently from that in

the vacuum.

• For the case in Eq. (3.334) (plasma of the second kind (PSK)), we get

rph =
A− 1

6
√

6 r+

[
2

4
3 (r+r++)

4 + 2(r+r++)
2A 1

3 + (−2A)
2
3

+σ2
(

2
7
3 (r+r++)

2 (r2
+ − r2

++

)
− 2

(
2r2

+ + r2
++

)
A 1

3

)
+σ4

(
2

4
3 (r4

+ + r4
++)− 2

7
3 (r+r++)

2
)] 1

2
, (3.357)

with

A =

√
B2 − 4

(
(σ r++)2 + r2

+(r2
++ + σ2)

)6 −B, (3.358)

where

B = 27b2r6
+ + 2(σr++)

6 + 6 σ4 (r2
++ + σ2) (r+r++)

2 [(r2
++ + σ2) r2

+ − r2
++

]
− r6

+

(
2r6

++ − 27λ2 + 6 σ2r2
++(r

2
++ + σ2) + 2σ6) . (3.359)
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Figure 3.35: Confronting the radii of vacuum and plasmic photon spheres. The plots have

been done for b = 10, Q = 7 and five different values of σ which have been selected according

to σ < r+. Changes in b do not have any effects on the form of the curves. Obviously, the

value of r(vac)
ph does not depend on λ and is therefore a constant in this regard. This is while

the plasmic rph raises constantly for smaller values of σ, whereas it drops fast for larger ones.

In Fig. 3.35, we have confronted the above radius for different values of σ, with the

radius of the photon sphere in the vacuum case. We have considered a fixed b, because

the curves with different values of b will coincide. The vacuum photon sphere exhibits

a constant size, whereas the plasmic one can change its radius, depending on the value

of σ. It is observed that, increase in λ has different effects on rph, depending on the

corresponding σ. This means that, the small–σ photon spheres expand as λ increases,

whereas the large–σ ones would shrink.

3.5.4 The implications for N(r)

Even though the spacetime effects are imposed on the description of the refractive

index, nevertheless, the physical interpretation of the particle distribution inside the

spacetime is given by the concentration function N(r). Applying the definition given

in Eqs. (3.306) and (3.307), we get

N(r) =
ω2

0
KeB(r)

[
1 − n2(r)

]
. (3.360)

In this subsection, by paying attention to this quantity, we go deeper into the physical

implications of both kind plasmas.

The PFK generates

N1(r) =
ω2

0
[
r4λ2 −

(
r2 − r2

+

) (
r4
++ − r4)]

r2
(
r2 − r2

+

) (
r2
++ − r2

) , (3.361)
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Figure 3.36: The behavior of particle concentration N1(r) for four values of ω0, in the region

between the horizons. All four concentrations have a maximum at the same radial distance

and at the horizons, N1 is indefinite. It however tends to zero at the vicinity of both horizons.

The plots have been done for Q = 7, λ = 19.4, b = 9 and we have absorbed Ke into ω0 (all

values are in arbitrary length units).

the behavior of which has been illustrated in Fig. 3.36 inside the causal region. For the

PSK, the concentration becomes

N2(r) =
ω2

0
Ker2

[
r4λ2

(r2 − r2
+)(r2

++ − r2)
− b2

−(r2 + σ2)2
(

r2 − r2
++

(
1 − σ2

r2
+

))]
, (3.362)

which evolves as plotted in Fig. 3.37 for five different values of σ, in the region

r+ < r < r++. As it is expected, the concentration drops from its highest values at

the vicinity of r+, by moving toward r++. As we can see from the plots of N1(r) and

N2(r) (for definite values of σ), the electron concentration can tend to zero long before

reaching the cosmological horizon (where the concentration should be indefinite).

One important implication of this property, is that the effect of the plasma can be seen

in regions outside its presence, because the refraction n(r) is available in all the region

r+ < r < r++. This can be interpreted as a combination of electromagnetic effects and

optical gravity, manifesting themselves through the refractive index. For the second

kind plasma, the fall in the value of N2(r) happens faster for smaller σ. However we

should bear in mind that, through their relation to the horizons, every pair (λ, Q) is

related to a range for σ, which has to satisfy 0 < σ < r+.

As a matter of interest, let us think of the PSK as a spherically symmetric halo,

filling the region r+ < r < r++. Although electrons are not usually considered as dark

matter candidates, however, it may be of interest to revisit their plasmic distribution

in the cold dark matter realm. In this regard, we therefore compare the total masses
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Figure 3.37: The evolution of particle concentration N2(r) for five values of σ, in the region

between the horizons. The concentration drops by moving toward r++. Significantly, larger

σ results in a less steep decrease in the concentration. The plots have been done for Q = 7,

λ = 15, b = 10 and ω0 = 1.37 (we have absorbed Ke into ω0 and all values are in arbitrary

length units). The above values have been chosen to obtain a good scale of observation and

alternations in these values will just change the scale of the plots, not their form of behavior.

obtained from the above particle concentration, and that given by the Navarro-Frenk-

White (NFW) density profile. The NFW profile for a cold dark matter distribution is

(Navarro et al., 1995, 1996)

ρ(r) =
ρ0

r
rs

(
1 + r

rs

)2 , (3.363)

in which the initial density ρ0 and the scale radius rs depend on the characteristics of

the halos. The integrated mass of the halo is obtained by integrating the above profile

within the total volume. Considering a spherically symmetric halo, we obtain

MNFW =
∫ rmax

0
ρ(r) 4πr2dr

= 4πρ0r
3
s

[
ln
(
rs + rmax

rs

)
− rmax

rs + rmax

]
, (3.364)

up to a maximum radius rmax. On the other hand, the total electron mass encompassed

in a spherically symmetric plasmic halo, characterized by the number density N2(r)

in Eq. (3.362), can be obtained by doing an integration over the volume in the region

r+ < r < r++. This yields

MP = me

∫ r++

r+
N2(r) 4πr2dr

=
4πmeω

2
0

105r2
+

[ 3r2
+

(
5r7

+ − 35(b2 + λ2)(r++ − r+)− 7r5
+r2

++

+2r7
++

)
+ 7(6r7

+ − 7r5
+r2

++ + 4r2
+r5

++ − 3r7
++) σ2

−35(r2
++ − r2

+)(r
3
+ + 2r3

++)σ
4 + 105(r++ − r+)r2

++σ6
]

. (3.365)
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Figure 3.38: The numerical evaluation of the MP ≤ NNFW condition. The plot has been done

for b = 5.2, Q = 3, ω0 = 2, ρ0 = 1, rs = 0.6 and rmax = 10. The solid blue line shows the

possibility of having a plasmic electron distribution, which obeys the NFW cold dark matter

density profile.

Solving the equation MP = NNFW for either of σ or λ, one can get an estimation

criteria, in which the plasmic surrounding can behave as a cold dark matter halo

in the context of NFW description. Solutions to this equation however, although

achievable, are rather complicated and do not have algebraic values. We instead,

demonstrate the above criteria in a plot as in Fig. 3.38. The figure indicates more

possible similarity between the electron plasma and the NFW cold dark matter, for

the lower limits of σ and λ.

3.5.5 Shadow of the black hole

As we know, the deflecting trajectories governed by the angular equation of motion

in Eq. (3.319), can provide OFK and OSK. While the OFK is responsible for the grav-

itational lensing, the OSK, on the other hand, results in the darkness of the sky for

an observer who is observing the black hole. Hence, this observer encounters a dark

disk which is the black hole’s shadow. This shadow is surrounded by the photon

trajectories following OFK. For this reason, it can be noticed by the observer. In this

regard, the photon sphere is, in fact, the boundary of the shadow because it is the final

possible limit, at which the photons can lie. It is, therefore, unstable with respect to
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O

Figure 3.39: For an observer located at O, the angular diameter (ψ) of the black hole depends

on the closest approach to the black hole. When R → rph, then ψ indicates the angular diam-

eter of the shadow (here ψsh).

perturbations. This is essential to the determination of the shadow.

To proceed, we calculate the angular diameter of the shadow, by considering an

observer located outside the outermost photon sphere. Pursuing the method given in

Ref. (?), let us consider the scheme in Fig. 3.39. The observer, located at the distance

rO, sends a light ray into the past at an angle ψ, which according to the line element

(3.24), is given by

ψ = arccot

(√
1

r2B(r)
dr
dϕ

)
|r=rO , (3.366)

which by means of Eqs. (3.319) and (3.320), becomes

ψ = arccot

(√
h2(r)
h2(R)

− 1

)
|r=rO . (3.367)

This can be recast as

sin2 ψ =
h2(R)

h2(rO)
. (3.368)

Once the light rays have reached their final possible stable orbits at rph, they indicate

the outermost boundary of the black hole. Hence, the shadow can be determined by

letting R → rph (see Fig. 3.39). Accordingly, the corresponding angular diameter of

the shadow is obtained as

sin2 ψsh =
h2(rph)

h2(rO)
. (3.369)

Applying Eq. (3.321a) we can calculate the above angle for the shadow. In the absence

of plasma (i.e. for h2(r) = r2

B(r) ), applying the radius in Eq. (3.354), this angle becomes

sin2 ψ
(vac)
sh =

4r2
+r2

++

(
r2

O − r2
+

) (
r2
++ − r2

O
)

r4
O

(
r2
++ − r2

+

)2 . (3.370)

For the PFK and PSK, discussed and analyzed in the previous subsections, we get the

following results:
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• From Eq. (3.323) we get

sin2 ψsh =
r2
+ + r++

r2
O + r++

, (3.371)

for rph = r+ (b =
√

r2
+ + r2

++).

• From Eq. (3.334), the angle in Eq. (3.368) becomes

sin2 ψ =
b2r2

+ +
(
σ2 +R2)2 (r2

++σ2 − r2
+

(
r2
++ −R2))

b2r2
+ +

(
r2

O + σ2
)2 (r2

++σ2 − r2
+

(
r2
++ − r2

O

)) . (3.372)

Applying the condition in Eq. (3.369) and the radius in Eq. (3.357), the angular

diameter of the shadow is obtain as

sin2 ψsh =
λ2r2

+(
r2

O + σ2
)2 (r2

++

(
r2
+ − σ2

)
− r2

Or2
+

)
− b2r2

+

. (3.373)

Note that, not all values of b are permitted to be possessed by the photons. This means

that only certain photons with allowed impact parameters can identify the shadow.

Such photons are those which could escape the black hole by passing the nearest

possible distance (the critical distance) from it. According to the above relation, the

condition 0 < sin2 ψsh < 1 implies

b2 < b2
max − λ2, (3.374)

in which

b2
max =

(
r2

O + σ2)2 (r2
++

(
r2
+ − σ2)− r2

Or2
+

)
r2
+

. (3.375)

This means that for every triplet (λ, Q, σ), only photons satisfying the condition in

Eq. (3.374) can identify the shadow. In Fig. 3.40, a region has been plotted in which,

the values of b satisfy the above condition. Accordingly, and in Fig. 3.41, the angular

diameters of the shadow have been plotted respectively for the vacuum, the PFK and

the PSK. For all cases, no extremal black holes are observable. However, shadow of

the black hole surrounded by the PFK, achieves its maximum angular diameter for

the lower values of λ. This is while for the one corresponding to the PSK, ψsh tends

to zero for same range of λ. This means that, this model of plasmic surrounding

prohibits the shadow to appear to the observer, when the cosmological term in

Eq. (3.25) is dominant.

The discussion in this section, dealt with the way though which a charged Weyl

black hole manifests itself to an observer residing in r+ < r < r++. To demonstrate the
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Figure 3.40: The allowed values of b which satisfy the condition 0 < sin2 ψsh < 1. The region

has been plotted for Q = 0.6 and rO = 0.8.
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Figure 3.41: The radial diameter given in terms of sin2 ψsh, for (a) vacuum, (b) PFK and (c)

PSK. The plots have been done for Q = 0.6, rO = 0.78 and the impact parameter for the plots

(b) and (c) has been taken as b = 0.8 (arbitrary length units have been considered).

shadow, it is usual to define some celestial coordinates which are obtained by doing

a frame transformation from the curved background spacetime to the frame of a lo-

cal observer in vacuum (Chandrasekhar, 1998; Tsukamoto, 2018) or in the presence of

plasma (Perlick & Tsupko, 2017). The latter is also applicable to the spacetimes which

are not asymptotically flat. The case of static vacuum spacetime has also been investi-

gated (Singh & Ghosh, 2018). The shadow of the CWBH is completely symmetric and

does not give more information other than those we have obtained so far. We therefore

leave the discussion here and in the next section, we proceed with the calculation of

the shadow of a rotating counterpart of the CWBH, which is more informative.
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3.6 A rotating counterpart and its shadow

In fact, the light propagation around black holes is of remarkable importance in as-

trophysics, specially because of the evidences that can be achieved by advancements

in the field of observational astronomy. For example, the recent black hole imaging

of the shadow of M87*, done by the Event Horizon Telescope (EHT) (Akiyama et al.,

2019a), was another significant affirmation of general relativity. Technically speaking,

and as discussed in the previous section, photons that lie on unstable orbits in the

gravitational field of the black holes, will either fall onto the event horizon or escape

to infinity. To the observer, these latter ones constitute a bright photon ring which

confines the black hole shadow (Synge, 1966; Cunningham & Bardeen, 1972; Bardeen,

1973; Luminet, 1979). In particular, the Luminet’s optical simulation of a SBH and its

accretion in 1979 (Luminet, 1979), gave more insights about the photon rings that re-

sult from the extremely warped geometry around the black holes. The formulations

obtained in this way, then helped scientists to confine the shadow of rotating black

holes inside their respected photon rings. Accordingly, the mathematical methods to

calculate the form and size of a Kerr black hole’s shadow were then developed by

Bardeen (Bardeen et al., 1972; Bardeen, 1973; Cunningham & Bardeen, 1973), and the

same methods were reused by Chandrasekhar (Chandrasekhar, 1998). These methods

were later developed and generalized widely (Bray, 1986; Vázquez & Esteban, 2004;

Grenzebach et al., 2014; Grenzebach, 2016; Perlick et al., 2018; Bisnovatyi-Kogan &

Tsupko, 2018). Having these methods in hand, a large number of black hole space-

times, including those with cosmological components, were given rigorous analytical

calculations, simulations, numerical, and observational studies (de Vries, 1999; Shen

et al., 2005; Amarilla et al., 2010; Amarilla & Eiroa, 2012; Yumoto et al., 2012; Amarilla

& Eiroa, 2013; Atamurotov et al., 2013; Abdujabbarov et al., 2015, 2016; Amir et al.,

2018; Tsukamoto, 2018; Cunha & Herdeiro, 2018; Mizuno et al., 2018; Mishra et al.,

2019; Kumar et al., 2020). The black hole shadow is of great importance as it provides

information about the light propagation in near-horizon regions. Recently, several in-

vestigations have been devoted to establish relations between the shadow and black

hole parameters (Zhang & Guo, 2020; Belhaj et al., 2020; Kramer et al., 2004; Psaltis,

2008; Harko et al., 2009; Psaltis et al., 2015; Johannsen et al., 2016; Psaltis, 2019; Dym-

nikova & Kraav, 2019; Kumar & Ghosh, 2020).

In this section we apply the algorithm introduced in section 2.3, in order to con-

struct the stationary counterpart of the CWBH solution. We use the first order light-
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like geodesic equations, to proceed with studying the optical appearance of the black

hole to distant observers, by means of calculating the photon spheres and the black

hole shadow. Furthermore, a particular geometric method is then used to indicate the

conformity between the deformation and the angular size of the shadow.

3.6.1 The stationary solution

In order to apply the MNJA to the CWBH spacetime, we substitute the line element

(3.24) in Eq. (2.79), which results in

ds2 = −Ξ
Σ

dt2 +
Σ
∆

dr2 + Σ dθ2 − 2a sin2 θ

(
1 − Ξ

Σ

)
dt dϕ

+ sin2 θ

[
Σ + a2 sin2 θ

(
2 − Ξ

Σ

)]
dϕ2, (3.376)

as the solution to the rotating charged Weyl black hole (RCWBH), where

Ξ = ∆ − a2 sin2 θ, (3.377a)

∆ = a2 + r2B(r), (3.377b)

Σ = r2 + a2 cos2 θ. (3.377c)

Note that, the black hole’s spin parameter a has the dimension of m in our geometric

units. Also, the black hole’s angular velocity is ω = − gtϕ
gϕϕ

(Poisson, 2009). In fact, if

the reference lapse function (3.6) is applied to Eq. (5.61a), the components of the Bach

tensor Wαβ, are vanished for the same expression of f (r) as that in Eq. (3.16). We must

however note that, this process can only be done by substitution of this lapse function

in the components of the Bach tensor, applying a computer software8. Hence, the line

element (3.376) is a vacuum rotating solution to Weyl gravity, if a lapse function of the

general form (3.22) is taken into account. Accordingly, for a massive charged spherical

source, like the one assumed for the CWBH, the same constants can be obtained if the

same method is pursued. The only difference is that, the associated vector potential

generated by the source, changes its form to (Misner et al., 2017)

Ãα =
qr
Σ
(
1, 0, 0,−a sin2 θ

)
. (3.378)

The exterior geometry of the RCWBH is therefore specified by applying the lapse func-

tion (3.25), that provides

∆ = a2 + r2 − r4

λ2 − Q2

4
. (3.379)

8The calculation of the components of the Bach tensor has been done by the software MapleTM 2018.
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Figure 3.42: The mutual sensitivity of the possibility of horizon formation to the pairs (a)

(Q, a), (b) (a, λ), and (c) (Q, λ). In the diagrams, the border between the regions of black hole

and naked singularity, indicates the extremal black hole limit.

As for the spherically symmetric stationary spacetimes, the RCWBH admits two

Killing vectors ξ(t) and ξ(ϕ), satisfying

ξα
(t)ξα(t) = gtt, (3.380)

ξα
(ϕ)ξα(ϕ) = gϕϕ, (3.381)

that correspond to the translational and rotational symmetries, and the relevant invari-

ants of motion. The black hole’s event and cosmological horizons, are now obtained

by solving grr = 0, which results in (see appendix B.6)

r+ = λ sin

(
1
2

arcsin

(
2
λ

√
Q2

4
− a2

))
, (3.382)

r++ = λ cos

(
1
2

arcsin

(
2
λ

√
Q2

4
− a2

))
, (3.383)

for which, the extremal black hole horizon rex = λ√
2

is obtained for Qex = ±
√

4a2 + λ2,

and a naked singularity appears for Q >
√

4a2 + λ2 (for Q > 0). As shown in Fig. 3.42,

not all values of Q, λ and a are allowed to construct a black hole (censored region).

Also, as shown in Fig. 3.43, for fixed λ and a, increase in Q increases the size of r+
and decreases that of r++, until they coincide on r+ = r++ = rex at Q = Qex. Same

happens for decrease in λ for fixed Q and a, that leads to λ = λex, and decrease in a

for fixed λ and Q, leading to a = aex. It is also easy to show that the hypersurfaces

corresponding to r+ and r++, are null. We continue analyzing the RCWBH in the next

subsection, regarding the stationary and static observers.
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Figure 3.43: The behavior of the horizons of the RCWBH, plotted for (a) λ = 10 and a = 5, (b)

Q = 11 and a = 5, and (c) λ = 10 and Q = 11.

3.6.2 The Ergosphere

Beside being encompassed by the event horizon, the rotating black holes are also char-

acterized by another hypersurface, which is formed as a result of the black hole’s spin

and limits the existence of static observers. This surface is therefore identified with

the event horizon, only in the limit of the vanishing spin parameter (Bardeen et al.,

1972; Bardeen, 1973; Chandrasekhar, 1998). In this subsection, we determine this sur-

face and discuss it analytically as well as illustratively. However, let us firstly consider

an important feature of rotating spacetimes, by considering the zero angular momen-

tum observers (ZAMOs), with the vanishing angular momentum defined as (Poisson,

2009)

L̃ ≡ gϕα
dx
dτ

α

= gϕt
dt
dτ

+ gϕϕ
dϕ

dτ
= 0. (3.384)

Accordingly, the observer’s angular velocity is obtained from Eqs. (3.376) and (3.377),

reading as

Ω =
dϕ

dt
= −

gtϕ

gϕϕ
=

a
(
r2 + a2 − ∆

)
(r2 + a2)2 − ∆a2 sin2 θ

, (3.385)

which is the same as the angular velocity of the rotating black hole and increases as r

decreases, until it reaches its maximum value

Ωmax = Ω|r=r+ ≡ ΩH =
a

r2
+ + a2

= ω+, (3.386)

where ω+ ≡ ω(r+) is the black hole’s angular velocity at its event horizon. For a

slowly rotating black hole (small a), ΩH reduces to

ΩH ≈ a

λ2 sin2
(

1
2 arcsin

(
Q
λ

)) . (3.387)
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Therefore, on the event horizon, ZAMOs move in the same direction as the black hole’s

own rotation (also called corotation), as a result of dragging of their inertial frames.

Aside from the ZAMOs, now to deal with the static observers, let us consider their

velocity four-vector as

uα = n ξα
(t), (3.388)

with the normalization factor n = (−gαβξα
(t)ξ

β

(t))
− 1

2 = 1√−gtt
, according to Eq. (3.380).

Such observers cannot exist everywhere in the spacetime, and they are indeed con-

fined to a limit defined in terms of the validity of Eq. (3.388). In fact, for n−2 = −gtt =

0, this equation breaks down and ξ(t) becomes null. This way, a static limit9 is obtained,

whose radius, rSL, is calculated by solving the equation gtt = 0. This equation yields

the two positive solutions

rSL1 = λ sin

(
1
2

arcsin

(
2
λ

√
Q2

4
− a2 cos2 θ

))
, (3.389)

rSL2 = λ cos

(
1
2

arcsin

(
2
λ

√
Q2

4
− a2 cos2 θ

))
, (3.390)

that satisfy the condition of causality r+ < rSL1 < rSL2 < r++. The domain r < rSL1,

corresponds to a region, in which, the static observers can no longer remain static10,

and the so-called frame-dragging effect forces them to rotate with the black hole. In

Fig. 3.44, the behavior of the above two solutions has been plotted for a definite value

of a. As the angular parameter increases, the static limit surface (corresponding to

rSL1) recedes from the event horizon. On the other hand, rSL2 shrinks under the same

conditions. Note that, in the case of an extremal black hole (Q2 = 4a2 + λ2), the above

surfaces coincide at

rSL(ex) = λ cos
(

π

4
− 1

4
arccos

(
8a2 sin2 θ + λ2

λ2

))
. (3.391)

Comparing Eqs. (3.382) and (3.389), we can notice that for θ ̸= nπ (n = 0,±1,±2, ...),

the surface of static limit does not coincide with that of the event horizon, and these

surfaces, together, form an ergosphere (or ergoregion). To demonstrate the ergosphere of

9The surface corresponding to the static limit, is also called the surface of infinite redshift (Ryder,

2009).
10In other words, they will no longer exist.
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Figure 3.44: The behavior of rSL, with respect to changes in Q. The plots have been done for

λ = 10 and a = 5 and five different values of θ. The solid and dot-dashed curves correspond

respectively to rSL1 and rSL2, and the black hole horizons have been shown with dashed lines.

the black hole, let us introduce the Cartesian coordinates (Boyer & Lindquist, 1967)

x =
√

r2 + a2 sin θ cos ϕ, (3.392a)

y =
√

r2 + a2 sin θ sin ϕ, (3.392b)

z = r cos θ, (3.392c)

which are defined in terms of the Boyer-Lindquist coordinates of the line element

(3.376). Accordingly, the horizon hypersurfaces can be plotted, as being observed

either from the coordinate of axial symmetry (i.e. in the x-y plane), or from the y (or x)

coordinate (i.e. in the z-x (or z-y) plane). In Fig. 3.45, the horizons and the static limit

surfaces have been plotted for several values of a and Q within the allowed values

of Fig. 3.42, and therefore, the ergosphere for each of these cases has been demon-

strated. As it is seen in the figures, increase in a for each fixed value of Q, stretches

the event horizon’s cross-section and acts in favor of dividing the ergosphere into sep-

arate regions at each side of the event horizon. In the special cases of Q > λ, rSL1

and rSL2 match in certain regions outside the event horizon and form ergospheres of

peculiar shapes. For the extremal black hole, it is naturally Q > λ and the spacetime

encounters one horizon and one static limit, and its ergosphere increases in size as

the distance between the values of Q and a increases. In fact, stationary observers of
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Figure 3.45: The hypersurfaces corresponding to the horizons and the static limit, plotted for

λ = 10 and several fixed values of Q and a, as viewed from the y axis. The axes have been

given in terms of dimension-less values z
λ and x

λ . In the (a)-(f) diagrams, the smaller and

the larger solid contours correspond respectively to r+ and r++, whereas the smaller and the

larger dashed ones relate to rSL1 (the static limit) and rSL2. The region r+ < r < rSL1 indicates

the ergosphere in each of the cases. The figures have been scaled in a way that the r++ surface

appears as a complete circle. The (g)-(i) diagrams demonstrate the ergoregion in the case of

the extremal black hole. The solid and the dashed contours correspond respectively to rex and

rSL(ex).

angular velocity Ω and the four-velocity uα
s = nsξ

α
s , with

ξα
s = ξα

(t) + Ωξa
(ϕ), (3.393)

n−2
s = −gαβξα

s ξ
β
s = −gϕϕ

(
Ω2 − 2ωΩ +

gtt

gϕϕ

)
, (3.394)

can exist in the ergosphere, as long as the Killing vector ξs remains time-like. This

corresponds to n−2
s > 0, or Ω− < Ω < Ω+, with

Ω± = ω ±
√

∆ sin θ

gϕϕ
. (3.395)
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Accordingly, this vector becomes null on the event horizon11. Therefore, by approach-

ing the event horizon, Ω → ΩH ≡ Ω+, and the particles will be in the state of corota-

tion with the black hole. Such particles encounter the surface gravity (Poisson, 2009)

κ =
∆′(r)

2(r2 + a2)

∣∣∣∣
r=r+

, (3.396)

at the vicinity of the event horizon. Applying Eqs. (5.61a) and (3.382), and after a little

algebra, this gives

κ =
r+

a2 + r2
+

√
λ2 − Q2 + 4a2. (3.397)

For the extremal black hole (r+ → rex), we have from Eq. (3.396) that κex = 0. Note

that, for asymptotically flat spacetimes, where the energy can be defined relative to an

observer located at infinity, the ergosphere is highlighted also by a theoretical scenario,

termed as the Penrose process, through which, particles of negative energy created in

the ergosphere can extract positive rotational energy from a rotating black hole (Pen-

rose, 2002).

Note that, the optical appearance of a black hole to distant observers, does not rely

on the positioning of its ergosphere, since this latter, affects only the time-like particles.

The conceived image of a black hole is, in fact, a shadow that is confined by particular

photons on unstable (critical) orbits. Such photons construct a photon surface around

the black hole. For the case of the RCWBH, this will be given a detailed discussion in

the next subsection.

3.6.3 Shadow of the black hole

Here, we apply the method of separation of variables in the Hamilton–Jacobi equa-

tion (Carter, 1968; Chandrasekhar, 1998). Accordingly, we write the Hamilton-Jacobi

equation as

H = −∂S
∂τ

=
1
2

gαβ ∂S
∂xα

∂S
∂xβ

= −1
2

µ2, (3.398)

where H, S and µ, are respectively the canonical Hamiltonian, the Jacobi action and

the rest mass of particles. Defining the four-momentum pα = ∂S
∂xα (pα pα = µ2), the

action can be separated by the Carter’s method, as

S =
1
2

µ2τ − Ẽ t + L̃ϕ + Sr(r) + Sθ(θ), (3.399)

11This also proves that the event horizon is a Killing horizon.

138
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in which Sr(r) ≡ pr, Sθ(θ) ≡ pθ , and

Ẽ = −pt = −
(

gtt
dt
dτ

+ gtϕ
dϕ

dτ

)
, (3.400)

L̃ = pϕ = gϕt
dt
dτ

+ gϕϕ
dϕ

dτ
, (3.401)

are the constants of motion. Physically, L̃ is associated with the particles’ angular mo-

mentum around the axis of symmetry. On the other hand, Ẽ cannot be regarded as the

energy of particles, because the spacetime under consideration is not asymptotically

flat. Using Eqs. (3.399)-(3.401) in the Hamilton-Jacobi equation (3.398), and applying

the method of separation of variables for the case of mass-less particles (photons with

µ = 0), the equations of motion are then given in terms of the four differential equa-

tions (Chandrasekhar, 1998)

Σ
dt
dτ

=
r2 + a2

∆
(
Ẽ
(
r2 + a2)− aL̃

)
− a

(
aẼ sin2 θ − L̃

)
, (3.402)

Σ
dr
dτ

= ±
√
R(r), (3.403)

Σ
dθ

dτ
= ±

√
Θ(θ), (3.404)

Σ
dϕ

dτ
=

a
∆
(
Ẽ
(
r2 + a2)− aL̃

)
−
(

aẼ − L̃
sin2 θ

)
, (3.405)

defining

R(r) =
((

r2 + a2) Ẽ − aL̃
)2 − ∆

(
D +

(
aẼ − L̃

)2
)

, (3.406a)

Θ(θ) = D −
(

L̃2

sin2 θ
− a2Ẽ2

)
cos2 θ, (3.406b)

in which, D is the Carter’s separation constant. The photon trajectories are therefore

characterized by two dimension-less impact parameters

b̃ =
L̃
Ẽ

, (3.407)

η̃ =
D
Ẽ2

. (3.408)

It is also common to use the generalized Carter’s constant of motion K = D + (aẼ −
L̃)2 (Chandrasekhar, 1998). As stated before, photon surfaces are those regions around

the black hole, in which, the photons travel on unstable (critical) orbits. In this situ-

ation, the radial effective potential associated with the photon trajectories reaches its

extremum at the corresponding critical distance rp. Accordingly, Eq. (6.49) provides
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the conditions

R(rp) = 0, (3.409a)

∂R(r)
∂r

∣∣∣∣
r=rp

= 0, (3.409b)

∂2R(r)
∂r2

∣∣∣∣
r=rp

> 0. (3.409c)

The importance of the impact parameters b̃ and η̃ is their relevance to the fate of ap-

proaching photons to the black hole. In this regard, photons can either fall on unstable

orbits, escape from, or captured by the black hole, respectively, if their associated im-

pact parameters are equal, smaller, or larger than a critical value. In fact, Eqs. (3.409a)

and (3.409b) result in the two equations(
a2 + r2

p − a b̃c

)2
−
(

η̃c +
(
a − b̃c

)2
)

∆(rp) = 0, (3.410a)

4r3
p + rp

(
4a2 − 4a b̃c

)
−
(

η̃c +
(
a − b̃c

)2
)

∆′(rp) = 0, (3.410b)

in which, b̃c and η̃c are the critical values of these impact parameters, corresponding to

the photons on unstable orbits at rp. The above equations provide two pairs of (b̃c, η̃c),

that only the pair

b̃c(rp) =

(
a2 + r2

p

)
∆′(rp)− 4rp∆(rp)

a∆′(rp)
, (3.411)

η̃c(rp) =
r2

p

[
8∆(rp)

(
2a2 − 2∆(rp) + rp∆′(rp)

)
− r2

p∆′(rp)2
]

a2∆′(rp)2 , (3.412)

satisfies the condition (3.409c). Accordingly, the photons on unstable orbits are identi-

fied by η̃c = 0, resulting in the two real positive values

rp− =
Q√

1 + 4a2

λ2

sin

(
1
2

arcsin

(√(
1 − 4a2

Q2

)(
1 +

4a2

λ2

)))
, (3.413)

rp+ =
Q√

1 + 4a2

λ2

cos

(
1
2

arcsin

(√(
1 − 4a2

Q2

)(
1 +

4a2

λ2

)))
, (3.414)

that implies Q > 2a for rp− to exist. In general, these solutions satisfy r+ < rp− <

rp+ < r++. However, to ensure the important condition rp− > r̃, the cosmological

component of the spacetime metric should satisfy ε̃ < ε̃0, where

ε̃0 =
3
(
4a2 + 4r̃(r̃ − 3m̃)− Q2)

8r̃4 , (3.415)
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Figure 3.46: The shape of the photon regions (rp− < r < rp+), as viewed from the y axis,

plotted for λ = 10, and different values of Q and a. The event horizon r+ occupies the central

shaded region, and is encompassed by the rings rp− and rp+. The blue contour corresponds to

the boundary of the inner ring rp−, that coincides with the event horizon, only for the extremal

black hole with Q = Qex and rp− = r+ = rex.

to obtain which, we have used Eq. (3.413) and the expression in Eq. (3.23a). Note

that, Eqs. (3.382) and (3.413) imply that the inner photon ring is identified with the

event horizon under the critical condition Q = Qex, that corresponds to the extremal

black hole, for which rp− = r+ = rex. Furthermore, the photon ring radii should also

respect the condition Θ(θ) ≥ 0 (Chandrasekhar, 1998), for which, Eq. (5.103) yields

η̃c ≥ b̃2
c cot2 θ − a2 cos2 θ on the photon surface, or by using Eqs. (3.411) and (3.412),

4r2
p∆(rp)

(
∆(rp)

sin2 θ
− 9
)
≤
(

9 + 2r2
p + 9 cos(2θ)

) ∆′(rp)

sin2 θ

(
rp∆(rp)−

∆′(rp)

16

)
. (3.416)

Applying the Cartesian coordinates in Eq. (5.141), rp− and rp+ and the corresponding

photon regions (rp− < r < rp+), have been plotted in Fig. 3.46, together with the

event horizon, for some definite values of the black hole parameters. As it is observed

from the figures, faster spinning RCWBH can produce larger photon regions. In fact,

the shape of the photon regions informs about that of the black hole shadow, since

the shadow is confined to the photon surfaces. Those photons on unstable orbits that

can reach the distant observers, can create an image of the outer regions of the event

horizon. Such photons are therefore responsible, for example, for the image obtained

from M87* (Akiyama et al., 2019a).

To proceed with the determination of the shadow of the RCWBH, we should bear

in mind that this spacetime is not asymptotically flat. We therefore cannot consider an

observer at infinity, as is traditionally done (Bardeen, 1973; Cunningham & Bardeen,

1973; Vázquez & Esteban, 2004). Therefore, instead of using the celestial coordinates

in the sky of an observer at infinity, we locate an observer at the coordinate position
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(ro, θo), which is characterized by the orthonormal tetrad e{A}, selected as

e0 =

(
Σ + a2 sin2 θ

)
∂t + a ∂ϕ√

Σ ∆

∣∣∣∣∣
(ro ,θo)

, (3.417)

e1 =

√
1
Σ

∂θ

∣∣∣∣∣
(ro ,θo)

, (3.418)

e2 = −
(
∂ϕ + a sin2 θ ∂t

)
√

Σ sin θ

∣∣∣∣∣
(ro ,θo)

, (3.419)

e3 = −
√

∆
Σ

∂r

∣∣∣∣∣
(ro ,θo)

, (3.420)

that satisfy eA
αeB

α = δB
A. This method makes it possible to calculate the celes-

tial coordinates in general spacetimes with cosmological constituents (Grenzebach

et al., 2014; Grenzebach, 2016) . In the above set of tetrads, the time-like vector e0

is supposed to be the velocity four-vector of the selected observer. Furthermore, e3

is set to point towards the black hole and e0 ± e3 is the generator of the principal

null congruence. This way, a linear combination of e{A} is tangent to the light ray

ℓ(τ) = (t(τ), r(τ), θ(τ), ϕ(τ)), which is sent from the black hole to the past. The tan-

gent to this light ray can be parameterized in two ways as

dℓ
dτ

=
dt
dτ

∂t +
dr
dτ

∂r +
dθ

dτ
∂θ +

dϕ

dτ
∂ϕ, (3.421)

dℓ
dτ

= c (−e0 + sin ϑ cos ψ e1 + sin ϑ sin ψ e2 + cos ϑ e3) , (3.422)

in which, ϑ and ψ are newly defined celestial coordinates in the observer’s sky and

c = g (ℓ, e0) =
aL̃ −

(
Σ + a2 sin2 θ

)
Ẽ√

Σ ∆
. (3.423)

It can be easily noticed that ϑ = 0 points, directly, to the black hole. Since the bound-

ary curve of the shadow is generated by those light rays that come onto the critical

(unstable) null geodesics at the radial distance rp, this region therefore corresponds

to the critical impact parameters b̃c and η̃c, given in Eqs. (3.411) and (3.412). The cor-

responding celestial coordinates (ψp, ϑp) at this distance, for the observer located at

(ro, θo), have been derived as (Grenzebach et al., 2014)

P(rp, θo) := sin ψp =
b̃c(rp) + a cos2 θo − a√

η̃c(rp) sin θo

, (3.424)

T (rp, ro) := sin ϑp =

√
∆(ro) η̃c(rp)

r2
o − a(b̃c(rp)− a)

. (3.425)
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Accordingly, the ϑ coordinate has its maximum and minimum values, respectively, for

ψp = −π
2 and ψp = π

2 . This helps us obtaining the corresponding values of rp for each

of the cases. Applying Eq. (3.424), these conditions result in the equation

Σ(rp, θo)∆′(rp)− 4rp∆(rp)

= ∓rp sin θo

√
16
(
a2 − ∆(rp)

)
∆(rp) + 8rp∆(rp)∆′(rp)− r2

p∆′(rp)2, (3.426)

where Σ(rp, θo) = r2
p + a2 cos2 θo. This equation is of fourth order in rp, and has the

positive solutions

rpmin =

√
c̄2

c̄1
sin
(

1
2

arcsin
(

2
√

c̄3/c̄1

c̄2/c̄1

))
, (3.427)

rpmax =

√
c̄2

c̄1
cos

(
1
2

arcsin
(

2
√

c̄3/c̄1

c̄2/c̄1

))
, (3.428)

in which

c̄1 = 4
[
4a2 cot2 θo

(
a2 cos2 θo + λ2)− λ2 (4a2 + λ2)+ λ4 csc2 θo

]
, (3.429a)

c̄2 = 2λ4 csc2 θo
[
−8a2 + Q2 cos(2θo) + Q2]

+ 8a2λ2 cot2 θo
[
a2 cos(2θo)− 3a2 + λ2 + Q2] , (3.429b)

c̄3 =
1
2

λ4 csc2 θo

[
a4 cos(4θo) +

(
Q4 − 12a4

)
cos(2θo)

+19a4 − 8a2Q2 + Q4
]

. (3.429c)

The values in Eqs. (3.427) and (3.428) are indeed those radii where the boundary of

the photon region intersects with the cone θ = θo. When a = 0, we have rpmax =

rpmin = Q√
2
, which is the radius of the unstable photon orbits around a static CWBH,

and it does not depend on λ (Fathi et al., 2020). This unique value corresponds to the

constant value of ϑp = π
2 for a = 0. The shadow of the static black hole is therefore

circular.

Now, getting back to the case of a ̸= 0, the two-dimensional Cartesian coordinates

for the chosen observer of the velocity four-vector e0, are now obtained by applying

the stereographic projection of the celestial sphere (ψp, ϑp), onto a plane. This provides

the coordinates (Grenzebach et al., 2014)

Xp = −2 tan
(

ϑp

2

)
sin ψp, (3.430)

Yp = −2 tan
(

ϑp

2

)
cos ψp. (3.431)
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The case of θo = π
2 corresponds to the equatorial plane of view for the observer. Tak-

ing this into account, in Fig. 3.47, we have used the above coordinates to obtain the

shadow of the RCWBH, for different values of electric charge and spin parameter. The

curves use rp as their parameter. In general, and for a given spin parameter, the size

of the shadow increases by increasing the electric charge, and as it is inferred from the

figures, by raising the black hole’s spin, the shadow shrinks and tends to the positive

part of the coordinate plane. It can also be noted that the shadow becomes oblate to-

ward the Xp = 0 axis from the negative sector of the coordinate plane, whereas it is

sharp toward that, from the positive sector. However, the amount of such deforma-

tions cannot be inferred directly from the Q
a fraction, and is indeed a consequence of

the spacetime’s response to the changes in the electric charge. In fact, the size and the

deformation of the shadow casts of black holes have been used to estimate their dy-

namical properties. In the forthcoming subsection, using a specific geometric method,

we relate the angular size of a deformed shadow to the physical characteristics of the

black hole. However, before proceeding with that, it is of worth to make a compari-

son between the formation and the evolution of the shadows of the Kerr-Newman-de

Sitter black hole (KNdSBH) and the RCWBH. This way, we will be able to gain some

visualizations for the differences between the general relativistic spacetimes and that

of the RCWBH. The line element associated with the KNdSBH is given by (Griffiths &

Podolský, 2009)

ds2
kn = −∆r − a2∆θ sin2 θ

Σ
dt2 +

Σ
∆r

dr2 +
Σ
∆θ

dθ2

+
2
Σ
[
∆ra sin2 θ − a∆θ sin2 θ

(
Σ + a2 sin2 θ

)]
dt dϕ

+
1
Σ

[(
Σ + a2 sin2 θ

)2
∆θ sin2 θ − ∆ra2 sin4 θ

]
dϕ2, (3.432)

in which, the new functions

∆r = r2 − 2M0r + a2 + Q2
0 +

R0r2

12
(
a2 + r2) , (3.433a)

∆θ = 1 +
R0a2 cos2 θ

12
, (3.433b)

with R0 ≡ 4Λ, associate with a massive object of mass M0 and charge Q0. The shadow

of the KNdSBH is calculated using the celestial coordinates (Grenzebach et al., 2014)

sin ψkn
p =

1√
∆θ(θo)

sin ψ, (3.434)

sin ϑkn
p = sin ϑp, (3.435)
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Figure 3.47: The shadow of the RCWBH for a ̸= 0, plotted for λ = 10 and ro = 5λ. Each

diagram corresponds to a fixed value of Q and five values of a, which are sorted from the

largest to the smallest parametric curve. The figures have been scaled in order to have an

approximate circular shape for the smallest a in each of the diagrams.
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Figure 3.48: Shadows of (a) the KNdSBH and (b) the RCWBH plotted for
•
Q = 6,

•
ro = 5

and θo = π
2 , for both of the black holes. The cosmological terms have been considered as

•
R0 =

•
c1 = 10−3. For the case of RCWBH, this value corresponds to λ = 10, if

•
r0 ≈ 6.93.

The values of the re-scaled spin parameter
•
a, have been sorted from the less oblate to the most

oblate parametric curves. As it is observed, respecting the corresponding black hole masses,

the shadow of the RCWBH is greater in size.

which are here given in terms of those in Eqs. (3.424) and (3.425), and the same impact

parameters in Eqs. (3.411) and (3.412). Defining
•
q, as the dimension-less version of a

black hole quantity q, re-scaled by the corresponding black hole mass parameters12,

in Fig. 3.48, we have applied the Cartesian coordinates (3.430) and (3.431), to compare

the shadows of the KNdSBH and the RCWBH, for definite values of the black hole

parameters, and several values of the spin parameter. Having in mind the re-scaling

of the coordinates, it is seen from the diagrams that the RCWBH has larger shadows

than the KNdSBH, respecting their black hole masses. Additionally, the increase in the

spin parameter, makes the shadow of the KNdSBH to shrink outside the larger ones,

whereas for the RCWBH, this happens inside of those.

The angular size of the shadow

The celestial coordinates defined in Eqs. (3.424) and (3.425) can be used in order to

calculate the angular diameters of the shadow. As shown in the left panel of Fig. 3.49,

these angular diameters are expressed in terms of the celestial coordinates (ψp, ϑp).

We replace these angular diameters by (Grenzebach et al., 2015)

12For example, letting M0 to be the black hole’s mass for both of the RCWBH and KNdSBH, then
•
a

means a
M̃0

, and etc. In particular,
•
c1 = c1

M2
0

and
•
R0 = R0

M2
0
.
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Figure 3.49: Characterization of an oblate shadow in terms of the angular diameters. The

celestial coordinates (ψp, ϑp) are transformed to the Cartesian coordinates (X, Y), as indicated

in the left panel. The black hole at point B is located at the center of the Cartesian coordinates.

The observer at point O and at the distance ro from the black hole, observes the event e on the

shadow. In the right panel, the angular diameters corresponding to the mentioned celestial

coordinates, are now expressed in terms of three angular radii ϖh1 , ϖh2 and ϖv, according to

the symmetry with respect to the X-coordinate.

δh = ϖh1 + ϖh2 , (3.436)

δv = 2ϖv, (3.437)

which are defined in terms of the three angular radii ϖh1 , ϖh2 and ϖv, that obey the

properties (see the right panel of Fig. 3.49)

sin ϖhi = sin ϑhi sin ψhi , (i = 1, 2), (3.438)

sin ϖv = sin ϑv cos ψv, (3.439)

or from Eqs. (3.424) and (3.425),

sin ϖhi = T (rhi , ro)P(rhi , θo), (3.440)

sin ϖv = T (rv, ro)
√

1 −P2(rv, θo). (3.441)

Once again we restrict ourselves to the equatorial plane by letting θo = π
2 , so that

the horizontal angular diameter corresponds to ψh = ±π
2 , and we need to solve

P2(rh, π
2 ) = 1 for this case. Using Eq. (3.424) together with Eqs. (3.411) and (3.412), this

condition provides an equation of fourth order in rh, which has the positive solutions

rh1 =
√

C̄1 sin

(
1
2

arcsin

(
2
√

C̄2

C̄1

))
, (3.442)

rh2 =
√

C̄1 cos

(
1
2

arcsin

(
2
√

C̄2

C̄1

))
, (3.443)
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where

C̄1 =
Q2 − 2a2

2
(

a2

λ2

)
+ 1

, (3.444a)

C̄2 =
2a4 − 3

2 a2 (a2 + 1
4

)(
a2

λ2

)
+ 1

. (3.444b)

The horizontal angular radii are then calculated by evaluating the product

T (rh1,2 , ro)P(rh1,2 , π
2 ), and from there, δh can be evaluated using Eq. (3.436). To cal-

culate the vertical angular radius, we take into account the fact that this radius

corresponds to those points on the shadow’s boundary, where the tangent to the

curve C(rv, ro, θo) ≡ sin2 ϖv vanishes. Accordingly, we encounter the equation

∂rvC(rv, ro, π
2 ) = 0. Considering this condition and applying Eq. (3.441) together with

Eqs. (3.424) and (3.425), we obtain the unique positive value

rv = ro

√
Q2 − 2a2

2 (a2 + r2
o)

, (3.445)

which evaluates the vertical angular radii as

sin2 ϖv =

(
Q2 − 2a2) (λ2 (4a2 − Q2 + 4r2

o
)
− 4r4

o
)

8a4λ2 + a2 (8r2
o (λ

2 + r2
o)− 2λ2Q2) + 4r4

o (λ
2 − Q2)

. (3.446)

The vertical angular diameter δv, can be therefore calculated using Eq. (3.437). In

Fig. 3.50, the behaviors of δh and δv have been plotted in terms of changes in Q and

a. As observed from the diagrams, each of the horizontal diameter curves has a max-

imum, which is more significant for smaller a. Furthermore, the horizontal size is

larger for smaller a, and all the curves tend to a same value as Q increases. On the

other hand, the curves corresponding to the vertical diameter, expose a smooth de-

crease in value with respect to increase in Q, for each of the cases. Also, increase in

the spin parameter only increases the vertical size of the shadow, and in contrast with

the previous case, the vertical size is smaller for smaller a. These can be inferred, as

well, from the density plots in the right panel diagrams. Moreover, as seen in Eqs.

(3.440) and (3.441), the other effective factor in the angular sizes of the shadow, is the

observer’s distance ro. As shown in the bottom panels of Fig. 3.50, by increase in ro

outside rp+, the shadow increases in size until its angular diameters reach a constant

maximum value, within a finite distance inside the causal region. In fact, for the verti-

cal diameter, the radial distance ro could encounter a minimum and a maximum, that

can be obtained from Eq. (3.446) as

r2
omax

min
=

1
2

(
λ2 ±

√
λ2 (4a2 − Q2 + λ2)

)
, (3.447)
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Figure 3.50: The variations of the horizontal (diagrams (a), (b)) and the vertical (diagrams (c),

(d)) angular diameters of the RCWBH as functions of Q and a, plotted for λ = 10 and ro = 5λ.

In the left panels, the changes of angular diameters in terms of Q, have been plotted distinctly

for five values of a. In the right panels, Q and a have been let to change freely. The bottom

panel diagrams ((e), (f)), correspond respectively to the dependence of the angular diameters

on the variations of the observer’s location ro, which have been plotted for Q = 0.3λ.
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where, ro min exists only for Q > 2a, for which, rp− also exists. It is important to note

that, the increase in size of the shadow by distance, is a consequence of the peculiar

contribution of the cosmological term λ for the RCWBH. This term becomes more

dominant as ro increases.

It is of worth comparing the above vertical diameter, with the angular diameter

assigned to the shadow of M87*. This way, we can obtain an estimation for the charge

component of the RCWBH, if it has the same angular diameter. For M87*, located

at the distance ro∗ ≈ 5.18 × 1023m from earth, the values associated with the lapse

function components in Eqs. (3.23) are M0∗ ≈ 6.4 × 109M⊙ and r0∗ ≈ 1.82 × 1013m

(Akiyama et al., 2015). The angular diameter of the shadow has been observed

as d̃∗ = (42 ± 3) µas13 (Akiyama et al., 2019a). To do the comparison, we fix the

cosmological component of the spacetime to the current value of the cosmological

constant, by letting c1∗ = Λ0 ≈ 1.11 × 10−52 m−2 (Planck Collaboration, et al., 2016).

Furthermore, the recent evaluation of the spin parameter of M87* is a∗ = 0.9 ± 0.05

(Tamburini et al., 2019). Assuming these values together with the equivalence d̃∗ = δv,

and by taking into account the expression in Eq. (3.446), we get Q∗ ≈ 1.8 m. This

value is approximately equivalent to 2.1 × 1017C, which is nearly the charge of 1036

protons14. This value corresponds to a charge density of ρ̃Q∗ ≈ 8.32× 10−24 C
m3 for the

black hole.

3.7 Summary

In this chapter, we introduced a particular static charged black hole inferred from the

WCG. We applied the standard Lagrangian method to calculate analytical solutions

to the equations of motion for mass-less and massive test particles. In order to do so,

we applied several elliptic intergation methods which enabled us to construct a firm

mathematical foundations for our solutions and made it possible to simulate the or-

bits for all possible cases. Furthermore, we considered the gravitational Rutherford

scattering for this black hole, studying which, we confronted a particular case of a

hyper-elliptic integral which was treated by means of decomposition of the character-

131 µas ≈ 4.85 × 10−12 rad.
14The change from SI to geometric units for the electric charge is Q(Coulomb) =

√
4πϵ0c4

G Q(meters) =

1.15964 × 1017Q(meters), and the proton’s electric charge is qp = 1.602 × 10−19C. For the mass,

M0(meters) = M0(kg) × G
c2 , and we have considered M⊙ = 1.989 × 1030kg (Phillips, 1995).
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istic function into its possible real and imaginary solutions. This way, the scattering

of charged test particles was simulated accordingly. Additionally, the gravitational

lensing of this black hole when it is immersed in a plasmic medium was analyzed

by exploiting rigorous elliptic integration methods. We finally applied the MNJA to

obtain a stationary counterpart of this black hole, for which, the fundamental hyper-

surfaces, including the ergosphere and the photon regions were studied in detail. We

also analyzed the shadow of the black hole applying an alternative method of calcu-

lating the celestial coordinates.

151



CHAPTER 3. THE CASE OF A CHARGED WEYL BLACK HOLE

152



CHAPTER 4

The case of a scale-dependent BTZ

black hole

In this chapter we study the motion of mass-less particles on a static Bañados-

Teitelboim-Zanelli (BTZ) black hole background in the context of scale-dependent (SD)

gravity, which is characterized by the running parameter ϵ. Thus, by using standard

methods we obtain the equation of motions and then analytic solutions are found.

The relevant non-trivial differences appear when we compare our solution against the

classical counterpart (Fathi et al., 2020).

4.1 Introduction

Given that black holes combine classical and quantum effects, the research of this kind

of objects might help us to improve our understanding of how gravity and quantum

mechanics work together. In particular, jut after the seminal work of Deser, Jackiw,

’t Hooft and Witten (Deser et al., 1984; Deser & Jackiw, 1988; ’t Hooft, 1988; Witten,

1988), gravitation in (2+1) dimensions was considered as an ideal scenario to inves-

tigate conceptual issues such as the nature of observables and the “problem of time”

(Carlip, 1995). Thus, in order to check the effects beyond GR, the BTZ black hole

(the first black hole obtained with negative cosmological constant in that dimension),

serves as a toy model to try to understand quantum gravity.
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Originally, general relativity in (2+1) dimensions was not considered seriously.

One of the main reasons is that it does not have a Newtonian limit (Barrow et al.,

1986), however, the pioneer BTZ solution showed that it is indeed a black hole and

it is interesting to learn about it since, firstly, it has an event horizon, and secondly,

it appears as the final state of a collapsing matter, and finally, it has thermodynamic

properties quiet similar to a (3+1)-dimensional black hole (Carlip, 1995).

Thus, after the discovery of the BTZ black hole solution (Bañados et al., 1992, 1993)

the idea of gravity in (2+1) dimensions gained the attention of adepts to analyze sev-

eral interesting properties that are usually treated in the (3+1)-dimensional counter-

part. For example, its geodesic structure (Cruz et al., 1994), thermodynamic properties

(Carlip, 1995; Bañados, 1999; Cruz & Lepe, 2004), quasinormal modes (QNM) (Car-

doso & Lemos, 2001; Crisostomo et al., 2004; Panotopoulos, 2018), stable and regular

interior solutions that matches with a BTZ background (Cruz & Zanelli, 1995; Garcı́a

& Campuzano, 2003; Cruz et al., 2005; Cataldo & Cruz, 2006) SD solutions (Koch et al.,

2016; Rincón et al., 2018), among others. In the light of this, in this chapter we will

investigate the gravitational effects on light produced in the spacetime of the SD ver-

sion of the classical BTZ black hole. The importance of this study is twofold, firstly,

because the motion of light provides a way to classify an arbitrary spacetime (in order

to reveal its structure) and secondly, because the quantum features of this SD black

hole could modify the classical trajectories of light.

4.2 The SD theory

The so-called SD scenario has received considerable attention in the context of black

holes, wormholes, QNM as well as other applications. Given that the philosophy

beyond this method is novel, we will briefly summarize the main points regarding

how this idea is applied.

The crucial point is that in the SD scenario, the couplings of a certain theory are not

constant any more. Inspired by the asymptotic safety program we allow that the cou-

pling evolve with certain energy scale. This assumption allows to extend the classical

well–defined solutions to include quantum corrections which, by definition, are taken

to be small. In our particular problem, we only have two coupling: i) the Newton’s

coupling Gk and ii) the cosmological coupling Λk. One should note that the New-

ton’s coupling is related to the gravitational coupling by mean of the simple relation

κk ≡ 8πGk. The problem have two independent fields: i) the arbitrary energy scale k
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and ii) the metric field gµν. The effective action is then written as

Γ[gµν, k] ≡
∫

d3x
√
−g

[
1

2κk

(
R − 2Λk

)
+ LM

]
, (4.1)

where LM is the Lagrangian density of the matter fields, and after varying the effec-

tive action with respect to the metric field, the effective Einstein field equations are

obtained as follows:

Gµν + Λkgµν ≡ κkTeffec
µν , (4.2)

where the effective energy-momentum tensor is defined according to

κkTeffec
µν = κkTM

µν − ∆tµν. (4.3)

The object Teffec
µν now includes two contributions, i.e. in addition to the usual matter

content, we now have the non-matter source provided by the running of the gravita-

tional coupling. This new tensor is then defined as:

∆tµν ≡ Gk

(
gµν□−∇µ∇ν

)
G−1

k . (4.4)

Even though matter source is always an interesting ingredient in gravitational theo-

ries, we will focus on the simplest case in which TM
µν = 0, to investigate the effect of

the SD couplings into a the well-known BTZ black hole solution. Note that, under

some circumstances, the cosmological coupling is taken as a source term giving rise

to TM
µν ̸= 0. This, however, is just a reinterpretation of the cosmological constant and

does not provide a real source.

The additional field k(x) gives us an auxiliary equation to complete the set. Thus,

the relation is obtained from the condition

δΓ[gµν, k]
δk

= 0. (4.5)

This restriction can be seen as posteriori regarding background independence (Steven-

son, 1981; Reuter & Weyer, 2004; Becker & Reuter, 2014; Dietz & Morris, 2015; Labus

et al., 2016; Morris, 2016; Ohta, 2017) The Eq. (4.5) provides us a restriction between

Gk and Λk, which reveals that the cosmological parameter needs to be considered in

order to obtain self-consistent SD solutions. Notice that if we consider an additional

contribution i.e., if LM ̸= 0, then the cosmological coupling is not mandatory. As we

commented before, the above equation closes the system, but the implementation of

this, is a difficult task.
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To elicit the physical information from these equations, one has to set the re-

normalization scale k(x) in terms of the physical variables of the system under consid-

eration k → k(x, . . . ). This choice, however, breaks the re-parametrization symmetry.

In order to recover the aforementioned symmetry, and to circumvent the use of Eq.

(4.5), we can supplement the field equations by assuming some energy constraint.

Usually we have four standard energy conditions which play important roles in GR.

Despite the existence of numerous occasions where these conditions are violated, in

general, a well-defined model (solution) maintains the validity of, at least, one of the

energy conditions. In general, among the four energy conditions, the so-called null

energy condition (NEC) is the least restrictive one. We take advantage of the extreme

NEC condition to get

Teffec
µν ℓµℓν = −∆tµνℓ

µℓν !
= 0, (4.6)

where ℓµ is a null vector (Rincón & Koch, 2018a). A clever choice of this vector allows

us to get the differential equation

G(r)
d2G(r)

dr2 − 2
(

dG(r)
dr

)2

= 0. (4.7)

for the gravitational coupling. Solving the above differential equation, we decrease a

degree of freedom of the problem. After replacing G(r) into the effective Einstein field

equations, we are able to obtain the functions involved. It is remarkable to note that,

for the case of coordinate transformations we have

∇µGµν = 0. (4.8)

In the next section we will briefly discuss a new black hole solution in the context of

SD couplings, inspired by quantum gravity (Koch et al., 2016).

4.3 The background: static circularly symmetric

black hole solutions

The metric, in the absence of charge, adopts circular symmetry whereas the functions

involved only have radial dependence. With this in mind, the line element defined in

terms of the usual Schwarzschild coordinates (ct, r, ϕ), is as follow

ds2 = − f (r)d(ct)2 + f (r)−1 dr2 + r2dϕ2, (4.9)
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for which, we need to find the metric function f (r) and the cosmological coupling

Λ(r). Solving first the Eq. (4.7) and then the set of { f (r), Λ(r)}, we obtain

G(r) =
G0

1 + ϵr
, (4.10)

f (r) = − 8G0M0

c2 Y(r) +
r2

ℓ2
0

, (4.11)

Λ(r) = − 1
ℓ2

0

(
1 + 3 ϵ r
1 + ϵr

)
+

8M0G(r)
c2r2 Y(r)

[
rϵ +

1
2
(1 + 2rϵ)

(
d ln Y(r)

d ln r

)]
, (4.12)

where Y(r) is an auxiliary function defined as follow

Y(r) ≡ 1 − 2x + 2x2 ln
(

1 +
1
x

)
, x ≡ rϵ. (4.13)

The set of constants (· · · )0 are defined as the classical values, and ϵ is the parameter

which encodes the SD corrections. We then have four integration constants: i) the

gravitational coupling G0, ii) the cosmological coupling Λ0 ≡ −ℓ−2
0 , iii) the classical

mass M0, and finally, iv) the running parameter ϵ. On the other hand, the non-rotating

classical solution (Bañados et al., 1992, 1993), should be obtained when ϵ is turned off,

i.e.

lim
ϵ→0

G(r) = G0, (4.14)

lim
ϵ→0

f (r) = f0(r) ≡ −8M0G0

c2 +
r2

ℓ2
0

, (4.15)

lim
ϵ→0

Λ(r) = Λ0. (4.16)

According to the fact that the exact solution for the SD problem is complicated, it is

plausible to take into account small quantum corrections. Hence, we expand the full

solution up to the first order in ϵr. Such a consideration, in fact, corresponds to tak-

ing Y(r) ≈ 1 − 2x which merely confines x to the domain of small positive values.

Such an adoption enables us to recover fully analytical descriptions of radial-angular

world-lines and to compare them with classical results in a desirable transparency.

Consideration of the higher order terms in the running parameter however, will rely

totally on a numerical investigation which does not lie within the scope of this pa-

per. At this level, it is essential to highlight the range of the SD parameter ϵ. Firstly,

note that the combination x = ϵr should be small in order to maintain the validity of

our approximation. In this sense, given that r should be large, then the correspond-

ing inverse parameter ϵ should be small, to keep x ≪ 1. Secondly, we should keep
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in mind that the SD scenario is supposed to include quantum features. The latter

means that the allowed corrections are supposed to be small. In the light of the above

two arguments, we are looking for solutions when the SD parameter is, for instance,

10−2 ≲ ϵ ≲ 10−1; values which are quite smaller than unity. Now, returning to the

mentioned kind of expansion for Y(r), the solutions are reduced to

G(r) ≈ G0 (1 − ϵr), (4.17)

f (r) ≈ r2

ℓ2
0
+ 16Mϵr − 8M, (4.18)

Λ(r) ≈ Λ0(1 + 2rϵ), (4.19)

where M ≡ M0
mp

is the dimensionless mass, and mp is the Planck mass in the (2+1)-

gravity given by (Cruz & Lepe, 2004)

mp =
c2

G0
. (4.20)

The event horizon can be obtained demanding that f (r) = 0. Thus, from Eq. (4.18) we

have the two solutions

r± = ± R0

[√
1 + (ϵR0)2 ∓ (ϵR0)

]
, (4.21)

where only the positive root has physical meaning. Furthermore, the parameter R0 ≡
√

8Mℓ0 is the classical horizon (i.e. the event horizon when ϵ goes to zero). Again,

taking a Taylor series for small ϵ we observe how the classical horizon is corrected by

taking into account quantum effects

r+ ≈ R0

[
1 − ϵR0 +

1
2
(ϵR0)

2 +O(ϵ3)

]
. (4.22)

Notice that an important relation is obtained from Eq. (4.21)

8M =
r2
+

ℓ2
0
+ 16Mϵr+, (4.23)

and also, the lapse function can be written as

f (r) =
1
ℓ2

0
(r − r+)(r − r−). (4.24)

4.4 Null geodesics

In order to apply the standard Lagrangian procedure discussed in chapter 2, to inves-

tigate the motion of mass-less test particles on a static SDBTZ black hole background,
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we write the Lagrangian associated to the line element (7.31) as (Chandrasekhar, 1998;

Cruz et al., 2005; Villanueva et al., 2018)

2L = − f (r) c2 ṫ2 + ṙ2 f (r)−1 + r2 ϕ̇2 = 0. (4.25)

The corresponding conjugate momenta are

Πt = − f (r)c2 ṫ = −E , Πϕ = r2ϕ̇ = L. (4.26)

Here, E is cannot be associated with the energy (per unit of mass) since the spacetime

is not asymptotically flat. Applying Eqs. (4.26) into Eq. (4.25), and defining E ≡ E
c2 ,

we obtain (
dr
dτ

)2

= E2 − Veff(r), (4.27)

where

Veff(r) = L2 f (r)
r2 . (4.28)

This potential presents a maximum at rm = ϵ−1 and has the value

Veff(r)
∣∣∣∣
r=rm

=

(
L
ℓ0

)2 [
1 + (ϵR0)

2
]
. (4.29)

In Fig. 4.1 this effective potential has been plotted for different values of the parame-

ters. It is remarkable that the classical solution does not depend on the horizon radius,

however, the quantum counterpart depends on the combination ϵR0 which means that

the maximum will be shifted when ϵ increases. Using the second relation of Eq. (4.26)

and the chain rule, we obtain the radial-angular equation of motion, which is given by

L2
(

1
r2

dr
dϕ

)2

= E2 − Veff(r). (4.30)

Additionally, Eq. (4.28) together with Eqs. (6.51) and (4.30), allow us to obtain explic-

itly the equations of motion, which read(
dr
dτ

)2

=

[
E2 −

(
L
ℓ0

)2
]
− 16MϵL2

r
+

8ML2

r2 , (4.31)

and, with the change of variable u .
= 1

r ,(
−du

dϕ

)2

=

(
1
b2 − 1

b2
c

)
+ 8M(u − um)

2 ≡ g(u), (4.32)

where um = ϵ, b = L
E is the impact parameter and bc is a critical impact parameter,

which corresponds to the value of the impact parameter for photons whose constant

of motion E2 = Veff(rm), given by

bc =
ℓ0√

1 + (ϵR0)2
. (4.33)
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Figure 4.1: Plots for the effective potential Veff as a function of the radial coordinate r, which

presents a maximum equal to Veff =
L2

b2
c

, where bc is the critical impact parameter given by Eq.

(4.33), at rm = ϵ−1. LEFT: Evolution of the effective potential for different values of the running

parameter: ϵ = 10−1, ϵ = 7.5 × 10−2, ϵ = 5 × 10−2, ϵ = 10−2 and ϵ = 0, in arbitrary reciprocal

length units. RIGHT: Depending on the value of the impact parameter, different trajectories

are obtained. Thus, if b > bc there are two turning points, r1 and r2, which correspond to the

periastron and apastron distance for orbits of the first and second kind, respectively; geodesics

with impact parameter b = bc allows an unstable circular orbit so photons arriving from infin-

ity asymptotically approaches to the circle of radius rm by spiralling. Also, from the opposite

side, photons approach the same circle by spiralling around it; finally, if b < bc the motion is

unbounded and photons coming from infinite goes to the event horizon and vice versa.

We observe that the critical value is, in this case, smaller than the classical counterpart

(or more precisely, than the usual non-rotating BTZ black hole).

4.4.1 Radial motion

Photons with vanished angular momentum L = 0 have a zero effective potential, and

then follow a radial motion. By imposing this condition in Eq. (4.31), it is straightfor-

ward to see that

r(τ) = r0 ± Eτ, (4.34)

where r0 is the location of the photon at τ = 0, and the plus (minus) sign indicates that

the movement is made towards the spatial infinity (event horizon). For the coordinate

time, we use together Eqs. (4.26)-(4.31) to obtain the following quadrature

dr
dt

=
c
ℓ2

0
(r − r+)(r − r−), (4.35)

so, an elementary integration yields

r(t) =
r+ − κor− e±

t
tc

1 − κo e±
t

tc

, (4.36)
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where

κ0 =
r0 − r+
r0 − r−

, tc =
ℓ2

0
c(r+ − r−)

. (4.37)

Notice from Eq. (4.36) and Fig. 7.39 that for a non-comoving observer, photons take
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Figure 4.2: Plot for the radial coordinate as a function of the proper time τ and coordinate time

t, described by Eqs. (4.34) and (4.36), respectively.

an infinite time to reach the horizon r+, and a finite time

t∞ = tc ln κ−1
0 (4.38)

to escape to infinity. This behaviour was reported before by Villanueva & Vásquez in

the context of asymptotically Lifshitz spacetimes (Villanueva & Vásquez, 2013).

4.4.2 The critical motion

Returning to the general equation (4.32), we must distinguish the different possible

cases based on the disposition of the roots of the polynomial g(u) = 0. In order to

obtain a qualitative analysis of the allowed motion we refers to the Fig. 4.1. Clearly

in terms of the impact parameter b, there are three different allowed types of motion.

The first one corresponds to the case b = bc, so we have g(u) = 8M(u − um)2 = 0

and the motion corresponds to an asymptotic (unstable )circular orbit at r = rm. Thus,

considering ϕ = 0 when r = r0, an integration of Eq. (4.32) leads to

r(ϕ) =
r0

r0
rm

+
(

1 − r0
rm

)
e±

√
8Mϕ

, (4.39)

where the plus (minus) sign corresponds to the motion for which r0 > rm (r0 < rm),

and the corresponding polar plot are showed in Fig. 4.3. In the plots, we have also

shown the classical case (ϵ = 0 or rm → ∞) for the same values of the impact param-

eter and the starting point. However, as it can be seen in the left panel of Fig. 4.1, the
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ϵ = 0 case does not possess any maximums in its corresponding effective potential.

It therefore can not offer critical motions. Hence, Fig. 4.3 shows together, the critical

motion in SDBTZ spacetime with a non-critical motion in BTZ spacetime. By com-

parison, we can see that for the same values of the physical parameters, spiral infall

on the black hole event horizon appears in the classical case. There is also one more

rm

r0

r+ r+

rm

r0

Figure 4.3: Polar plots for the motion of photons whose impact parameter is set to b = bc.

The red trajectories indicate non-critical motions corresponding to the case of ϵ = 0 (the usual

non-rotating BTZ black hole), whereas the blue ones show critical motion in the SDBTZ space-

time, characterized as follows: LEFT: Photons start from the distance r0 < rm and approach

asymptotically to the unstable circular orbit at rm. RIGHT: Photons come from r0 > rm and

approach asymptotically to the unstable circular orbit at rm. Both graphs were made using

ϵ = 10−2, M = 10 and ℓ0 = 100, so that rm = 100, bc = 11.11 (all values are in arbitrary length

units). In the classical case in both plots, photons start from r0 and fall onto the event horizon

by spiraling.

interesting concept which is worth bringing up. As seen above, the motion of photons

in black hole spacetimes is rather peculiar and their ability to escape the from being

trapped, is restricted to some specific rules. Formerly, Synge had figured out that pho-

tons moving in the Schwarzschild spacetime can escape to infinity if they move on

directions constructing a escape cone (Synge, 1966), which was later called the cone of

avoidance by Chandrasekhar (Chandrasekhar, 1998). This constructs the foundations

of the study of the so-called black hole shadow (Perlick, 2004; Grenzebach et al., 2014,

2015; Perlick et al., 2015; Abdujabbarov et al., 2016; Contreras et al., 2019). Such a

shadow has recently been observed for the M87 central black hole (Akiyama et al.,

2019a,b).

Returning to the critical orbits obtained above, we can define a cone of avoidance
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exploiting its null geodesic generators. Denoting Ψ as the half angle of the cone, then

(Chandrasekhar, 1998; Cruz et al., 2005; Kuniyal et al., 2016)

cot Ψ =
1
r

dr̃
dϕ

, (4.40)

where r̃ is the proper length along the generators of the cone

dr̃ =
dr√
f (r)

=
ℓ0 dr√

(r − r+)(r − r−)
. (4.41)

Combining Eqs. (4.41) and (4.30) with Eq. (4.40) one obtains that

tan Ψ =

(
r+
R0

r−
R0

) 1
2

(
r

r+ − 1
) 1

2
(

r
r− − 1

) 1
2

r
rm

− 1
. (4.42)

From this last equation it follows that

Ψ →



∼ rm
R0

if r → ∞

= 1
2 π if r = rm

= 0 if r = r+

(4.43)

An important remark from the first of Eqs. (4.43) is that the angle Ψ goes to a constant

(non-zero) value as r → ∞. The same happens for Schwarzschild-anti-de Sitter black

holes (Cruz et al., 2005; Stuchlı́k & Hledı́k, 1999) in the context of (3+1)-gravity. In

the same context however, we encounter Ψ ∼ 1
r as r → ∞ for Schwarzschild and

Schwarzschild-de Sitter black holes (Chandrasekhar, 1998; Stuchlı́k & Hledı́k, 1999).

4.4.3 The deflecting trajectories

As shown in Fig. 4.1, in the case when bc < b < b0 (with b0 = limϵ→0 bc = ℓ0) there are

two kinds of allowed orbits: the OFK for r > r1, and the OSK for r < r2. The values of

the turning points r1,2 are obtained from the condition E2 = Veff, and are given by

r1 =
rm

1 − ε
, r2 =

rm

1 + ε
, (4.44)

where ε is the eccentricity given by

ε =
rm√
8MD

, (4.45)
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and D is the anomalous impact parameter given by the relation

1
D2 =

1
b2

c
− 1

b2 . (4.46)

Therefore, for the OFK kind with ϕ = 0 at r = r1, a quick integration of Eq. (4.32)

yields

r(ϕ) =
rm

1 − ε cosh
(√

8Mϕ
) , (4.47)

which is depicted in Fig. 4.4. Note that, the test particles reach the infinity for an angle

φ1
φ1

α̂

r1
r2

r+

Figure 4.4: Polar plot for the (un-)bound and motion of photons whose impact parameter is

b > bc. LEFT: OFK for photons whose radial coordinate is always greater than the periastron

distance r1, and the motion is symmetric with respect to r1 so the deflection angle results to

be α̂ = π − 2ϕ1. RIGHT: OSK for photons whose radial coordinate is always smaller than the

apastron distance r2. Both graphs were made using ϵ = 10−2, M = 10 and ℓ0 = 100, so that

rm = 100, bc = 11.11 (all values are in arbitrary length units). For the case of ϵ = 0, only this

kind of orbit is obtained, according to the relation in Eq. (4.51).

ϕ = ±ϕ1, given by

ϕ1 =
1√
8M

arccosh
(

1
ε

)
, (4.48)

so the deflection angle α̂ = π − 2ϕ1 becomes

α̂(b) = π − 1√
2M

arccosh


√

8Mbc

rm

1√
1 −

(
bc
b

)2

 . (4.49)

In Fig. 4.5 the the eccentricity (4.45) and deflection angle (4.49) are plotted as a function

of the impact parameter b. On the other hand, the OSK for which ϕ = 0 at r = r2, are

described by the following relation:

r(ϕ) =
rm

1 + ε cosh
(√

8Mϕ
) . (4.50)
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Figure 4.5: LEFT: Eccentricity parameter ε as a function of the impact parameter b. Note that

the critical impact parameter corresponds the vanishing eccentricity. RIGHT: The deflection

angle α̂ as a function of the impact parameter b. Both graphs were made using ϵ = 10−2 (in

arbitrary reciprocal length units), M = 10 and ℓ0 = 100 (in arbitrary length units), so that

rm = 100, bc = 11.11 (in arbitrary length units).

This kind of orbit is depicted in the right panel of Fig. 4.4 and, obviously, depends on

the same parameter as for the OFK. In the case of ϵ = 0, the equation of motion will

be

r(ϕ)|ϵ=0 = ±
√

8M D sech(
√

8M ϕ), (4.51)

which only results in OSK, completely the same as that in the right panel of Fig. 4.4.

The only difference, is the value of the apastron distance which in this case is given by

r2|ϵ=0 =
√

8M D. (4.52)

This is, in fact, an expected behavior since the relevant effective potential for the case

of ϵ = 0 does not propose a maximum within finite distances. Hence, no deflection to

infinity (or OFK) can be anticipated (see Fig. 4.1).

4.4.4 The captured trajectories

When 0 < b < bc, the polynomial g(u) possesses a complex conjugate pair, so that the

motion is a terminating bound orbit. This means that photons fall to the event horizon

(or, depending on the initial conditions, to the spatial infinity) from a finite distance

r0. Therefore, for test particles coming from r0 > rm where ϕ = 0, the trajectory is

described by

r(ϕ) =
rm

1 + ε̄ sinh(
√

8Mϕ − φ)
. (4.53)
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Figure 4.6: LEFT: Eccentricity parameter ε̄ as a function of the impact parameter b for the

terminating bound orbit. The critical impact parameter corresponds the zero value of the

eccentricity and its tends to infinity as b → 0. RIGHT: The trajectory followed by photons in

a terminating bound orbit, in which, ϕ = 0 at r = r0. Both graphs were made using ϵ = 10−2

(in arbitrary reciprocal length units), M = 10 and ℓ0 = 100 (in arbitrary length units), so that

rm = 100, bc = 11.11 (in arbitrary length units).

Here ε̄ is the eccentricity associated to the capturing trajectories, and is given by

ε̄ =
rm√
8MD̄

, (4.54)

with
1
D̄2 =

1
b2 − 1

b2
c

, (4.55)

and φ depends on the initial position according to

φ = arcsinh
[

ε̄−1
(

1 − rm

r0

)]
. (4.56)

Note from Eq. (4.54) that the range of the eccentricity is now 0 < ε̄ < ∞, as shown

in the left panel of Fig. 4.6. Also, in the right panel of the same graph the terminating

bound trajectory has been plotted. Once again, the classical BTZ case can be obtained

by letting ϵ = 0, giving

r(ϕ)|ϵ=0 =
√

8M D̄ csch

[
√

8M ϕ + arcsinh

(√
8MD̄
r0

)]
, (4.57)

which turns out to obey the same capturing behavior as in the SD case.

4.5 Summary

In this chapter we studied some relevant aspects of the geodesic structure of a SD non-

rotating BTZ black hole. Since the value of the running parameter ϵ is small, we can
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justify its first-order expansion and this way, the analytical study of different possible

trajectories of mass-less particles becomes possible.

The radial motion presents some similar feature as for the standard (or SD) black

holes, as we saw in the previous chapters.

The angular motion, on the other hand, is completely different to the standard

non-rotating BTZ black hole, due to the existence of the extra term 16Mϵr in Eq. (4.18).

Precisely speaking, the SDBTZ black hole provides more complex physical situations

which are absent in its classical counterpart. The linear term proportional to ϵr plays

a crucial role. Thus, given the structure of the lapse function, the effective potential

has a maximum (located at rm = ϵ−1), and therefore, three well-defined regions are

generated, according to which, bound and unbound orbits become available.

The obtained results indicate that, relying on the availability of the running param-

eter, the SDBTZ theory can offer more types of orbits, including escape to infinity. This

latter, is of great importance because it enables us to talk about the gravitational lens-

ing effect. We therefore can conclude that the SD theory is more capable of enveloping

relativistic effects, proposed as well by GR, and seems worth of studying further in

the context of other observational features of gravity.
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CHAPTER 5

The case of a Kerr black hole inside

plasma

During the last decade, numerous investigations have been published which fol-

low the discussions given by Synge (Synge, 1960), that apply modern mathematical

methods to make possible the determination and confinement of light propagation in

the spacetimes of theoretical (non-)static black holes that are surrounded by plasmic

or dark fluid media (Bisnovatyi-Kogan & Tsupko, 2009, 2010; Tsupko & Bisnovatyi-

Kogan, 2013; Morozova et al., 2013; Bisnovatyi-Kogan & Tsupko, 2015; Perlick et al.,

2015; Atamurotov et al., 2015; Abdujabbarov et al., 2016; Bisnovatyi-Kogan & Tsupko,

2017a; Perlick & Tsupko, 2017; Schulze-Koops et al., 2017; Abdujabbarov et al., 2017;

Liu et al., 2017; Haroon et al., 2019; Kimpson et al., 2019; Babar et al., 2020; Junior

et al., 2020; Badı́a & Eiroa, 2021). Despite this, the analytical treatment of light ray tra-

jectories in non-vacuum black hole surroundings is seemed to be overlooked. In fact,

such analysis can help classifying the other possible orbits in such conditions, that

are not usually considered to determine the black holes’ photon spheres and shad-

ows. Hence, in this chapter, we apply the mathematical methods introduced and used

in the previous chapters, to calculate the light ray paths while they travel in a non-

vacuum non-static spacetime. Accordingly, we investigate the optical nature of the

exterior spacetime of a Kerr black hole, considering that it is immersed in an inhomo-

geneous anisotropic plasmic medium whose structural functions are constant (Fathi
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et al., 2021a).

5.1 An overview of light propagation in non-

magnetized plasma

In this section, a simple plasma model is considered as a medium for the propaga-

tion of electromagnetic waves, and by taking into account the respective dispersion,

the ray optics is studied. The most simple plasmic model, namely a two-fluid model

with vanishing pressure. This way, the dynamics of the system is governed by the

equations (all indices are four-dimensional) (Breuer et al., 1980, 1981)

F[βγ,α] = 0, (5.1)

Fαβ
;β = Jα + enUα, (5.2)

mUβUα
;β = eFα

βUβ, (5.3)

(nUα);α = 0, (5.4)

U ·U = −1. (5.5)

where the subscript comma indicates partial differentiation, Fαβ is the field strength

tensor, Jα is the ionic current, e is the electron charge, m is the electron mass, n is the

electron number density, and Uα is the electron four-vector. The Eq. (5.3) is the equa-

tion of motion for the electron fluid (Euler equations plus Lorentz force). Note that,

as long as the plasma is sufficiently cold, one can ignore the pressure of the electron

fluid, which we assume here as a valid approximation. The Eq. (5.4) is the equation of

charge conservation of the electron component. Note that, although the total charge

is already guaranteed by Eq. (5.2), it is not solely for the electron component. It has

been shown that the above system of evolution equations admits a locally well-posed

initial value problem, and therefore, Eqs. (5.1)–(5.5) are linearization stable (Breuer

et al., 1980). This property guarantees that the solutions of the linearized equations

are close to solutions of the full equations, i.e., that the linearization gives a mean-

ingful approximation. So, we can linearize the above set of equations around some

background solution. For simplicity, we restrict ourselves to the case of a background

solution with vanishing electromagnetic field. In other words, our background solu-
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tion is given bu a non-negative scalar function ◦n and a vector field
◦
U , that satisfy

0 = Jα + e ◦n
◦

Uα, (5.6)
◦

Uβ
◦

Uα
;β = 0, (5.7)(

◦n
◦

Uα
)

;α
= 0, (5.8)

◦
U ·

◦
U = −1. (5.9)

Now, having in hand this background solution, one can linearize Eqs. (5.1)–(5.5), by

perturbing (up to the first order) its corresponding fields as

Fαβ = 0+ F̂αβ, (5.10)

n =
◦n + n̂, (5.11)

Uα =
◦

Uα + Ûα, (5.12)

where the hatted parameters are the first order perturbations on the selected back-

ground defined in Eqs. (5.6)–(5.9). The resulting equations govern the dynamics of

sufficiently weak electromagnetic waves F̂ in our plasma which, according to
◦
F = 0,

is assumed non-magnetized. We shall presuppose that the metric g and the and the

ionic current J are unperturbed. The first assumption is in agreement with our general

stipulation to work on a fixed metric background i.e., to disregard the back-reaction,

governed by Einstein field equations, of matter and electromagnetic fields on the met-

ric. The second assumption means that the effect of the electromagnetic wave on the

ions is ignored. This is a reasonable approximation since the inertia of the ions is

much bigger than that of the electrons. On these assumptions, the linearized system

of equations for the perturbations takes the form

F̂[βγ,α] = 0, (5.13)

F̂αβ
;β = e ◦nÛα + en̂

◦
Uα, (5.14)

m
◦

UβÛα
;β + mÛβ

◦
Uα

;β = eF̂α
β

◦
Uβ, (5.15)(

◦nÛα + n̂
◦

Uα
)

;α
= 0, (5.16)

◦
U · Û = 0. (5.17)

With g, ◦n and
◦
U known, Eqs. (5.13)–(5.17) is a system of first order linear differential

equations for F̂ , n̂ and Û . It is our goal to find dynamical equations for F̂ alone, i.e.,

to eliminate n̂ and Û . This is indeed possible provided that the background density ◦n

has no zeros, i.e.
◦n > 0, (5.18)
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in the spacetime region considered. If this condition is satisfied, we can proceed as

follows.

From Eq. (5.14) we find, with the help of Eqs. (5.9) and (5.17), that

en̂ = −
◦

Uα F̂αβ
;β, , (5.19)

e ◦nÛα = F̂αβ
;β

(
δα

γ +
◦

Uα
◦

Uγ

)
. (5.20)

Since we can divide by ◦n, Eq. (5.20) can be used to eliminate Û from Eq. (5.15). This

results in the following linear second order differential equation for F̂ :

◦
Uβ
(

δα
γ +

◦
Uα

◦
Uγ

)
F̂γδ

;βδ +
[ ◦
Uβ

;β

(
δα

γ +
◦

Uα
◦

Uγ

)
+

◦
Uα

;γ

]
F̂γδ

;δ −
e2

m
◦n

◦
Uβ F̂α

β = 0. (5.21)

If we have a solution F̂ of Eqs. (5.13) and (5.21), we can define n̂ and Û by Eqs. (5.19)

and (5.20), respectively. It is easy to check that then the full system of Eqs. (5.13)–(5.17)

is satisfied. In other words, we have reduced this system to dynamical equations for

F̂ alone, given by Eqs. (5.13)–(5.21).

To rewrite Eqs. (5.13) and (5.21) in a more convenient form, we express F̂ in terms

of a potential Â, defined in terms of the relation

F̂αβ = Â[β,α] = Â[β;α], (5.22)

and we assume that Â satisfies the Landau gauge condition

Â ·
◦
U = 0, (5.23)

in the rest system of the background electron fluid. In fact, Â is locally and uniquely

determined by F̂ up to the gauge transformations

Â 7−→ Â+ ∂h, (5.24)

where h is any spacetime function that is constant along the flow lines of
◦
U . In other

words, h can be freely prescribed on a hypersurface transverse to those flow lines.

Using Eq. (5.22), Eq. (5.13) is automatically satisfied and (5.21) takes the form

Dαζ Âζ = 0, (5.25)

where the differential operator Dαζ is defined by

Dαζ Âζ =
◦

Uβ
(

δα
γ +

◦
Uα

◦
Uγ

) [
Âζ

;ζγ

;β − gζγ□Âζ;β

]
+
[ ◦
Uβ

;β

(
δα

γ +
◦

Uα
◦

Uγ

)
+

◦
Uα

;γ

] [
Âζ

;ζγ − gζγ□Âζ

]
+

e2

m
◦n
[ ◦
Uζ Âζ

;α − gαζ
◦

Uβ Âζ;β

]
, (5.26)
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where □Âζ ≡ Âζ
;δ

;δ. In fact, Eq. (5.25) determines the dynamics of electromagnetic

waves in our plasma, and consists of four component equations, but only three of

them are independent since the equation

◦
U ·D · Â = 0, (5.27)

is identically satisfied for any Â. By the Landau gauge condition (5.23), Â has three

independent components. Hence, we have as many equations as unknown functions.

In this sense, Eq. (5.25) gives a determined system of linear third order differential

equations for the electromagnetic potential. To make this explicit, one can choose, on

an appropriate open subset of spacetime, an orthonormal tetrad field ea (a = 0, 1, 2, 3),

with e0 =
◦
U . By Eq. (5.23), Â is of the component form Âζ = gζκ Âmeκ

m, with some

scalar functions Â1, Â2 and Â3 on that domain. Multiplication of Eq. (5.25) with

gαγeγ
m gives us three equations for the three functions Â1, Â2 and Â3. It is shown

by Breuer and Ehlers (Breuer et al., 1980, 1981) that this system of linear differential

equations admits a local existence and uniqueness theorem for any data Âm,
◦

Uα∂α Âm,

and
◦

Uα
◦

Uβ∂α∂β Âm, prescribed on a space-like hypersurface. In this sense, Eq. (5.25)

is the system of evolution equations for electromagnetic waves in our plasma. Those

evolution equations are of second order in the field strengths, and they are not sup-

plemented by constraints.

With the dynamical law (5.25) at hand, we can now perform the passage to the

ray optics. As mentioned at the beginning of this section, it will be crucial to consider

one-parameter families of background fields rather than fixed background fields. The

background fields that enter into the differential operator D, are the metric g, the

electron number density ◦n, and the electron four-velocity
◦
U . Let us fix such a set of

background fields which have to satisfy Eqs. (5.6)–(5.9) and (5.18). Furthermore, let

us fix a spacetime point and a coordinate system around this point. We assume that

the chosen point is represented by the coordinates x0 =
(
x0

0, x1
0, x2

0, x3
0
)
. Referring to

this fixed coordinate system, we define new background fields, depending on a real

parameter B, by

gαβ(B, x) = gαβ (x0 +B(x − x0)) , (5.28)
◦n(B, x) = ◦n (x0 +B(x − x0)) , (5.29)
◦

Uα(B, x) =
◦

Uα (x0 +B(x − x0)) . (5.30)

For 0 ≤ B ≤ 1, the new background fields g(B, ·), ◦n(B, ·), and
◦
U (B, ·) are well de-

fined on the domain considered, and they satisfy again equations (5.6)–(5.9) as well as
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the condition (5.18) Note that, this observation does not carry over if an electromag-

netic background field
◦
F ̸= 0 is to be taken into account. For a magnetized plasma,

one cannot assume the same, B-dependence for all fields g, ◦n,
◦
U and

◦
F = 0. For

B → 0, the components of the background fields become constant in the coordinate

system under consideration. In this sense, g(0, ·), ◦n(0, ·) and
◦
U (0, ·) are homogeneous

fields. In particular, g(0, ·) is a flat metric and
◦
U (0, ·) is covariantly constant, i.e., an

inertial system, with respect to this metric. For this reason, we shall refer to this limit

as to the homogeneous background limit.

If we replace in Eq. (5.2) the original background fields g, ◦n and
◦
U by

g(B, ·), ◦n(B, ·) and
◦
U (B, ·), respectively, we get a one-parameter family of dif-

ferential operators D(B, ·). It is our plan to enter into the differential equation

D(B, ·) · Â = 0 with an approximate-plane-wave ansatz for the potential Â(B, ·).
Hence, we consider two-parameter families of the form

Âζ(A , B, x) =
A

B
Re
{

exp
[

i
A

S(x0 +B(x − x0))

]
âζ (A , x0 +B(x − x0))

}
, (5.31)

where S is a real-valued function whose gradient has no zeros, and is referred to as

the eikonal function of the approximate-plane-wave family. This equation satisfy the

Landau gauge condition
◦
U (B, x) · Â(A , B, x) = 0. (5.32)

We assume that the complex amplitudes are of the form

âζ(A , ·) =
N0+1

∑
N=0

âN
ζ (·)A N +O(A N0+2), ∀ N0 ≥ −1, (5.33)

and that

F̂αβ = Â[β,α](A , B, x)

= Re
{

exp
[

i
A

S(x0 +B(x − x0))

]
i
(

Sâ0
[β

)
,α]
(x0 +B(x − x0)) +O(A )

}
, (5.34)

is an approximate-plane-wave family, for any fixed B with 0 < B ≤ 1. For an approx-

imate plane wave in this family, the frequency function with respect to the background

electron rest system (5.30), is then given by

ω(A , B, x) =
B

A

◦
Uα (x0 +B(x − x0)) S,α (x0 +B(x − x0)) . (5.35)

To perform the passage to ray optics, we have to assume that our approximate-plane-

wave family satisfies the dynamical equations asymptotically. Since we have two pa-

rameters A and B at our disposal, we can consider asymptotic behavior with respect

to different kinds of limits.
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The first possibility is to keep B fixed and to consider the condition

lim
A →0

[
1

A N Dαζ(B, ·)Âζ(A , B, ·)
]
= 0, N ∈ Z. (5.36)

It can be characterized as the high frequency limit on a fixed background. In the case

at hand, the lowest non-trivial order is N = −3. This results in an eikonal equation

equal to the vacuum eikonal equation in the background metric g(B, ·), i.e. that the

corresponding rays are exactly the null geodesics of this background metric. In other

words, if the high-frequency limit is taken on a fixed background, the plasma has no

influence on the rays. In particular, there is no dispersion. Note that, this corresponds

to the case of B = 1 which makes it of no particular effects. Now we want to consider

a different kind of limit, namely to let B and A go to zero, simultaneously, with the

quotient A
B kept fixed. We can then simply put A = B, and consider the condition

lim
A →0

[
1

A N Dαζ(A , ·)Âζ(A , A , ·)
]
= 0, N ∈ Z. (5.37)

Keeping A
B fixed implies that the frequency function Eq. (5.35) is kept fixed at the point

x0. Therefore, this kind of limit can be characterized as the homogeneous background

limit with fixed frequency at x0. We shall now prove that this limit gives, indeed, a

different eikonal equation. To that end, we have to assume that Eq. (5.37) holds in

lowest non-trivial order which is now given by N = 0. This is true if and only if the

equation

Qα
ζ â0

ζ = 0, (5.38)

holds at x0, where

Qα
ζ =

◦
UβS,β

(
−S,αS,ζ −

◦
Uα

◦
UγS,γS,ζ + δ

ζ
αS,δS,δ + δ

ζ
α

e2

m
◦n
)

. (5.39)

Here we have used the equation

◦
U (x0) · â0(x0) = 0, (5.40)

which follows from the Landau gauge condition (5.32). Since Eq. (5.34) is supposed

to be an approximate-plane-wave family, â must be non-zero and linearly indepen-

dent of S,ζ . The condition that Eq. (5.38) admits a solution â0 of this kind at x0, gives

the desired eikonal equation at x0 for S. We have, thus, to solve the eigenvalue prob-

lem of Qα
ζ restricted to the orthocomplement of

◦
U . We find that there are three real
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eigenvalues

λ1 =
◦

UβS,β

(
−
[ ◦
UγS,γ

]2
+

e2

m
◦n
)

, (5.41a)

λ2 = λ3 =
◦

UβS,β

(
S,δS,δ +

e2

m
◦n
)

. (5.41b)

If either
◦

UβS,β = 0 or S,α = ±
√

e2

m
◦n

◦
Uα, all three eigenvalues coincide and Eq. (5.38)

is satisfied by any â0. Otherwise, we find λ1 ̸= λ2 = λ3 .In the latter case, the

eigenspace pertaining to λ1 is one-dimensional and spanned by S,ζ +
◦

Uζ

◦
UβS, whereas

the eigenspace pertaining to λ2 = λ3 is two- dimensional and consists of all Xζ with
◦

Uζ Xζ = S,ζ Xζ = 0.

Equation (5.38) admits a non-trivial solution â0 which is perpendicular to
◦
U if and

only if one of the eigenvalues λ1,2,3 is zero. From the form of the eigenspaces we see

that in any such case â0 can be chosen linearly independent of S,ζ . Hence, the eikonal

equation takes the form λ1λ2λ3 = 0 which is equivalent to

◦
UβS,β

(
−
[ ◦
UγS,γ

]2
+

e2

m
◦n
)(

S,δS,δ +
e2

m
◦n
)
= 0. (5.42)

Let us be precise about this result. Our assumption that the asymptotic condition

(5.37) holds in lowest non-trivial order requires that S satisfies Eq. (5.42) at the point x0

around which the construction was done. Although we have used a fixed coordinate

system around the chosen spacetime point to perform the homogeneous background

limit, the eikonal equation is a covariant equation (i.e., independent of this coordinate

system). If S satisfies this covariant equation on an open spacetime domain U , it is as-

sociated with an asymptotic solution of lowest non-trivial order, in the homogeneous-

background sense, around any point of U . That is to say, to any such S we can find

a non-trivial amplitude â(A , ·) on U such that the following holds. If we choose any

coordinate system around any point of U , thereby defining the one-parameter family

of operators D(B, ·) and the two-parameter family (5.31) of electromagnetic fields,

the asymptotic condition (5.37) is satisfied for N = 0. As a matter of fact, a similar

statement is true for any N.

Owing to the terms proportional to ◦n, the eikonal equation is not homogeneous

with respect to ∂S, which indicates dispersion.

The product structure of the eikonal equation (5.42) suggests to introduce three
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partial Hamiltonians

H1(x,p) =
◦
U (x) · p, (5.43)

H2(x,p) =
1
2

[
−
( ◦
U (x) · p

)2
+

e2

m
◦n(x)

]
, (5.44)

H3(x,p) =
1
2

[
p · p+

e2

m
◦n(x)

]
, (5.45)

where Pα is the momentum covector, and p · p ≡ gαβ(x)pα pβ. The three partial Hamil-

tonians determine three branches of the dispersion relation. The branches defined by

H2 and H3 have an intersection given by the equation pα = ±
√

e2

m
◦n(x)

◦
Uα(x). At all

points of phase space where this equation does not hold, at most one of the three par-

tial dispersion relations can be satisfied (This is true as long as our assumption (5.18)

is valid).

Now let us assign to each solution S of the partial eikonal equation

Hi (x, ∂S(x)) = 0, i = 1, 2, 3, (5.46)

a (partial) transport vector field Kα defined by

Kα(x) =
∂Hi

∂pα
(x, ∂S(x)) . (5.47)

The integral curves of K are called the (i-)rays associated with S. The totality of all

i-rays, associated with any solution of Eq. (5.46), is found by solving Hamilton’s equa-

tions (2.15) for i = 1, 2, 3, respectively.

It is worth mentioning that this definition associates a unique congruence of rays to

each solution S of the full eikonal equation (5.42). This can be verified in the following

way. In almost all cases, a solution of the full eikonal equation satisfies exactly one of

the three partial eikonal equations (5.46). The only exception occurs if, at some point

x, the equation S,α(x) = ±
√

e2

m
◦n(x)

◦
Uα(x) holds such that Eq. (5.46) is satisfied for

i = 2 and i = 3, simultaneously. At such points we have two partial transport vectors,

given by Eq. (5.47) with i = 2 and with i = 3, respectively. Luckily enough, we find

from Eqs. (5.44) and (5.45), that these two partial transport vectors coincide.

Let us consider the three partial Hamiltonians one by one. Solutions of the partial

eikonal equation (5.46) with i = 1 are pathological insofar as they have vanishing fre-

quency in the background rest system of the electron fluid,
◦

Uα(x)S,α(x) = 0. Hence,
◦
U is not an ”admissible reference system” for the approximate-plane-wave interpre-

tation. The transport vector field (5.47) associated with such a solution is given by

K(x) =
◦
U (x), (5.48)
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which means that the rays are the integral curves of
◦
U . Note that, H1(·, ∂S(⊙)) = 0

implies that the eigenvalues (5.41a) and (5.41b) coincide, λ1 = λ2 = λ3 = 0, and that

Eq. (5.38) is identically satisfied for all â0. In other words, the amplitude F̂0
αβ = iâ0

[αS,β]

is not restricted by any polarization condition.

For a solution of the second partial eikonal equation H2(x, ∂S(x)) = 0, the fre-

quency function with respect to the background rest system of the electron fluid is

determined by the equation

◦
Uα(x)S,α(x) = ±ωp(x), (5.49)

where ωp denotes the plasma frequency defined by

ω2
p(x) =

e2

m
◦n(x). (5.50)

For the transport vector field (5.47) associated with such a solution S we find

K(x) = ±ωp(x)
◦
U (x), (5.51)

such that the rays coincide, again, with the integral curves of
◦
U (recalling that the

parametrization of the rays is arbitrary). The case S,α = ±ωp
◦

Uα plays a special role,

since in this case S satisfies the partial eikonal equation (5.46) not only for i = 2 but

also for i = 3. For this special solution we have again λ1 = λ2 = λ3 and, thus, no

polarization condition of zeroth order. For all other solutions of H2(x, ∂S(x)) = 0,

Eq. (5.38) requires that â0 is in the eigenspace pertaining to the eigenvalue λ1 given by

Eq. (5.41a), i.e., that â0 is a multiple of S,ζ +
◦

U,ζ
◦

UγS,γ. This condition implies that the

electric component of f̂ 0
αβ = iâ0

[αS,β] with respect to
◦

Uβ is a linear combination of
◦

Uα

and S,α and that the corresponding magnetic component vanishes. This is tantamount

to a longitudinal polarization condition in the sense that the electric field strength is

parallel to the spatial wave covector, i.e., f̂ 0
αβ

◦
Uβ = c

(
S,α +

◦
UβS,β

◦
Uα

)
with some real-

valued function c. Those longitudinal modes described by the partial Hamiltonian H2

are known as plasma oscillations.

Now let us turn to the third partial Hamiltonian H3. For i = 3, formula (5.47)

yields the same expression for the transport vector field as in vacuum. In other words

Kα(x) = gαβ(x)S,β(x). (5.52)

Using our assumption that ◦n has no zeros, we find that the three-rays (i.e., the rays

determined by the partial Hamiltonian H3) are exactly the time-like geodesics of the
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metric ω2
pgαβ which is conformally equivalent to gαβ. The easiest way to verify this

result is by changing H3 according to

H3(x,p) =
1
2

[
p · p+ ω2

p(x)
]

7−→ H̃3(x,p) =
1

ω2
p(x)

H3(x,p) =
1
2

[
p · p

ω2
p(x)

+ 1

]
. (5.53)

This transformation leaves the rays unchanged up to reparametrization, i.e., we can

use H̃3 instead of H3 for the determination of the three-rays. Solving Hamilton’s equa-

tions (2.15) with this transformed Hamiltonian gives, of course, the time-like geodesics

of the conformally resealed metric g̃αβ = ω2
pgαβ parametrized by g̃αβ-proper time. To

go further in analyzing this Hamiltonian, and to relate it to the derivation of the light

trajectories, we relate (Bisnovatyi-Kogan & Tsupko, 2017a)

ωp(x) =
4πe2

m
Np(x), (5.54)

where Np in the electron number density. Defining the plasmic refractive index (Ata-

murotov et al., 2015)

n2 = 1 +
p · p

(p · u)2 = 1 −
ω2

p

ω2 , (5.55)

with u as the observer’s four-velocity, we can recast the Hamiltonian as

H(x,p) ≡ H3(x,p) =
1
2
[
p · p− (n2 − 1)(p · u)2] . (5.56)

Here, the quantity p · u = −ω gives the effective energy of the photons of frequency

ω, as measured by the observer.

As discussed in chapter 2, the Hamilton-Jacobi approach, requires the contribution

of the Jacobi action S , given by

pα =
∂S
∂xα

, (5.57a)

H = −∂S
∂τ

, (5.57b)

with τ as the curve parametrization. Now, if the observer is located on the x0 curves,

it has the four-velocity uα =
δ

µ
0√−g00

, which, employing Eqs. (5.57), yields the Hamilton-

Jacobi equation as (Atamurotov et al., 2015; Perlick & Tsupko, 2017)

∂S
∂τ

= −1
2

[
gαβ ∂S

∂xα

∂S
∂xβ

+ ω2
p

]
= −1

2

[
gαβ ∂S

∂xα

∂S
∂xβ

−
(
n2 − 1

)
ω2
]

, (5.58)
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in which, we have used the identity p · u = p0√
g00

= −ω. Therefore, the general equa-

tions governing the light ray trajectories are

∂H
∂pα

=
dxα

dτ
, (5.59a)

∂H
∂xα

= −dpα

dτ
, (5.59b)

H = 0. (5.59c)

5.2 Light propagating in Kerr spacetime within

non-magnetized plasma

Let us rewrite the Kerr line element in Eq. (2.80) as

ds2 = −
(

1 − 2Mr
ρ2

)
dt2 +

ρ2

∆
dr2 + ρ2dθ2

+ sin2 θ

(
r2 + a2 +

2Mra2 sin2 θ

ρ2

)
dϕ2 − 4Mra sin2 θ

ρ2 dtdϕ, (5.60)

with

∆ = r2 + a2 − 2Mr, (5.61a)

ρ2 = r2 + a2 cos2 θ, (5.61b)

and a = J
M , where J is the black hole’s angular momentum. The Kerr black hole

spacetime admits for a Cauchy and an event horizon (notated respectively by r− and

r+), whose surfaces are determined by solving ∆ = 0, and are given by

r∓ = M ∓
√

M2 − a2. (5.62)

Also, as discussed in subsection 3.6.2, the state of corotation and the static limit are

determined by the equation gtt = 0, that provides the radial distances

rSL±(θ) = M ±
√

M2 − a2 cos2 θ, (5.63)

which together with the horizons r∓, form the black hole’s interior and exterior ergo-

spheres in the regions rSL− < r < r− and r+ < r < rSL+. Throughout this section,

we restrict our study to the domain of outer communications, i.e., the domain outside

the event horizon (r > r+), and we consider the case of a2 ≤ M2, that corresponds to
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a black hole rather than a naked singularity. The famous method of separation of the

Jacobi action, is based on the definition (Carter, 1968; Chandrasekhar, 1998)

S = −Et + Lϕ + Sr(r) + Sθ(θ) +
1
2

m2τ, (5.64)

in which E, L and m are, respectively, the energy, angular momentum, and the mass

associated with the test particles (here, m = 0). Along with the method of separation

of the Hamilton-Jacobi equation introduced by Perlick and Tsupko (Perlick & Tsupko,

2017), we recast the Hamiltonian (5.56) in the Kerr spacetime as

H(x,p) =
1

2ρ2

[
∆ p2

r + p2
θ +

(
apt sin θ +

pϕ

sin θ

)2

− 1
∆
(

pt(r2 + a2) + apϕ

)2
+ ρ2ω2

p

]
. (5.65)

Assuming ωp ≡ ωp(r, θ), it is then straightforward to see that ∂H
∂t = 0 = ∂H

∂ϕ = 0.

Therefore, taking into account Eqs. (5.57a) and (5.64), we can specify the constants of

motion as

E = −∂S
∂t

= −pt = ω0, (5.66a)

L =
∂S
∂ϕ

= pϕ. (5.66b)

Physically, the angular momentum component pϕ corresponds, to the axial symmetry

of the spacetime. The nature of ω0, on the other hand, becomes clear if we specify

the light rays’ frequency. In fact, the special case of ωp(r, θ) corresponds to the three

constants of motion, H = 0, ω0 and L. Accordingly, we can apply the Carter’s method

of separation of the Hamilton-Jacobi equation, through which, the light ray trajectories

are given in terms of integrable equations (Carter, 1968; Chandrasekhar, 1998). Using

Eqs. (5.65) and (5.66), the Hamilton-Jacobi equation, H(x,p) = 0, yields

0 = ∆ p2
r + p2

θ +

(
ω0 a sin θ − L

sin θ

)2

− 1
∆
[
ω0(r2 + a2)− aL

]2
+ ρ2ω2

p. (5.67)

The separability property of the Hamilton-Jacobi equation, demands that Eq. (5.67)

can be divided into separated r-dependent and θ-dependent segments. This has been

made possible by defining (Perlick & Tsupko, 2017)

ωp(r, θ)2 =
fr(r) + fθ(θ)

r2 + a2 cos2 θ
, (5.68)

for some functions fr(r) and fθ(θ). Now, the identity(
ω0 a sin θ − L

sin θ

)2

= (L2 csc2 θ − a2ω2
0) cos2 θ + (L − aω0)

2, (5.69)
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together with Eqs. (5.67) and (5.68), separates the Hamilton-Jacobi equation as

Q = p2
θ + (L2 csc2 θ − a2ω2

0) cos2 θ + fθ(θ)

= −∆ p2
r +

1
∆
[
ω0(r2 + a2)− aL

]2 − (L − aω0)
2 − fr(r), (5.70)

in which, Q is the so-called Carter’s constant. Recasting the above equations, yields

p2
θ = Q − (L2 csc2 θ − a2ω2

0) cos2 θ − fθ(θ), (5.71)

∆ p2
r =

1
∆
[
ω0(r2 + a2)− aL

]2 −Q − (L − aω0)
2 − fr(r). (5.72)

Insertion of Eqs. (5.71) and (5.72) into the Hamiltonian (5.65), and then using

Eq. (5.59a), provides the first order differential equations of motion as

ρ2 dr
dτ

=
√
R(r), (5.73)

ρ2 dθ

dτ
=
√

Θ(θ), (5.74)

ρ2 dϕ

dτ
=

L(ρ2 − 2Mr) csc2 θ + 2Maω0r
∆

, (5.75)

ρ2 dt
dτ

=
ω0Σ2 − 2MaLr

∆
, (5.76)

where

R(r) =
[
ω0(r2 + a2)− aL

]2 − ∆
[
Q + fr(r) + (L − aω0)

2] , (5.77a)

Θ(θ) = Q − fθ(θ)− cos2 θ
(

L2 csc2 θ − a2ω2
0
)

, (5.77b)

Σ2 = ρ2 (r2 + a2)+ 2Mra2 sin2 θ. (5.77c)

Finally, defining the dimension-less Mino time1, γ, as ρ2dγ = Mdτ (Mino, 2003), the

equations of motion are now rewritten as

M
dr
dγ

=
√
R(r), (5.78)

M
dθ

dγ
=

√
Θ(θ), (5.79)

M
dϕ

dγ
=

L(ρ2 − 2Mr) csc2 θ + 2Maω0r
∆

, (5.80)

M
dt
dγ

=
ω0Σ2 − 2MaLr

∆
. (5.81)

In the what follows, we continue our discussion by analyzing the above equations of

motion, in order to find analytically exact solutions to the light ray trajectories travel-

ling in (non-magnetized) inhomogeneous anisotropic plasma around the black hole.

1Note that, in the geometric units we use, the parameter time has the dimensions of length. Same

holds for the curve parameter τ.
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5.2.1 Analytical study of null geodesics

The separation condition in Eq. (5.68) characterizes the plasma, regarding its geomet-

ric distribution in the spacetime surrounding the black hole. Therefore, the character-

istic functions fr(r) and fθ(θ), play important roles in defining the plasma’s configu-

ration. In this subsection, we confine the light rays to an inhomogeneous anisotropic

plasma, by adopting the particular choices

fr(r) ≡ fr = Ω2
0 R2 = constant, (5.82)

fθ(θ) ≡ fθ = Ω2
0 a2 = constant. (5.83)

This way, Eq. (5.68) can be recast as

ωp(r, θ)2 = Ω2
0

(
R2 + a2

r2 + a2 cos2 θ

)
, (5.84)

where R is the mean radius of the gravitating object, and Ω0 is a positive constant.

Within the text, we use, frequently, the conventions

ξ =
L

ω0
, (5.85)

η =
Q

ω2
0

, (5.86)

in order to simplify the analysis.

The evolution of the radial distance (the r-motion)

In the study of particle trajectories in curved spacetimes, it is of crucial importance

to know how the particles approach and recede from the source of gravity. Based on

the nature of the interactions, this study is traditionally done by calculating the radial,

effective gravitational potential, that acts on the particles (Misner et al., 2017). Hence,

to scrutinize the r-motion for the light ray trajectories in the context under consider-

ation, we focus on the radial equation of motion (5.78), and rewrite the expression in

Eq. (5.77a) as

R(r) = P(r)
[
ω0 − V−(r)

][
ω0 − V+(r)

]
, (5.87)

where P(r) = r4 + a2r2 + 2Ma2r, and the radial gravitational potentials are given by

V∓(r) =
1

P(r)

{
2MaLr ∓

[
∆P(r)

(
Q + fr + L2 − a2L2

∆

)
+ 4a2L2M2r2

] 1
2
}

, (5.88)

taking into account the condition (5.82). The negative branch is not of our interest,

since it has no classical interpretations2. We therefore, choose the positive branch of
2In the context of quantum theory of fields, negative energies are related to antiparticles that move

backwards in time (Lancaster & Blundell, 2014).
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Figure 5.1: The radial effective potential in an inhomogeneous anisotropic plasma in the region

r > r+, plotted for Q = 9M2 and fr = 1M2. The diagrams have been generated for (a)

a = 0.85M and three different values of L (the solid lines), and (b) L = 1M and three different

values of a. The dot-dashed curve in the diagram (a), corresponds to the retrograde motion,

which has been plotted for a = −0.85M and L = 3M (For these diagrams and for all the

forthcoming ones, the unit along the axes is considered to be M).

Eq. (5.88) as the effective potential, i.e. Veff = V+(r) ≡ V(r), noting that V(r → ∞) =

0. In Fig. 5.1, this effective potential has been demonstrated for different values of a

and L. According to the diagrams, no stable orbits are expected since the effective

potentials do not possess any minimums. Note that, the photons can also pursue a

motion along the opposite direction of the black hole’s spin, which is the significance

of the retrograde motion. As seen in the left panel of Fig. 5.1, the effective potential

corresponding to the retrograde motion (plotted for a < 0), exhibits a lower maximum

energy for the the same angular momentum. Therefore, photons on the retrograde

motion encounter a remarkably smoother gravitational potential.

The possible trajectories are then categorized based on the turning points. How-

ever, before proceeding with the determination of the turning points, let us rewrite

Eq. (5.78) as

M
dr
dγ

= ω0

√
P(r), (5.89)

in terms of the characteristic polynomial

P(r) = r4 +Ar2 + Br + C, (5.90)
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Figure 5.2: A typical effective potential, plotted for a = 0.8M, L = 1M, and Q + fr = 10M2

(which are the values that will be taken into account for all the forthcoming diagrams). The

categorization of orbits is done by comparing the photon energy ω0 with that for photons on

the UCO, i.e. ωU (for the above values, ωU ≈ 0.755232). Photons with the energy ω0 > ωU ,

will experience an inevitable fall onto the black hole’s event horizon. For the special case of

ω0 < ωU , the photons encounter two turning points rD and rF.

where

A = a2 − ξ2 − η − ηr, (5.91a)

B = 2M
[
η + ηr + (ξ − a)2

]
, (5.91b)

C = −a2(η + ηr), (5.91c)

and ηr =
fr

ω2
0
.

The turning points

Let us consider a typical effective potential as demonstrated in Fig. 5.2. The possible

types of motion are categorized regarding the photon frequency (energy) ω0, com-

pared with its value ωU , for photons on the unstable circular orbits (UCO). When

ω0 > ωU , the characteristic polynomial P(r) has four complex roots, which for

ω0 = ωU , reduces to two complex roots and a (degenerate) positive real root. This

latter corresponds to the UCO at the orbital radius rU . For the case of ω0 < ωU ,

the polynomial has two complex and two positive reals roots, rD and rF, that cor-

respond to the turning points of the photon orbits. In fact, Eqs. (5.78) and (5.81) also

inform about the characteristics of the turning points. Defining the coordinate velocity

vc(r) = dr
dt , then the turning points, rt, are where vc(rt) = 0. Based on the definition
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given in Eq. (5.89), this condition is equivalent to P(rt) = 0, which together with

Eq. (5.90), results in the two radii (see appendix B.4)

rD = R̃ +
√

R̃2 − Z̃, (5.92)

rF = R̃ −
√

R̃2 − Z̃, (5.93)

where

R̃ =

√
Ξ − A

6
, (5.94a)

Z̃ = 2R̃2 +
A
2
+

B
4R̃

, (5.94b)

and

Ξ = 2
√

χ2

3
cosh

(
1
3

arccosh

(
3
2

χ3

√
3

χ3
2

))
, (5.95)

in which,

χ2 =
A2

48
+

C
4

, (5.96a)

χ3 =
A3

864
+

B2

64
− AC

24
. (5.96b)

The turning points rD and rF correspond to different fates for the trajectories. Re-

specting Fig. 5.2, photons that approach the black hole at rD, will deflect to infinity

by pursuing an OFK. The equation of motion (5.89), if solved at the vicinity of the

deflection point rD, yields the OFK as (appendix C.1)

rd(γ) =
[1 + ud(γ)] rD

ud(γ)
, (5.97)

in which

ud(γ) = 4℘
(

ω0
√

C3 γ

MrD

)
− α1

3
, (5.98)

with the Weierstraß invariants

g̃2 =
1
4

(
α2

1
3

− α2

)
, (5.99a)

g̃3 =
1
16

(
α1α2

3
−

2α3
1

27
− α3

)
, (5.99b)

given that α1 = C2
C3

, α2 = C1
C3

and α3 = C0
C3

, and the respected coefficients defined as

C0 = r4
D, (5.100a)

C1 = 4r4
D, (5.100b)

C2 = r2
D
(
6r2

D +A
)

, (5.100c)

C3 = rD
(
4r3

D + 2ArD + B
)

. (5.100d)
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On the other hand, rF is the point of no return, corresponding to the OSK. Applying

the same method we pursued to calculate the OFK, at the approaching point rF, the

OSK is found to obey the equation

r f (γ) =

[
1 + u f (γ)

]
rF

u f (γ)
, (5.101)

where

u f (γ) = 4℘

(
−ω0

√
C̃3 γ

MrF

)
− α̃1

3
, (5.102)

with the Weierstraß coefficients having the same form of expressions as those in

Eqs. (5.99), and α̃1 = C̃2
C̃3

, α̃2 = C̃1
C̃3

and α̃3 = C̃0
C̃3

, that relate respectively to the same

coefficients in Eqs. (5.100), by doing the exchange rD → rF. In Fig. 5.3, the OFK and
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Figure 5.3: The polar plots of r(γ), respecting (a) OFKs and (b) OSKs, plotted for ω0 = 0.755

(blue circles), and ω0 = 0.70 (green circles). The two inner circles indicate r+ and r−.

OSK have been plotted for the light rays approaching the black hole, for definite dy-

namical parameters. As it is expected, the OFK initiates from the turning point rD and

escape to infinity, and can therefore, reach a distant observer. This concept, if treated

for the trajectories with angular components, has the significance of bending of light

in curved spacetimes.

It is worth notifying the difference between the two types of the OFK, as indicated

in panel (a) of the figure. As it is expected, the more ω0 increases toward its critical

value ωU , the more the trajectories are inclined towards the black hole. In order to

find a switching value for ω0, at which the OFK change their deflecting character, let

us recall that rD ≡ rD(ω0) and rF ≡ rF(ω0), whose behaviors have been plotted in

Fig. 5.4. As it is observed in the figure, there is a region of the steepest declination
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Figure 5.4: The plot of rD(ω0) and rF(ω0), in accordance to the values given in Fig. 5.3. The

dashed lines indicate rD(0.70), rD(0.755) and rD(ωU), and the switching radius rD(ω
e
0), shown

by the dot-dashed line, corresponds to the starting point of a region, where the trajectories

begin to change their deflecting character. In this case, ωe
0 ≈ 0.7543.

of rD, located at the vicinity of ωU . This region starts in accordance with a switching

value ωe
0, from which, the trajectories start to change their deflecting character.

On the other hand, the OSK starts from rF and ends in falling onto the singularity.

Hence, light rays that are engaged in this process, will never go beyond the distance

rF from the black hole and cannot reach an observer at infinity. Note that, in the case

of ω0 = ωU , the light rays will approach at the point rF < rU < rD, that satisfy the

equation V ′(rU) = 0. As mentioned above, this corresponds to the UCO. In Fig. 5.5,
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Figure 5.5: The polar plots of (a) the UCOFK and (b) the UCOSK, plotted for ω0 ≈ ωU . The

outer circle, indicates rU ≈ 2.166051.

this kind of orbit has been plotted, regarding its first and the second kinds (UCOFK
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and UCOSK), by exploiting the equations of motion obtained above, applied for the

radial distance rU . The UCOFK, in particular, is responsible for the formation of the

black hole shadow.

The capture zone

In addition to the photons with ω0 < ωU that approach the black hole from the

radial distance rF, those incident photons with ω0 > ωU , also become completely

unstable in the region dominant by the effective potential, and are captured by the

black hole (see Fig. 5.2). The form of the equation of motion for such photons, is the

same as those in Eqs. (5.97) and (5.101), but the point of approach can be any point

rI > r+. In Fig. 5.6, an example of this kind of orbit has been plotted.

-4 -2 2 4

-4

-2

2

4

Figure 5.6: The radial capture. The outer circle corresponds to rU .

The evolution of the polar angle (the θ-motion)

The θ-motion is governed by Eqs. (5.79) and (5.77b), for which, the condition (5.83)

implies

Θ(θ) = Q − fθ − cos2 θ
(

L2 csc2 θ − a2ω2
0
)
≥ 0. (5.103)

that can be recast as

Θ(θ) = a2 cos2 θ
[(

ω0 −
√

W(θ)
) (

ω0 +
√

W(θ)
)]

, (5.104)

where

W(θ) =

(
L csc θ

a

)2

− (Q − fθ)

(
sec θ

a

)2

, (5.105)
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is the angular gravitational potential felt by the light rays in the plasma. Essentially,

this potential has a general form which can be defined for the case of null geodesics

(Schee & Stuchlı́k, 2009), and here, is recovered by letting fθ = 0 in Eq. (5.105). We

define

η̃ = η − fθ

ω2
0
≡ Q − fθ

ω2
0

, (5.106)

for more convenience. Now, performing the change of variable z = cos θ, Eq. (5.79)

can be recast as

− M
ω0

dz
dγ

=
√

Θz, (5.107)

where

Θz = η̃ − (η̃ + ξ2 − a2)z2 − a2z4, (5.108)

and the condition Θz > 0 is required. Clearly, the characteristics of the motion depend

directly on the nature of Θz. Accordingly, we assess the equation of motion (5.107),

separately, for the cases η̃ > 0, η̃ = 0, and η̃ < 0. These cases completely categorize

the types of the θ-motion.

The case of η̃ > 0

In this case, the expression in Eq. (5.108) remains unchanged, and the condition Θz >

0, confines the z parameter in the domain −zmin ≤ z ≤ zmax, where

z2
max =

χ0

2 a2

(√
1 +

4a2 η̃

χ2
0

− 1

)
, (5.109a)

zmin = −zmax, (5.109b)

in which, χ0 = ξ2 + η̃ − a2 > 0. The mentioned domain, corresponds to the polar

range θmin ≤ θ ≤ θmax, given that θmin = arccos (zmax) and θmax = arccos (−zmax).

This range defines a cone, to which, the test particles’ motion is confined. Having this

in mind, we can solve the equation of motion (5.107) by direct integration, resulting in

(see appendix C.2)

θ(γ) = arccos
(

zmax −
3

12℘ (κ0γ) + ψ0

)
, (5.110)

where

κ0 =
ω0a

√
2zmax

(
z2

0 + z2
max
)

M
, (5.111a)

ψ0 =
z2

0 + 5z2
max

2zmax
(
z2

0 + z2
max
) , (5.111b)
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Figure 5.7: The angular effective potential and the temporal evolution of the coordinate θ for

the case of η̃ > 0, plotted for Q = 9M2 and fθ = 1M2. To plot θ(γ), we have considered

ω0 = 0.755.

with

z2
0 =

χ0

2 a2

(√
1 +

4a2 η̃

χ2
0

+ 1

)
, (5.112)

and

g2 =
z4

0 + z4
max − 14z2

0z2
max

48z2
max

(
z2

0 + z2
max
)2 , (5.113a)

g3 =
33z4

0z2
max − 33z2

0z4
max + z6

0 − z6
max

1728z3
max

(
z2

0 + z2
max
)3 , (5.113b)

are the respected Weierstraß invariants. Using the analytical solution (5.110), the tem-

poral evolution of θ(γ) for the case of η̃ > 0 has been shown in Fig. 5.7, together with

the behavior of W(θ). As it can be observed from the behavior of W(θ), the values of

energy that rely in the region ω0 ≤ ωU are allowed. The light rays, therefore, can opt

all kinds of possible orbits that were discussed in the previous section. Accordingly,

and applying the analytical solutions of the radial coordinate, the cross-sectional be-

haviors of the above orbits have been plotted in Fig. 5.8, for the case of η̃ > 0, inside

the cone of confinement in the z-x plane (i.e. for ϕ = 0).

The case of η̃ = 0

The parameter z, in this case, is confined to the domain z̄min ≤ z ≤ z̄max with z̄min = 0

and z̄max =
√

1 − ( ξ
a )

2. This domain corresponds to the cone θ̄min ≤ θ ≤ π
2 , where

θ̄min = arccos (z̄max). In this case, the effective angular potential (5.105) takes the form

W(θ) =

(
L csc θ

a

)2

. (5.114)

It is straightforward to see that W ′(θ) = 0 gives θ̄0 = π
2 = θ̄max, according to which,

the minimum of the angular effective potential, Wmin = W(π
2 ), is obtained. One can
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Figure 5.8: The cross-sectional behaviors of the deflecting, critical, and capturing trajectories,

for the case of η̃ > 0, inside the cone of confinement, in the z-x plane. The diagrams indicate

(a) OFK for ω0 = 0.755, (b) OFK for ω0 = 0.70, (c) OSK for ω0 = 0.755, (d) OSK for ω0 = 0.70,

(e) UCOFK, (f) UCOSK, and (g) radial capture for ω0 = 1.

therefore infer that the case of η̃ = 0 also allows for a stable polar equatorial motion.

Taking into account θ(0) = θ̄min, the direct integration of Eq. (5.107) yields

θ(γ) = arccos

√1 −
(

ξ

a

)2

sech (κ1γ)

 , (5.115)

which implies a2 > ξ2, and we have defined κ1 = ω0
M

√
a2 − ξ2. Accordingly, the

temporal evolution of θ(γ) and the corresponding angular effective potential have

been plotted in Fig. 5.9. As it can be observed, in contrast with the case of η̃ > 0,

the allowed energies for the case of η̃ = 0 are higher than their critical value (i.e.

Wmin > ω2
U), and therefore, only the capturing trajectories are possible, which in Fig.

5.10, has been demonstrated inside the cone of confinement.

The case of η̃ < 0

Under this condition, the expression in Eq. (5.108) takes the form

Θz = −|η̃|+ (|η̃|+ a2 − ξ2)z2 − a2z4, (5.116)
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Figure 5.9: The angular effective potential and the temporal evolution of the coordinate θ, for

the case of η̃ = 0 (which here corresponds to Q = fθ = 9M2). To plot θ(γ), we have considered

ω0 =
√

10.30.
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Figure 5.10: The capturing trajectory for the case of η̃ = 0, inside the cone of confinement,

plotted for ω0 =
√

10.30. The outer and inner circles indicate, respectively, r+ and r−.

and Θz > 0 requires |η̃|+ a2 − ξ2 > 0, which is satisfied inside the domain ¯̄zmin ≤ z ≤
¯̄zmax, where

¯̄zmin = µ0 sin
(

1
2

arcsin (µ1)

)
, (5.117a)

¯̄zmax = µ0 cos
(

1
2

arcsin (µ1)

)
, (5.117b)

with

µ0 =

√
|η̃|+ a2 − ξ2

a
, (5.118a)

µ1 =
2a
√
|η̃|

|η̃|+ a2 − ξ2 . (5.118b)

The corresponding particle-cone is therefore confined to ¯̄θmin ≤ θ ≤ ¯̄θmax, where
¯̄θmin = arccos ( ¯̄zmax) and ¯̄θmax = arccos ( ¯̄zmin), and the respected effective potential

is

W(θ) =

(
L csc θ

a

)2

+ |Q − fθ |
(

sec θ

a

)2

. (5.119)

193



CHAPTER 5. THE CASE OF A KERR BLACK HOLE INSIDE PLASMA

Once again, to determine the possible stable polar orbits we solve W ′(θ) = 0, which

yields

¯̄θ0 = arctan

|η̃| 1
4

√√√√ω0

(
L + ω0|η̃|

1
2

)
L2 + ω2

0|η̃|

 . (5.120)

This value satisfies ¯̄θmin ≤ ¯̄θ0 ≤ ¯̄θmax, and corresponds to the minimum of the angular

effective potential for the case of η̃ < 0. To find the analytical solution for θ(γ), we

pursue the same method as in the case of η̃ > 0, that provides (see appendix C.3)

θ(γ) = arccos
(

¯̄zmax −
3

12℘ (κ2γ) + φ0

)
, (5.121)

where

κ2 =
ω0a

√
2 ¯̄zmax

(
2 ¯̄z2

max − µ2
0

)
M

, (5.122a)

φ0 =
6 ¯̄z2

max − µ2
0

2 ¯̄zmax
(
2 ¯̄z2

max − µ2
0

) , (5.122b)

and the corresponding Weierstraß invariants are

¯̄g2 =
µ4

0 + 12µ2
0 ¯̄z2

max − 12 ¯̄z4
max

48
(
µ2

0
¯̄zmax − 2 ¯̄z3

max
)2 , (5.123a)

¯̄g3 = −
µ2

0
(
µ4

0 − 36µ2
0 ¯̄z2

max + 36 ¯̄z4
max
)

1728
(
2 ¯̄z3

max − µ2
0

¯̄zmax
)3 . (5.123b)

As in the previous cases, we have plotted the respected angular effective potential and

the temporal evolution of the θ-coordinate, in Fig. 5.11, for the case of η̃ < 0, which

similar to the case of η̃ = 0, indicates that Wmin > ω2
U . Hence, only the capturing

trajectories are allowed (see Fig. 5.12).

The evolution of the azimuth angle (the ϕ-motion)

A feasible approach to calculate the ϕ-motion, is to divide the integral equation (5.80)

into θ-dependent and r-dependent parts, in a way that we get

ϕ(γ) = Φθ(γ) + Φr(γ), (5.124)

with

Φθ(γ) =
∫ θ(γ)

θmin

Ldθ

sin2 θ
√

Θ(θ)
, (5.125a)

Φr(γ) =
∫ r(γ)

ri

(
a2L + 2Maω0r

)
dr

∆
√
R(r)

, (5.125b)
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Figure 5.11: The angular effective potential and the temporal evolution of the coordinate θ for

the case of η̃ < 0, plotted for Q = 9M2 and fθ = 10M2. To plot θ(γ), we have considered

ω0 =
√

10.
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Figure 5.12: The capturing trajectory for the case of η̃ < 0, plotted for ω0 =
√

10.

in which, the minimum value of the θ coordinate has been assumed to coincide with

the initial point ri, which can be set as either of the turning points. According to the fact

that the general form of the equation of motion has been considered, this assumption

does not affect the final analytical results for the ϕ-motion. Direct integration of the

integral (5.125a) results in the following cases:

• For η̃ > 0 we get (see appendix C.4)

Φθ(γ) = K0
[
K1F1(Uθ)−K2F2(Uθ)− κ0γ

]
, (5.126)

in which, κ0 has been given in Eq. (5.111a), and (with j = 1, 2)

Fj(Uθ) =
1

℘′(υj)

[
ln

(
σ
(
ß(Uθ)− υj

)
σ
(
ß(Uθ) + υj

))+ 2ß(Uθ)ζ(υj)

]
, (5.127)

which here, is given in terms of the corresponding Weierstraß invariants g2 and
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g3, as in Eqs. (5.113). Furthermore,

υ1 = ß
(
−ψ0

12
− 1

4[1 − zmax]

)
, (5.128a)

υ2 = ß
(
−ψ0

12
+

1
4[1 + zmax]

)
, (5.128b)

Uθ =
1

4(zmax − cos θ)
− ψ0

3
, (5.128c)

in which, zmax and ψ0 are given in Eqs. (5.109a) and (5.111b), and

K0 =
ξ

a
√

2zmax
(
z2

max + z2
0

)
(1 − zmax)(1 + zmax)

, (5.129a)

K1 =
1 + zmax

8(1 − zmax)
, (5.129b)

K2 =
1 − zmax

8(1 + zmax)
. (5.129c)

Note that, for the sake of simplicity in the demonstration of the trajectories, we

will set ϕ(θmin) = 0 as the initial condition. The complete γ-dependent expres-

sion for Φθ(γ) is then obtained by substituting θ → θ(γ) in the above relations.

• For η̃ = 0, pursuing the same mathematical methods, we find

Φθ(γ) = K̄0
[
K̄1F̄1(Ūθ)− K̄2F̄2(Ūθ)− ß (Ūθ)

]
, (5.130)

in which, F̄θ(θ) has the same expression as in Eq. (5.127), considering the ex-

changes

υ1 → ῡ1 = ß
(
− 5

24z̄max
− 1

4[1 − z̄max]

)
, (5.131a)

υ2 → ῡ2 = ß
(
− 5

24z̄max
+

1
4[1 + z̄max]

)
, (5.131b)

Uθ → Ūθ =
1

4(z̄max − cos θ)
− 5

24z̄max
, (5.131c)

and the corresponding Weierstraß invariants are

ḡ2 =
1

48z̄2
max

, (5.132a)

ḡ3 = − 1
1728z̄3

max
. (5.132b)

Furthermore,

K̄0 =
ξ

a
√

2z̄3
max (1 − z̄max)(1 + z̄max)

, (5.133a)

K̄1 =
1 + z̄max

8(1 − z̄max)
, (5.133b)

K̄2 =
1 − z̄max

8(1 + z̄max)
. (5.133c)
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• For η̃ < 0 we obtain

Φθ(γ) =
¯̄K0
[ ¯̄K1

¯̄F1( ¯̄Uθ)− ¯̄K2
¯̄F2( ¯̄Uθ)− κ2γ

]
, (5.134)

with κ2 given in Eq. (5.122a). To obtain ¯̄Fj( ¯̄Uθ), we need to apply

υ1 → ¯̄υ1 = ß
(
− φ0

12
− 1

4[1 − ¯̄zmax]

)
, (5.135a)

υ2 → ¯̄υ1 = ß
(
− φ0

12
+

1
4[1 + ¯̄zmax]

)
, (5.135b)

Uθ → ¯̄Uθ =
1

4( ¯̄zmax − cos θ)
− φ0

3
, (5.135c)

in Eqs. (5.127) and (5.128), with ¯̄zmax, µ0 and φ0, defined, respectively, in Eqs.

(5.117b), (5.118a) and (5.122b). The corresponding Weierstraß invariants are the

same as ¯̄g2 and ¯̄g3, given in Eqs. (5.123), and

¯̄K0 =
ξ

a
√

2 ¯̄zmax
(
2 ¯̄z2

max − µ2
0

)
(1 − ¯̄zmax)(1 + ¯̄zmax)

, (5.136a)

¯̄K1 =
1 + ¯̄zmax

8(1 − ¯̄zmax)
, (5.136b)

¯̄K2 =
1 − ¯̄zmax

8(1 + ¯̄zmax)
. (5.136c)

The r-dependent integral (5.125b) provides (see appendix C.5)

Φr(γ) = K+F+(Ur)−K−F−(Ur)− B̃ ß(Ur), (5.137)

in which

F±(Ur) =
1

℘′(Υ±)

[
ln

(
σ
(
Υ± − ß(Ur)

)
σ
(
Υ± + ß(Ur)

))+ 2ß(Ur)ζ(Υ±)

]
, (5.138)

given that

K± =
ri
(
a2L + 2Maω0ri

)
+ 2Maω0ri(ri − r±)

4ω0
√

α̃(ri − r±)2(r+ − r−)
, (5.139a)

B̃ =

(
a2L + 2Maω0ri

)
ω0

√
α̃(ri − r+)(ri − r−)

, (5.139b)

Ur ≡ Ur(γ) =
α1

12
− ri

4 [r(γ)− ri]
, (5.139c)

Υ± = ß
(

α1

12
− ri

4 [ri − r±]

)
, (5.139d)

where the coefficient α1 and the Weierstraß invariants, are the same as those given in

Eqs. (5.99), considering rD → ri. Furthermore

α̃ = 2A+ 4r2
i +

B
ri

. (5.140)

197



CHAPTER 5. THE CASE OF A KERR BLACK HOLE INSIDE PLASMA

Now, having in hand the analytical expressions for all the spatial coordinates, we are

able to simulate the possible orbits, based on the simultaneous evolution of these

coordinates. Respecting the allowed values of ω0, in Fig. 5.13, the orbits that we

have previously illustrated in Figs. 5.8, 5.10, and 5.12, are demonstrated in the three-

dimensional form, by applying the following Cartesian correspondents of the Boyer-

Lindquist coordinates (Boyer & Lindquist, 1967)

x(γ) =
√

r2(γ) + a2 sin θ(γ) cos ϕ(γ), (5.141a)

y(γ) =
√

r2(γ) + a2 sin θ(γ) sin ϕ(γ), (5.141b)

z(γ) = r(γ) cos θ(γ), (5.141c)

known as the Kerr-Schild Cartesian coordinates. In presenting the figures, we have

also considered the case of the vacuum Kerr spacetime, for which, the characteris-

tic functions fr(r) and fθ(θ) in Eq. (5.68), vanish identically. In fact, in the three-

dimensional treatment of the trajectories, a fixed positive Carter’s constant Q, does

not allow for the construction of the cases η̃ = 0 and η̃ < 0 in the vacuum Kerr space-

time. Hence, the possible comparison between the light propagation in the plasmic

and vacuum Kerr spacetimes can only be done in the context of η̃ > 0 which cor-

responds to the first six diagrams of Fig. 5.13. As indicated in these diagrams, the

sensible differences between these media, are seen in the OFKs. While the light ray

trajectories in plasma (black curves) occupy a wider spatial range around the black

hole, those in the vacuum (blue curves) are more close to the event horizon. Passing

the plasma, will therefore, change the amount of light deflection and this can be in-

spected through the process of gravitational lensing (see below). The other types of

trajectories do not show any sensible differences. Hence, in what follows we continue

with the equatorial lens equation for the black hole.

Gravitational lensing

Let us, for now, confine ourselves to the equatorial plan (with θ = π
2 ), on which we

have Q = fθ . Therefore, by means of Eqs. (5.78) and (5.80), the differential equation

that governs the gravitational lensing is

dϕ

dr

∣∣∣∣
θ= π

2

=
L
(
r2 − 2Mr

)
− 2Maω0r

∆
√
[ω0(r2 + a2)− aL]2 − ∆ [ fθ + fr + (L − aω0)2]

= F−1(r), (5.142)

according to which, the lens equation is written as

ϑ̂ = 2
∫ ∞

rD

dr
F(r)

− π, (5.143)
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Figure 5.13: The three-dimensional simulations of the possible orbits plotted for Q = 9M2,

corresponding to the three cases of η̃ > 0 (a-f) where the black trajectories have been calculated

for fr = fθ = 1M2 and the blue ones indicate the null trajectories in the vacuum Kerr spacetime

(i.e. for fr = fθ = 0), η̃ = 0 (g), and η̃ < 0 (h). The sphere in the middle indicates the event

horizon. The diagrams correspond to (a) OFK for ω0 = 0.755, (b) OFK for ω0 = 0.70, (c) OSK

for ω0 = 0.755, (d) UCOFK, (e) UCOSK, (f) capture for ω0 = 1, (g) capture for ω0 =
√

10.30,

(h) capture for ω0 =
√

10. Theses last two trajectories do not have a vacuum counterpart, for

the above chosen Carter’s constant.

where ϑ̂ is the deflection angle and rD is that in Eq. (6.99). This provides (see appendix

C.6)

ϑ̂ = 2K̃̃+F+

(α1

12

)
− 2K̃̃−F−

(α1

12

)
− 2B̃̃ ß

(α1

12

)
− π, (5.144)

in which, F± are given in Eq. (5.138),

K̃̃± =
rD

4ω0
√

α̃(rD − r±)2(r+ − r−)

[
LrD

(
−2aMω0(rD − r±)2 − rD + 2r±

)
− 2aMr±ω0 + L2rD(rD − 2M)(rD − r±)2 − 2LMr±

]
, (5.145a)

B̃̃ =
rD[L(rD − 2M)− 2aMω0]

4ω0
√

α̃(rD − r−)(rD − r+)
, (5.145b)
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and Υ± are the same as those in Eq. (5.139d) with ri → rD. Applying the data given in

Fig. 5.13, one obtains ϑ̂ = 47.137◦ and ϑ̂ = 110.869◦, respectively, for ω0 = 0.755 and

ω0 = 0.70. This is while for a vacuum background (i.e. fr = fθ = 0), these values

change to ϑ̂ = 27.276◦ and ϑ̂ = 52.997◦, for the same initial frequencies.

The evolution of the coordinate time (the t-motion)

We exploit the same methods of integration, as we had for the case of the ϕ-motion.

Accordingly, considering Eq. (5.81), together with Eqs. (5.78) and (5.79), we can write

the integral equation for the t-motion as

t(γ) = tθ(γ) + tr(γ), (5.146)

with

tθ(γ) = −
∫ θ(γ)

θmin

ω0a2 sin2 θ dθ√
Θ(θ)

, (5.147a)

tr(γ) =
∫ r(γ)

ri

[
ω0(r2 + a2)2 − 2MaLr

]
dr

∆
√
R(r)

. (5.147b)

Recalling the functions that we have defined formerly, the θ-dependent integral above

gives these three cases:

• For η̃ > 0:

tθ(γ) = 2a
{

ζ
(

ß
(
Uθ(θmin)

))
− ζ
(

ß
(
Uθ(θ)

))
+

(
1
4
+

χ2
0

12a2

) [
ß
(
Uθ(θmin)

)
− ß

(
Uθ(θ)

)]}
. (5.148)

• For η̃ = 0:

tθ(γ) = 2a
{

ζ
(

ß
(
Ūθ(θmin)

))
− ζ
(

ß
(
Ūθ(θ)

))
+

(
1
6
+

ξ2

12a2

) [
ß
(
Ūθ(θmin)

)
− ß

(
Ūθ(θ)

)]}
. (5.149)

• For η̃ < 0:

tθ(γ) = 2a
{

ζ
(

ß
( ¯̄Uθ(θmin)

))
− ζ
(

ß
( ¯̄Uθ(θ)

))
+

(
1
4
− µ2

0
12

) [
ß
( ¯̄Uθ(θmin)

)
− ß

( ¯̄Uθ(θ)
)]}

. (5.150)
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The r-dependent integral (5.147b) provides the solution

tr(γ) = τ0

5

∑
j=1

τj

[
Tj
(
r(γ)

)
− Tj(ri)

]
, (5.151)

in which (letting Tj ≡ Tj
(
r(γ)

)
) (see appendix C.7)

T1 = ß(Ur), (5.152a)

T2 =
℘′′
(

β̃
12

)
℘′3
(

β̃
12

) ln

σ
(

ß(Ur) +
β̃
12

)
σ
(

ß(Ur)− β̃
12

)
− 1

℘′2
(

β̃
12

) [ζ

(
ß(Ur) +

β̃

12

)

+ζ

(
ß(Ur)−

β̃

12

)]
− 2ß(Ur)

 ℘
(

β̃
12

)
℘′2
(

β̃
12

) +
℘′′
(

β̃
12

)
ζ
(

β̃
12

)
℘′3
(

β̃
12

)
 , (5.152b)

T3 =
1

℘′
(

β̃
12

)
ln

σ
(

β̃
12 − ß(Ur)

)
σ
(

β̃
12 + ß(Ur)

)
+ 2ß(Ur)ζ

(
β̃

12

) , (5.152c)

T4 = F+(Ur), (5.152d)

T5 = F−(Ur), (5.152e)

recalling the expressions defined previously, and

τ0 =
ri

ω0
√

C3(ri − r+)(ri − r−)
, (5.153a)

τ1 = ω0(r2
i + a2)2 − 2MaLri, (5.153b)

τ2 =
ω0

16
r2

i (ri − r+)(ri − r−), (5.153c)

τ3 = ω0 r4
i

[
4u+u− − (u+ + u−)

4u2
+u2

−

]
, (5.153d)

τ4 =
ω0

[
r2

i (u+ − 1)2 + a2u2
+

]2

4u2
+(u− − u+)

− MaLri (u+ − 1) u+

2(u− − u+)
, (5.153e)

τ5 = −
ω0

[
r2

i (u− − 1)2 + a2u2
−

]2

4u2
−(u− − u+)

+
MaLri (u− − 1) u−

2(u− − u+)
, (5.153f)

where u± =
[

r±
ri
− 1
]−1

, the relevant Weierstraß invariant are given in Eqs. (5.99), and

the constant C3 has been taken from Eq. (5.100d), considering rD → ri.

Note that, to simulate the angular trajectories, the Mino time γ is used as the curve

parameter. The above derivations for the time coordinate t are, therefore, of pure

mathematical significance and are presented only to have in hand the complete evo-

lution of the spacetime coordinates.
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5.3 Photon spheres (regions)

In this section, the important notion of the photon regions in stationary black hole

spacetimes is discussed, which is related directly to the formation of the black hole

shadow. For the particular case of the Kerr black hole in plasmic medium, the photon

regions and the shadow of the black hole has been discussed by Perlick and Tsupko

(Perlick & Tsupko, 2017), where they introduced the geometric decomposition given

in Eq. (5.68). In this section however, beside calculating the photon regions for an

anisotropic inhomogeneous plasma, we also include more photon surfaces that char-

acterize the black hole and its image.

In fact, photon regions are regions in the spacetime that are filled by spherical light

rays, i.e., with solutions to the ray equation (5.78), that stay on a sphere r = const.

Hence, although the term photon sphere is commonly used in the literature, but it is

relatively incorrect. Each of these spherical light rays stays on a sphere with the θ-

coordinate varying between two turning points, and exists for radius values in a cer-

tain interval. In this sense, only the innermost and the outermost ones are circular

(depending only on the physical properties of the black hole), and unstable spherical

light rays (i.e. UCOs) can serve as the limit curves for the light rays that approach

them in a spiral motion. All the other spherical light rays are non-planar. So, the

photon region is the closure of all points, through which, such spherical light rays

exist. To determine the photon region, one has to consider the r-component and the

θ-component of the equations for the light rays and respect the conditions dr
dγ = 0 ,

d2r
dγ2 = 0 (or equivalently, R(r) = 0, R′(r) = 0), and Θ(θ) ≥ 0, in accordance to the

equations (5.78) and (5.79). After doing appropriate manipulations, these conditions

result in the following relations

R = 0 ⇒
[
(r2 + a2)− aξ

]2 − ∆
[
η + ηr + (ξ − a)2] = 0, (5.154a)

R′(r) = 0 ⇒ 4r
[
(r2 + a2)− aξ

]
− 2(r − M)

[
η + (ξ − a)2 + ηr

]
= 0, (5.154b)

η̃ sin2 θ ≥ cos2 θ
(
ξ2 − a2 sin2 θ

)
. (5.154c)

From Eqs. (5.154a) and (5.154b), one can derive the critical locus (ξp, ηp), given as

ξp =
M(r2 − a2)− r∆

a(r − M)
, (5.155a)

ηp =
r3

a2(r − M)2

[
4a2M − r(r − 3M)2]− ηr, (5.155b)
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Figure 5.14: The locus (ξp, ηp), determining the constants of motion for the spherical photon

orbits, which has been plotted for fr = fθ = 1M2, ω0 = 0.75, and a = 0.8M.

substitution of which in Eq. (5.154c), provides the condition

tan2 θ

{
r3 [4a2M − r(r − 3M)2]

a2(r − M)2 − fr + fθ

ω2
0

}
≥
[

M(r2 − a2)− r∆
a(r − M)

]2

− a2 sin2 θ,

(5.156)

that governs the formation of the photon region. Note that, the critical locus is im-

portant in the determination of the spherical photon orbits orbits. In Fig. 5.14, the

behavior of these critical parameters has been plotted. On the other hand, as we have

established before, the orbits are characterized, crucially, depending on the sign of the

impact parameter η. In particular, the case of η → 0 corresponds to either Q → 0 or

E → ∞. This latter has the significance of UCO, which can be also regarded in terms

of the condition R′′(r) < 0.

For the case of vacuum Kerr spacetime (ηr = 0), one can consider the above condi-

tion together with Eq. (5.155b) that yields

4a2M − rp(rp − 3M)2 = 0 ⇒ ± 2a
√

M = r
3
2
p − 3Mr

1
2
p , (5.157)

which has the solutions

rp± = 2
[

1 + cos
(

2
3

arccos(∓a)
)]

, (5.158)

that correspond, respectively, to the outer (with retrograde motion) and inner (with

prograde motion) planar circular photon orbits. Furthermore, by solving directly

4a2M − rp(rp − 3M)2 = 0, which has the particular solution

rp0 = 2M
[

1 − cos
(

π

3
− 1

3
arccos

(
2a2

M2 − 1
))]

. (5.159)
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This radius, corresponds to the circular photon orbit that are visible to the observers

located at θo = 0 (face-on observers).

One should note that, by coming to the equatorial plane which relates to a θ-

constant condition (i.e. θ = π
2 or θo = 0), we rely on the symmetry of the space-

time, which instead of a spherical symmetry, is an axial symmetry (here, around the

z-axis). This way, as it is pretty simple to be inferred from the equation of motion

for the ϕ-coordinate (5.80), and also from the expressions we have for rp± and rSL±

in Eqs. (5.158) and (5.63), that these latter radii are just circles in the equatorial plane

(in our case, ellipses in the Kerr-Schild Cartesian coordinates). For the case of the

ergosurfaces, the radius rSL− vanishes on the equatorial plane and we are left with

rSL+ = 2M. For the case of spherical photon orbits, all the others have combined pro-

grade and retrograde motions, and become unobservable in the equatorial plane, as it

can be inferred easily from their dependence on the θ-coordinate3

To proceed with the demonstration of the photon surfaces, we once again apply

the Kerr-Schild coordinates (5.141) for the case of y = 0, to obtain the cross-section of

the photon region in the polar plane (i.e. the z-x plane). Accordingly, one can write

x =
√

r2 + a2 sin θ and z = r cos θ, which can be solved for r and θ, giving

r =
1√
2

√
(x2 + z2)− a2 +

√
4a2z2 + (x2 + z2 − a2)2 , (5.160a)

θ = arcsin

 √
2x√

x2 + z2 + a2 +
√

4a2z2 + (x2 + z2 − a2)2

 . (5.160b)

These values are then replaced inside the expressions for rp±, rp0, rSL± and etc., in or-

der to do the appropriate RegionPlot and ContourPlot in Mathematica®. In Fig. 5.15,

the photon surfaces of a Kerr black hole located in vacuum, have been shown for sev-

eral values of the spin parameter. These surfaces confine the photon regions, ergore-

gions and etc., and are rather informative in the perception of the spacetime’s causal

structure. For the case that the plasma is available, applying the condition (5.156),

we consider the same values for the plasma parameters, as were taken for the case

of η̃ > 0 in the panels (a-f) of Fig. 5.13, to show the corresponding photon regions

in Fig. 5.16. Several further examples can be generated by altering a and hence, the

corresponding ω0.

3In fact, it can be inferred from Eq. (5.156) that these orbits depend directly on the θ-coordinate and

cannot exist for θ = π
2 .

204



5.3. PHOTON SPHERES (REGIONS)

(a) (b)

Figure 5.15: The photon surfaces in the polar (z-x) plane, for a Kerr black hole located in

vacuum, plotted for (a) a = 0.95M, and (b) a = M, shown by regions in orange. The larger

and smaller dashed curves in blue indicate respectively rp+ and rp−. Same holds for the red

dashed ones that indicate r+ and r−, with their separation filled with light color in panel (a).

Furthermore, the white dashed curve is rp0. The photon region which has entered the domain

0 < r < r−, corresponds to the causality violation. The green regions correspond to the interior

and exterior ergoregions. Finally, the circles ◦ indicate the ring singularity at z = 0 and x = a2.

(a) (b)

Figure 5.16: The photon surfaces in the polar (z-x) plane, for a Kerr black hole located in a

plasma with fr = fθ = 1M2, plotted for a = 0.8M, and (a) ω0 = 0.50, and (b) ω0 = ωU . The

color coding is the same as that of Fig. 5.15. No causality violating regions can be observed.
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Figure 5.17: The celestial plane for an observer at (ro, θo).

5.4 Shadow of the black hole

In this section, we apply the traditional approach to the parametrization of the shadow

of the stationary asymptotically flat spacetimes, and in particular, the Kerr spacetime

(Cunningham & Bardeen, 1973; Chandrasekhar, 1998; Vázquez & Esteban, 2004), to

calculate the shadow of the Kerr black hole in the plasmic medium. We first present a

review on the mathematical methods which have been developed so far.

Let us consider the two-dimensional celestial plane with the coordinates (α, β), as

indicated in Fig. 5.17, for an observer who is located at (ro, θo), and is supposed to

reside on a line perpendicular to the celestial plane. The local frame of the observer

is supposed to be defined in the Cartesian coordinates (x, y, z), and for simplicity,

we assume that the y-coordinate coincides with the α-coordinate. In this sense, the

observer is in the x-z plane, for which, ϕo = 0. Similar to what we discussed in

section 3.6.3, the light rays can be thought of as travelling on the parametric curve

ℓ(r) = (x(r), y(r), z(r)), which now, the radial coordinate r is considered as the curve

parametrization, where r2 = x2 + y2 + z2. In fact, the tangent to this curve at the point

of the observer is given by

(
dx
dr

)
ro

x̂ +

(
dy
dr

)
ro

ŷ +

(
dz
dr

)
ro

ẑ, (5.161)

which represents a straight line, connecting the observer to the point (αd, βd) on the
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celestial plane (see Fig. 5.17). This latter point is given by

xd = −βd cos θo, (5.162a)

yd = αd, (5.162b)

zd = βd cos
(π

2
− θo

)
= βd sin θo, (5.162c)

Therefore, to summarize, we have the point (−βd cos θo, αd, βd sin θo) in the Cartesian

coordinates, through which, the tangent vector V⃗ =
(

dx
dr , dy

dr , dz
dr

)
≡ (a, b, c) passes. In

general, any position vector can be written as R⃗ = (x, y, z) = (xo + ar, yo + br, zo +

cr). On the other hand, in the spherical coordinates we have x = r sin θ cos ϕ, y =

r sin θ sin ϕ and z = r cos θ, which result in the infinitesimal displacements

dx = sin θ cos ϕdr + r cos ϕ cos θdθ − r sin θ sin ϕdϕ, (5.163a)

dy = sin θ sin ϕdr + r sin ϕ cos θdθ + r sin θ cos ϕdϕ, (5.163b)

dz = cos θdr − r sin θdϕ. (5.163c)

Hence, at the point of the observer, we have the following relations

zo = zo + ro
dz
dr

∣∣∣∣
ro

⇒ ro cos θo − r2
o sin θo

dθ

dr

∣∣∣∣
ro

= 0
zo=βd sin θo

=⇒ βd = r2
o

dθ

dr

∣∣∣∣
ro

, (5.164)

yo = yo + ro
dy
dr

∣∣∣∣
(ro ,θo ,ϕo)

⇒ ro sin θo sin ϕo + r2
o sin ϕo cos θo

dθ

dr

∣∣∣∣
ro

+ r2
o sin θo cos ϕo

dϕ

dr

∣∣∣∣
ro

= 0
yo=αd, ϕo=0

=⇒ αd = −r2
o sin θo

dϕ

dr

∣∣∣∣
ro

, (5.165)

which describe a point on the celestial plane. Now to obtain the specific relations for

(α, β), we reconsider the equations of motion (5.78)–(5.80), that yield

dθ

dr

∣∣∣∣
ro ,θo

=

√
Θ(θo)

R(ro)
, (5.166a)

dϕ

dr

∣∣∣∣
ro ,θo

=
L
(
ρ2

0 − 2Mro
)

csc2 θo − 2Maω0ro

∆o
√
R(ro)

, (5.166b)

where ∆o ≡ ∆(ro). For the case of an observer at the infinity (where the spacetime is

essentially flat) and by means of the Eqs. (5.77a) and (5.77b), the above relations result

in

α = lim
ro→∞


{

Lp

sin2 θo

(
r2

o + a cos2 θo − 2Mro
)
− 2Maω0ro

}
(−r2

o sin θo)

(r2
o + a2 − 2Mro)

√
ω2

0

[
(r2

o + a2)− aξp
]2 − ∆oω2

0

[
ηp +

fr(ro)
ω2

0
+ (ξp − a)2

]


= lim
ro→∞

∼ −
(

Lp
sin θo

r4
o

)
∼ ω0r4

o
= −

ξp

sin θo
, (5.167)
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β = lim
ro→∞

√√√√√
[
Qp − fθ(θo)− cos2 θo

(
L2

p csc2 θo − a2ω2
0

)]
r4

o

ω2
0

[
(r2

o + a2)− aξp
]2 − ∆oω2

0

[
ηp +

fr(ro)
ω2

0
+ (ξp − a)2

]

= lim
ro→∞

√√√√∼
[
Qp − fθ(θo)− cos2 θo

(
L2

p csc2 θo − a2ω2
0

)]
r4

o

∼ ω2
0r4

o

=

√
ηp −

fθ(θo)

ω2
0

− cos2 θo

(
ξ2

p csc2 θo − a2
)

=

√
ηp − ξ2

p cot2 θo + a2 cos2 θo −
fθ(θo)

ω2
0

, (5.168)

where Lp is the angular momentum relevant to the unstable circular orbits, as intro-

duced in section 5.3, and ξp and ηp have been defined in Eqs. (5.155). For the case of

θo =
π
2 , the above expressions are simplified significantly.

Note that, there is also an alternative (even though older) method, which is based

on the transformations of the momentum covector p, to the observer’s local frame. In

this method, the celestial coordinates are given the relations (Cunningham & Bardeen,

1973; Chandrasekhar, 1998)

α = lim
ro→∞

(
− ro p(ϕ)

p(t)

)
ro ,θo

, (5.169)

β = lim
ro→∞

(
ro p(θ)

p(t)

)
ro ,θo

, (5.170)

where p(j) = e(j)
µ pµ = η jje(j)

νgνµgµσ pσ, with ηjj being the spatial part of the

Minkowski metric in the spherical coordinates, and the

e(t) = ∂t, (5.171a)

e(r) = ∂r, (5.171b)

e(θ) =
1
r

∂θ , (5.171c)

e(ϕ) =
1

r sin θ
∂ϕ, (5.171d)

are the tetrad transformations from the Kerr spacetime to the observer’s local frame

in the Cartesian spherical coordinates. It is straightforward to check that, by applying

the above tetrad to the celestial coordinates in Eqs. (5.169) and (5.170), one will get the

same expressions as those given in Eqs. (5.167) and (5.168).

In Fig. 5.18, we have applied these expressions to do the parametric plots of the

black hole shadows, with r taken as the parameter. Note that, a general study of the
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ω0 = ωU

ω0 = 0.45

ω0 = 0.31

ω0 = 0.28

-2 2 4 6
α

-4

-2

2

4

β

Figure 5.18: The parametric curves indicating the boundaries of the black hole shadows, plot-

ted for a Kerr black hole with a = 0.99M, located in a plasmic medium with fr = fθ = 1M2.

The curves correspond to different initial frequencies and the dashed curve corresponds to a

Kerr black hole in a vacuum. Obviously, the change in the initial frequency does not have any

effect on the vacuum shadow.

shadow casts of axisymmetric black holes in plasmic media, has been given recently

by Badı́a and Eiroa (Badı́a & Eiroa, 2021).

5.5 Summary

There is no doubt that physical systems offer different criteria for them to be describ-

able efficiently and completely. In this chapter, we have considered such criteria for

monochromatic light rays of peculiar frequency ω0, that travel in the exterior space-

time geometry of a Kerr black hole which is filled by an inhomogeneous anisotropic

electronic plasma. Following the mathematical formulations founded by Synge, it

is well-known that light rays will no longer travel on null geodesics inside disper-

sive media. We therefore, applied a proper Hamilton-Jacobi formalism which enabled

us generating the differential equations of motion. Accordingly, the effective gravita-
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tional potential provides different conditions corresponding to different types of orbits

for the light rays that travel on time-like trajectories with respect to the background

spacetime manifold. In fact, we have tried to carry out an ambitious study on the op-

tical conditions that govern the light propagation in plasmic medium, mostly because

such studies are usually restricted to the visible limit of the black holes’ exterior and

their shadow. We, however, paid attention to the other types of orbits offered by the

effective potential and obtained the exact analytical solutions to their respective equa-

tions of motion. We characterized the plasmic medium with the two structural func-

tions fr and fθ , that enabled us conceiving the property of anisotropy. The resultant

equations of motion were in the form of elliptic integrals, to solve which, we adopted

specific algebraic methods that gave rise to Weierstraßian functions as the analytical

solutions. Furthermore, the dimension-less Mino time was chosen as the curve param-

eter, so that we could have more well-expressed coordinate evolution. This parameter

was then exploited in the parametric plots to perform three-dimensional simulations

of the light ray trajectories. Note that, the effective potential does not offer any plane-

tary orbits, so that the light rays, beside being able to form photon rings on the UCO,

can only escape from or be captured by the black hole. These kinds of trajectories, as

demonstrated within the text, are bounded to cones of definite vertex angles. Based

on the specific frequency (energy) of the light rays, ω0, the intensity of the deflection in

the escaping trajectories can vary, and the rays may travel on more fast-changing hy-

perbolic curves as ω0 approaches its critical value, ωU . Note that, since we express the

plasma frequency ωp in terms of the black hole’s physical characteristics in Eq. (5.84),

the impacts of plasma are then included, indirectly, through the variations of the effec-

tive potential and the consequent types of orbit. In the presented analytical solutions,

this was done by introducing the effective impact parameter η̃ and its dependent con-

stants. Although the temporal evolution of the coordinates have appeared to be of

rather complicated mathematical expressions, they however, can establish the base-

ment of further studies, specified to certain models of plasma that are in connection

with black holes’ parameters. Such studies can offer astrophysical applications and

are left for the future.
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CHAPTER 6

Schwarzschild black hole with

quintessence and cloud of strings

In this chapter, we concern about applying general relativistic tests on the spacetime

produced by a static black hole associated with cloud of strings, in a universe filled

with quintessence. The four tests we apply are precession of the perihelion in the

planetary orbits, gravitational redshift, deflection of light, and the Shapiro time delay.

Through this process, we constrain the spacetime’s parameters in the context of the

observational data, which results in about ∼ 10−9 for the cloud of strings parameter,

and ∼ 10−20 m−1 for that of quintessence. The response of the black hole to the grav-

itational perturbations is also discussed. Moreover, a complete study of the null and

time-like geodesics is presented (Cárdenas et al., 2021; Fathi et al., 2022).

6.1 Probing the parameters

The dark side of the universe has found its way into the physical observations, re-

garding the flat galactic rotation curves, anti-lensing, and the accelerated expansion of

the universe (Rubin et al., 1980; Massey et al., 2010; Bolejko et al., 2013; Riess et al.,

1998; Perlmutter et al., 1999; Astier, 2012). This, in fact, has affected the way we

look at the astrophysical phenomena. Among these, and since the end of the last
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century, two main observational discoveries have appeared as the keys to obtain a

better understating of our universe. First, the confirmation of the highly isotropic

black body radiation, of the order 10−5 of the temperature fluctuations, observed for

the cosmic microwave background radiation (CMBR) (Bennett et al., 1994), and sec-

ond, the discovery of the accelerated expansion of the universe (in the context of the

Friedmann-Lamaı̂tre-Robertson-Walker (FLRW) metric), using the type Ia supernovae

observations (Riess et al., 1998; Perlmutter et al., 1999). In this context, a concordance

model emerges from the observations, which is the so-called Lambda-Cold Dark Mat-

ter (ΛCDM) model.

Despite being simple, this model has been able to give a fairly good description

of a wealth amount of the observational data, although its deep theoretical origin is

still a mystery, and no clue has been given so far, for the origin and the value of the

included cosmological constant. One of the main issues here is the coincidence problem,

or why we live in the exact epoch where the contribution of this constant is of the same

order of magnitude as that of matter? In fact, in the extended versions of the model

that assume a dynamical source, even no fundamental idea has been put forward to

understand this component.

Nevertheless, there is an approach that has been able to successfully ameliorate

the coincidence problem, by replacing the cosmological constant with a quintessence

field, in which, the case of an inflaton field during the inflationary epoch, is used as

a guide. In order to study the astrophysical phenomena, therefore, it seems logical

to consider this model as a conservative approach, since no better explanation exists.

Such phenomena may include supernovae, galaxy clusters, or quasars, in addition to

which, black hole astrophysics can be named. Black holes, in particular, have appeared

among the most interesting astrophysical objects, and the recent imaging of the M87*

(Akiyama et al., 2019a) has shown that black holes, beside stemming in theoretical

concepts, are potentially observable.

On the other hand, taking into account the cosmological dynamics, the evolution of

black holes can also be affected by the dark side of the universe, in which they reside.

This process has been discussed extensively in the context of general relativity and

alternative theories of gravity (Jimenez Madrid & Gonzalez-Diaz, 2008; Jamil, 2009; Li

et al., 2020; Roy & Yajnik, 2020). Geometrically, such calculations would add a dark

component to the black hole spacetime under consideration, which is inferred from the

cosmological energy-momentum constituents. Such calculations may include the con-

sideration of a dark matter halo (Xu et al., 2018; Das et al., 2021), or the coupling of the
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spacetime with a quintessential field (Kiselev, 2003; Saadati & Shojai, 2019; Ali Khan

et al., 2020). Furthermore, it has been argued that the cosmological perfect fluid can be

regarded as a relativistic dust cloud, consisting of one-dimensional strings (instead of

point particles), and this viewpoint led to a specific form of spacetime generalization

(Stachel, 1977), which associates the black hole to the so-called cloud of strings.

This spacetime was generalized further to a gauge-invariant version (Letelier,

1979) and its geodesic structure has been also investigated recently (Batool & Hussain,

2017).

In this chapter, we take into account a static black hole spacetime which is associ-

ated with both the quintessential field and the cloud of strings (Toledo & Bezerra, 2018;

Dias e Costa et al., 2019; Toledo & Bezerra, 2019), for which, the geodesic structure re-

garding the radial and circular orbits has been also investigated (Mustafa & Hussain,

2021). Furthermore, a rotating version of the black was generated together with dis-

cussing its thermodynamics (Toledo & Bezerra, 2020). One interesting feature of this

black hole spacetime, is that it can include both the effects of dark matter and dark

energy, in the sense that the included quintessential component, as well as stemming

from the accelerated expansion of the universe, can act as an extra potential granted

to the spacetime, to recover the unseen galactic matter. As it will be represented in

what follows, such contribution can be found in the Mannheim-Kazanas solution to

the fourth order WCG, that is proposed to recover the flat galactic rotation curves

(Mannheim & Kazanas, 1989). The cloud of strings is, however, related to a cosmo-

logical model, in which the extended (string-like) objects play role as the sources of

gravity, and construct the universe (Letelier, 1979). On the other hand, the respected

parameters of the mentioned components are supposed to be appropriately calibrated

in the context of standard observations, which is the aim of this section.

6.1.1 The black hole solution in the dark background

The static, spherically symmetric black hole solution in the quintessential background,

which is surrounded by a cloud of strings, is described by the following metric in the

xµ = (t, r, θ, ϕ) coordinates:

ds2 = gµνdxµdxν = −B(r)dt2 + B−1(r)dr2 + r2dθ2 + r2 sin2 θdϕ2, (6.1)
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with the lapse function defined as (Toledo & Bezerra, 2018; Dias e Costa et al., 2019;

Toledo & Bezerra, 2019)

B(r) = 1 − α − 2M
r

− γ

r3wq+1 , (6.2)

in which, α, M, γ and wq, represent, respectively, the dimensionless string cloud pa-

rameter (0 < α < 1), the black hole mass, the quintessence parameter and the equation

of state (EoS) parameter. For a perfect fluid distribution of matter/energy, this latter

is defined by Pq = wqρq, with Pq and ρq as the quintessential energy pressure and

density, and lies within the range −1 < wq < − 1
3 . This parameter is set to be respon-

sible for the cosmological acceleration and the special case of wq = −1 recovers the

cosmological constant.

To proceed further with our study, we will consider the case of wq = − 2
3 which

corresponds to the black hole spacetime with the lapse function

B(r) = 1 − α − 2M
r

− γr, (6.3)

located in a matter dominated universe (Wei & Cai, 2008). Note that, the last term re-

sembles the dark matter-related term included in the Mannheim-Kazanas static spher-

ically symmetric solution to the vacuum Bach equations, which is proposed to recover

the flat galactic rotation curves (Mannheim & Kazanas, 1989). In this sense, the pa-

rameter γ can be related to both the dark matter/energy constituents of the spacetime,

based on its value (for smaller values, it is mostly related to dark matter).

This spacetime is not asymptotically flat, however, its three-dimensional subspace

has an asymptotic deficit of angle (Matos et al., 2002). Such effect is also intensified by

the presence of the cloud of strings. Note that, for this particular choice for the wq, the

dimension of γ is m−1.

Defining (Toshmatov et al., 2017; Toledo & Bezerra, 2020)

ρ(r) = M +
αr
2

+
γr2

2
, (6.4)

for a quintessential energy tensor Tµν = (ε, Pr, Pθ , Pϕ) with a constituent of cloud of

strings, one can confirm that (Toledo & Bezerra, 2020)

ε =
2ρ′

8π
= −Pr, (6.5a)

Pθ = Pr −
ρ′′r + 2ρ′

8πr
= Pϕ, (6.5b)

with primes denoting differentiation with respect to the r-coordinate, hold in the con-

text of general relativity Gµν = 8πTµν, where Gµν is the Einstein tensor. Hence, the
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solution (6.3) can be regarded as a static black hole spacetime surrounded by a cloud

of strings, that is located in a universe filled with quintessential dark energy. Note that,

for a comoving time-like observer with a velocity four-vector field uµ = (1, 0, 0, 0), the

values in Eq. (6.5) provide

Tµνuµuν =
α + 2γr

8πr2 . (6.6)

It is straightforward to verify that for the specific choice of wq = − 2
3 , we have 0 < γ <

(1−α)2

8M ≡ γc, and hence, Tµνuµuν > 0. One can therefore infer that the weak energy

condition (WEC) is respected. Note that γc → 0 for α → 1, and γc =
1

8M for α → 0.

This black hole spacetime admits two horizons located at the real roots of the equa-

tion B(r) = 0, which are

r++ =
1 − α

γ
cos2

[
1
2

arcsin
(

2
√

2Mγ

1 − α

)]
, (6.7)

r+ =
1 − α

γ
sin2

[
1
2

arcsin
(

2
√

2Mγ

1 − α

)]
, (6.8)

denoting, respectively, the (quintessential) cosmological, and the event horizons,

which will merge to r+ = r++ = rs = 2M at the limits α → 0 and γ → 0. Accordingly,

one can re-express the lapse function as

B(r) =
γ

r
(r − r+)(r++ − r). (6.9)

Note that, for every specific choice of α within its allowed range, an extremal black

hole is obtained for the case of γ = γc, with the only horizon located at re = 4M
1−α ,

whereas γ > γc corresponds to a naked singularity.

6.1.2 Astrophysical implications

We now proceed with comparing the theoretical inferences of doing standard tests on

the black hole, with the relevant observational data. Through this process, one can es-

tablish reliable bounds on the parameters of the spacetime. In what follows, we apply

four distinct tests on the black hole, and infer appropriate numerical values of the pa-

rameters α and γ, according to which, the observational and experimental results can

be recovered. Note that, since these tests are standard, their explanations can be there-

fore found in any textbook on general relativity. Hence, we skip the introductory notes

and proceed directly to the calculations. We begin with calculating the precession in

the perihelion of planetary orbits in the solar system.
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The advance of the perihelion

An elementary method to study this effect was presented by Cornbleet (Cornbleet,

1993), which was later applied to other spacetimes (Cruz et al., 2005; Olivares & Vil-

lanueva, 2013). The general idea is to compare the Keplerian elliptic orbits in the

Minkowski spacetime (presented in a Lorentzian coordinate system), with those given

in the Schwarzschild coordinates. This way, the desired general relativistic corrections

are emerged. Let us consider the unperturbed Lorentzian metric

ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θdϕ2, (6.10)

in the (t, r, θ, ϕ) coordinates, together with metric (6.1), which we now assume to be in

the (t′, r′, θ, ϕ) coordinates. Accordingly, the relation between (t, r) and (t′, r′) can be

given in the binomial approximations

dt′ =
(

1 − α

2
− M

r
− γ

2
r
)

dt, (6.11a)

dr′ =
(

1 +
α

2
+

M
r
+

γ

2
r
)

dr. (6.11b)

Therefore, in the invariant plane θ = π
2 , the element of area in the Lorentzian system is

dA =
∫ R

0 rdrdϕ = 1
2 R2dϕ, where R is the areal distance from the planet to the source.

This way, the Kepler’s second law can be cast as

dA
dt

=
1
2

R2 dϕ

dt
. (6.12)

On the other hand, in the Schwarzschild coordinates we have

dA′ =
∫ R

0
rdr′dϕ =

∫ R

0

(
r +

α

2
r + M +

γ

2
r2
)

drdϕ

=
R2

2

(
1 +

α

2
+

2M
R

+
γ

3
R
)

dϕ. (6.13)

Therefore, by means of the transformations (6.11), the Kepler’s second law is written

as

dA′

dt′
=

1
2

R2
(

1 +
α

2
+

2M
R

+
γ

3
R
)

dϕ

dt′

=
1
2

R2
(

1 +
α

2
+

2M
R

+
γ

3
R
)(

1 +
α

2
+

M
R

+
γ

2
R
)

dϕ

dt

≃ 1
2

R2
(

1 + α +
3M
R

+
4Mγ

3

)
dϕ

dt
. (6.14)

In fact, since the law must be held covariant in all coordinate systems, one can infer

from Eqs. (6.12) and (6.14), that dϕ′ = (1 + α + 3M
R + 4Mγ

3 )dϕ. Accordingly, for an
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angular increment ∆ϕ′, one gets∫ ∆ϕ′

0
dϕ′ =

∫ ∆ϕ=2π

0

(
1 + α +

3M
R

+
4Mγ

3

)
dϕ, (6.15)

for a single orbit. Knowing that R = l
(1+ε cos ϕ)

, for an ellipse with the eccentricity ε

and the semi-latus rectum l, one gets

∆ϕ′ = 2π

(
1 + α +

4Mγ

3

)
+

3M
l

∫ 2π

0
(1 + ε cos ϕ)dϕ

= 2π + ∆ϕgr + ∆ϕcs + ∆ϕq, (6.16)

where

∆ϕM =
6πM

l
, (6.17a)

∆ϕα = 2πα, (6.17b)

∆ϕγ =
8πMγ

3
, (6.17c)

correspond, respectively, to the corrections due to general relativity, cloud of strings

and quintessence.

To test the above relation in the solar system, we let M = M⊙ = 1476.1 m, and

therefore, the advance of perihelion in arcseconds per century, is obtained as

δ ≡ ∆ϕ′ − 2π = 573.912
v
l
+ 1.296vα + 2.55072vγ, (6.18)

in which, v corresponds to the number of orbits per year, l is given in 109 m, α is of or-

der of 10−8, and γ of 10−11 m−1, in accordance with the observed planetary precession

in the perihelion in the solar system (see Fig. 6.1).

Gravitational redshift

The famous frequency shift for photons passing a static source, can be inferred from

the famous relation (Ryder, 2009)

ν

νi
=

√
B(r)
B(ri)

. (6.19)

which is a result of the existence of a time-like Killing vector associated with the space-

time. Here, (ri, νi) and (r, ν) are, respectively, the initial and the observed values of the

radial distance to the source and frequency. For the near-earth experiments, however,

we have α ≪ 1 and γr ≪ 2M
r . One can therefore approximate Eq. (6.19) as

ν

νi
≃
(

ν

νi

)
gr
+

(
r − ri

rir

)
Mα − (r − ri)

2
γ, (6.20)
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Figure 6.1: Constraining the parameters α and γ, based on the values for the precession in

the perihelion of Mercury (blue lines), Venus (green lines), and Earth (red lines) (the respected

values are given in the paper by Cornbleet (Cornbleet, 1993).

where (
ν

νi

)
gr
≡ 1 − M

r
+

M
ri

, (6.21)

is the general relativistic value due to the massive source, which has been tested with

the hydrogen maser in the Gravity Probe A (GP-A) redshift experiment, with an accu-

racy of the order of 10−14 (Vessot et al., 1980). Accordingly, the following constraint is

obtained: ∣∣∣∣( r − ri

rir

)
Mα − (r − ri)

2
γ

∣∣∣∣ ≲ 10−14. (6.22)

Comparing the initial position ri = r⊕ on the Earth of mass M = M⊕ = 4.453 × 10−3

m, and the observer on a satellite at a height of 15000 km above the Earth, the above

relation yields

|4.877α − 7.5γ| ≲ 1, (6.23)

which constrains α ∼ 10−4 and γ ∼ 10−20m−1 (see Fig. 6.2).

Deflection of light

The process of light deflection, or the so-called gravitational lensig, can be approached,

theoretically, by means of the geodesic equations for the light rays (null geodesics).

Indicating ẋµ ≡ dxµ

ds , one can get from the line element (6.1) that

ϵ = − E2

B(r)
ṫ2 +

ṙ2

B(r)
+

L2

r2 , (6.24)

where E ≡ B(r)ṫ and L ≡ r2ϕ̇ are the constants of motion, and as in the previous

subsections, we have considered the equatorial trajectories corresponding to θ = π
2 .
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Figure 6.2: The confidence range for α and γ, in accordance with the redshift observed in the

GP-A (Vessot et al., 1980).

The parameter ϵ indicates the nature of the geodesics, in the sense that the null and the

time-like trajectories are identified, respectively, by ϵ = 0, and ϵ = −1. Accordingly,

the first order, angular, equation of motion for the light rays (i.e. photons as the test

particles) passing the black hole, is given by(
ṙ
ϕ̇

)2

=

(
dr
dϕ

)2

=
r4

b2 − (1 − α)r2 + 2Mr + γr3, (6.25)

with b as the impact parameter. Performing the change of variable r .
= 1

u , the above

equation yields (
du
dϕ

)2

=
1
b2 − (1 − α)u2 + 2Mu3 + γu, (6.26)

that reduces to the standard Schwarzschild equation of light deflection in the limit of

α → 0 and γ → 0. Differentiating Eq. (6.26) with respect to ϕ, gives

u′′ + u = 3Mu2 + αu +
γ

2
, (6.27)

where the primes denote differentiations with respect to ϕ. Following the procedure

established by Straumann (Straumann, 2013), we obtain

u =
1
b

sin ϕ +
3M
2b2 +

α
√

2
2b

+
γ

2
+

(
M
2b2 +

α
√

2
12b

)
cos(2ϕ). (6.28)

Note that, u → 0 results in ϕ → ϕ∞, with

− ϕ∞ =
2M

b
+

7α
√

2
12

+
γb
2

. (6.29)

The deflection angle of the light rays passing the black hole is, therefore, obtained as

ϑ̂ = 2 |−ϕ∞| =
4M

b
+

7α
√

2
6

+ γb, (6.30)
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Figure 6.3: The constraints on α and γ for the deflection angle of the Sun.

which recovers the famous form of ϑ̂Sch = 4M
b for the SBH in the limits α → 0 and

γ → 0. This latter, if applied for the Sun as the massive source, provides ϑ̂Sch =
4M⊙
R⊙

= 1.75092 arcsec. Note that, the observed deflection angle by the Sun has been

measured as ϑ̂⊙ = 1.7520 arcsec for the prograde position, and ϑ̂⊙ = 1.7519 arcsec for

the retrograde one (Roy & Sen, 2019), which produces an error of about 0.0001 arcsec.

This error constrains the parameters as α ∼ 10−9 and γ ∼ 10−17m−1 (see Fig. 6.3).

Gravitational time delay

Claimed as the fourth test of general relativity, the Shapiro time delay has appeared

as an interesting effect which is of observational significance. This effect, which refers

to the delay in the radar echos of the electromagnetic signals passing massive ob-

jects, was proved experimentally by, approximately, the same time of its proposition

(Shapiro, 1964; Shapiro et al., 1968). Furthermore, as inferred from recent astrophys-

ical observations, this effect can be seen for two other mass-less energy propagators,

namely the neutrinos and the gravitational waves, which act in favor of the existence

of dark matter (Boran et al., 2018). Here, we proceed with the determination of the

resultant Shapiro effect for photons that pass the black hole, by calculating the time

difference between the emission and the observation of a light ray, which is sent from

the point P1 = (t1, r1), travels to P2 = (t2, r2), and returns back to P1. Accordingly, we

are concerned with the time interval

t12 = 2 t(r1, ρ0) + 2 t(r2, ρ0), (6.31)
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with ρ0 as closest approach to the black hole. Taking into account the definitions given

in the previous subsection, we have

ṙ = ṫ
dr
dt

=
E

B(r)
dr
dt

, (6.32)

from which, one can recast Eq. (6.24) as

E
B(r)

dr
dt

=

√
E2 − L2

r2 B(r), (6.33)

for mass-less particles. According to the fact that at r = ρ0, the radial velocity of

the test particle is vanished, it is straightforward to infer b−2 = B(ρ0)
ρ2

0
. This way, the

coordinate time is found to vary as

t(r, ρ0) =
∫ r

ρ0

dr

B(r)
√

1 − ρ2
0

B(ρ0)
B(r)

r2

, (6.34)

during its journey from ρ0 to r. So, to the first order of corrections we obtain

t(r, ρ0) ≈
√

r2 − ρ2
0 + tM(r, ρ0) + tα(r, ρ0) + tγ(r, ρ0), (6.35)

where

tM(r, ρ0) = M

√ r − ρ0

r + ρ0
+ 2 ln

 r +
√

r2 − ρ2
0

ρ0

 , (6.36a)

tα(r, ρ0) = α
√

r2 − ρ2
0, (6.36b)

tγ(r, ρ0) = γρ2
0

√ r − ρ0

r + ρ0
− ln

 r +
√

r2 − ρ2
0

ρ0


+

γ

2

r
√

r2 − ρ2
0 + ρ2

0 ln

 r +
√

r2 − ρ2
0

ρ0

 . (6.36c)

Defining the time difference ∆t := t12 − tE
12 as the delay for the journey P1 → P2 → P1,

with tE
12 = 2

(√
r2

1 − ρ2
0 +

√
r2

2 − ρ2
0

)
being the travel time interval between the same

points in the Euclidean space, one obtains

∆t = ∆tM + ∆tα + ∆tγ, (6.37)
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Figure 6.4: The constraints of α and γ regarding the time delay in the solar system.

in which

∆tM = 2M

[√
r1 − ρ0

r1 + ρ0
+

√
r2 − ρ0

r2 + ρ0
+ 2 ln

(
t̃E12

ρ2
0

)]
, (6.38a)

∆tα = αtE
12, (6.38b)

∆tγ = 2γ ρ2
0

[√
r1 − ρ0

r1 + ρ0
+

√
r2 − ρ0

r2 + ρ0
− ln

(
t̃E12

ρ2
0

)]

+ γ

[
r1

√
r2

1 − ρ2
0 + r2

√
r2

2 − ρ2
0 + ρ2

0 ln
(
t̃E12

ρ2
0

)]
, (6.38c)

and t̃E12 =
(

r1 +
√

r2
1 − ρ2

0

) (
r2 +

√
r2

2 − ρ2
0

)
. The expression in Eq. (6.37) is, therefore,

the time delay in the echo of light rays passing the black hole. In order to achieve a sen-

sible value for this delay, let us confine ourselves to the solar system, which demands

ρ0 ≪ r1, r2. This way, the above difference is approximated as

∆t⊙ ≈ 4M
[

1 + ln
(

4r1r2

ρ2
0

)]
+ 2α(r1 + r2) + γ

[
r2

1 + r2
2 − ρ2

0 ln
(

4r1r2

ρ2
0

)]
. (6.39)

Hence, by letting M → M⊙, α → 0, and γ → 0, we recover ∆tSch =

4M⊙
[
1 + ln

(
4r1r2

ρ2
0

)]
, as the Schwarzschild limit of the Shapiro time delay in the solar

system. Considering r1 and r2 to be, respectively, the Earth-Sun and the Sun-Mars dis-

tances, and ρ0 ≈ R⊙ + (5 × 106) m, as the approximate radial distance from the Sun’s

center to its corona, one calculates ∆tSch ≈ 246 ¯s. Note that, the measured error in

the observed time difference for the round trip during the Viking mission was about

10 ns (Reasenberg et al., 1979). This is related to the confidence values α ∼ 10−9 and

γ ∼ 10−21m−1 (see Fig. 6.4).
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6.1.3 Black hole’s response to gravitational perturbations and

the quasi-normal modes

The damping oscillations of the field perturbations in the black hole spacetimes, or the

black holes’ quasi-normal modes (QNMs), have been of interest among astrophysi-

cists, because of their direct relation to the propagation of the gravitational waves. In

fact, the late-time wave form of the black hole ringing is typically identified by a QN

frequency (Vishveshwara, 1970; Press, 1971; Goebel, 1972), which has raised in impor-

tance ever since the recent detection of the gravitational waves (Abbott et al., 2016b,a).

The QNMs are therefore absorbing a great deal of attention from the scientific commu-

nity, since they are also applicable in the gravitational wave astronomy (Schutz, 1987;

Kokkotas & Schmidt, 1999; Marranghello, 2007; Ferrari & Gualtieri, 2008; Paschalidis

& Stergioulas, 2017). In a more general view, the QNMs are responses of the black

holes (or stars) to perturbations. For the SBH surrounded by a cloud of strings, the

QNMs have been recently calculated (Graça et al., 2017; Cai & Miao, 2020). For scalar

perturbations, the scalar QNMs for a RN black hole associated with quintessence and

cloud of strings have been given by Toledo and Bezerra (Toledo & Bezerra, 2019). In

this subsection, we continue with calculating the QNMs for the Schwarzschild case,

however, we take into account the gravitational perturbations, and confine ourselves

to the parameter values that have been determined in the previous subsection. For the

black hole under consideration, the metric can be perturbed as

gµν = gµν + hµν, (6.40)

according to which, the Einstein equation varies as δGµν = 8πδTµν. This perturbation

problem can be reduced to a single wave equation, by decomposing it into tensorial

spherical harmonics, in the following manner (Kokkotas & Schmidt, 1999):

χ(xµ) = ∑
ℓ,m

Xℓ,m(t, r)
r

Yℓ,m(θ, ϕ), (6.41)

where the function Xℓ,m(t, r) is, in fact, a combination of the all ten independent com-

ponents of hµν. Note that, since the spacetime under consideration is spherically sym-

metric, one can omit the index m in the spherical harmonics. Accordingly, we consider

the Schrödinger-like wave equation

∂2Xℓ

∂t2 −
(

∂2

∂r2
∗
− Vℓ(r)

)
Xℓ = 0, (6.42)
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to govern the radial perturbations outside the event horizon, in which

r∗ =
r+ ln(r − r+)− r++ ln(r++ − r)

γ(r++ − r+)
, (6.43)

is the corresponding ”tortoise” radial coordinates obeying dr∗ = dr
B(r) , and Vℓ(r) is

the Regge-Wheeler effective potential (Regge & Wheeler, 1957). The above equation

admits two kinds of perturbations, each of which, has an appropriate parity of the

effective potential:

• For the odd-parity (axial) perturbations, that transform as (−1)ℓ+1 under the

parity transformation, we have

V−
ℓ (r) = B(r)

[
ℓ(ℓ+ 1)

r2 +
σ

r
B′(r)

]
, (6.44)

where σ = 0, 1 and −3, correspond, respectively, to the electromagnetic, scalar,

and gravitational perturbations.

• For the even-parity (polar) perturbations, that transform as (−1)ℓ under the par-

ity transformation, we have

V+
ℓ (r) =

2B(r)
r3

[
9M3 + 9kM2r + 3k2Mr2 + k2(k + 1)r3 − 9Mr(α + γr)

(3M + kr)2

]
,

(6.45)

where 2k = (ℓ− 1)(ℓ+ 2). For the case of α = γ = 0, the above relation reduces

to the Zerilli effective potential for the perturbations on SBH (Zerilli, 1970).

The potentials have a peak near r = r+, and clearly, they both vanish at the horizons.

Considering this, and among several methods in the calculation of the QNMs (Kokko-

tas & Schmidt, 1999), we apply the Schutz-Will semi-analytic formula (Schutz & Will,

1985)

(Mωn)
2 = Vℓ(r0)− i

(
n +

1
2

)√
−2

d2Vℓ(r0)

dr2
∗

= Vℓ(r0)− i
(

n +
1
2

)√
−2B(r0)

d
dr

[
B(r0)

dVℓ(r0)

dr

]
, (6.46)

which originates from the WKB method of solving the wave scattering problem. Here,

ωn is the complex QNM frequency, and r0 is the aforementioned potential peak at the

vicinity of the event horizon.
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Figure 6.5: The Regge-Wheeler effective potentials, plotted for α = 2 × 10−8, γ = 2 × 10−20 1
M ,

and the three cases of ℓ = 2, 3 and 4. The red dashed line indicates the event horizon, and for

each of the cases, the potential peak has been indicated by r0. The behavior of the potentials are

the same up to 5.54% of difference. The unit of length along the axes is M, and the gravitational

perturbations have been taken into account.

Let us consider the fundamental mode, that corresponds to ℓ = 2 and n = 0.

Accordingly, and applying the potential (6.44) with σ = −3, we get

Mω0 =
1
r2

0

[
− ir0

√
−120M2 − 36(α − 3)Mr0 + 3r2

0 [α(γr0 + 6) + γr0 − 6]

+ 12M2 + 6(α − 3)Mr0 − 3r2
0(γr0 + 2)(α + γr0 − 1)

] 1
2
. (6.47)

The determination of the modes however depends explicitly on the values of α and

γ, which also identify r0 for each of the cases. To elaborate this, we consider Fig. 6.5,

where we have plotted the potentials given in Eqs. (6.45) and (6.44), based on definite

values of the metric parameters which have been constrained in the previous subsec-

tion in accordance with the observational data, for ℓ = 2, 3, and 4, and for the case

of gravitational perturbations (σ = −3). Based on the small difference revealed from

the potentials V∓
ℓ (r), we take into account the critical distance r0, which is inferred

from V−
ℓ , reading as r0 ≈ 3.28M. This way, the fundamental mode is calculated as

Mω0 ≈ 0.44 − 0.21i. To infer the corresponding value in kHz, one needs to multiply it

by 2π(5142 Hz)× (M⊙
M ), which provides the frequency of approximately 1.4 kHz with

the damping time 0.66 ms, for a black hole of M = 10M⊙. The first four QNMs of the

black hole have been given in Table 6.1, for ℓ = 2, 3 and 4. Furthermore, in Fig. 6.6,

more modes have been shown in the complex plane, whose number for each value

of the harmonic index ℓ, can be infinite (Bachelot & Motet-Bachelot, 1993; Ferrari &
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n ℓ = 2 ℓ = 3 ℓ = 4

0 0.43973 − 0.205123i 0.65644 − 0.243493i 0.857432 − 0.260443i

1 0.597172 − 0.453131i 0.836703 − 0.573103i 1.04025 − 0.644016i

2 0.730026 − 0.617779i 1.00316 − 0.79668i 1.22435 − 0.911962i

3 0.843535 − 0.748508i 1.14892 − 0.97385i 1.38999 − 1.1246i

Table 6.1: The first four QNMs of the black hole for ℓ = 2, 3, and 4, regarding the parameters

given in Fig. 6.5.
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Figure 6.6: The spectrum of the QNMs for ℓ = 2 (red), ℓ = 3 (blue), and ℓ = 4 (green).

Mashhoon, 1984). Also, as it can be seen from the diagrams, the absolute values of the

imaginary parts of the frequencies grow rapidly, which implies that the higher modes

do not contribute significantly in the emitted gravitational wave signals. This can been

seen, as well, in a single mode by growing ℓ.

Taking into account the astrophysical constraints we made on the spacetime’s pa-

rameters, the above QNMs are the most reliable ones for the black hole, since they

relate to the confidence level of the aforementioned parameters.
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Figure 6.7: Plot of the lapse function for different values of the γ parameter. For this diagram

and all the forthcoming ones, we have considered α = 0.2, and the unit of length along the

axes is M. This way, the extremal horizon will be located at re = 5.

6.2 Study of time-like and null geodesics

In this section, in addition to the cases of radial and circular orbits studied by Mustafa

and Hussain (Mustafa & Hussain, 2021) for the black hole under study in this chapter,

we also present an analytical investigation of general angular orbits for both of the

null and time-like geodesics, that include deflecting trajectories, critical and planetary

orbits. Furthermore, for the aforementioned radial and circular orbits, we apply spe-

cial elliptic integration methods that enable us expressing the solutions in the more

compact and aesthetic Weierstraßian forms. In order to complete the work done in

the above reference, we go deeper into these kind of orbits by classifying them in ac-

cordance with their corresponding effective potentials. In particular, to provide more

perception, the radial orbits are plotted for each of these cases.

However, before proceeding with this, let us turn our attention to the behavior of

the lapse function (6.3) which has been shown in Fig. 6.7 for different values of γ. The

infinite redshift happens when the curves pass the B(r) = 0 line for the first time (at

the event horizon), whereas, the infinite blueshift happens when they pass this line for

the second time (at the cosmological horizon). The corresponding extremal horizon re,

has been also indicated in this diagram.

6.2.1 Particle dynamics

Following the Lagrangian method exploited in the previous chapters, we define

L =
1
2

gµν ẋµ = −1
2

ϵ, (6.48)
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that provides the radial evolution equation

ṙ2 = E2 − Veff(r), (6.49)

with

Veff(r) = B(r)
[

ϵ +
L2

r2

]
, (6.50)

and the two other equations (
dr
dt

)2

= B2(r)
[

1 − Veff(r)
E2

]
, (6.51)(

dr
dϕ

)2

=
r4

L2

[
E2 − Veff(r)

]
. (6.52)

6.2.2 Radial motion

The test particles with L = 0 are of great importance, since in the case of null geodesics

they can construct the casual structure of the spacetime, and in the case of time-like

geodesics, the difference between the perception of comoving and distant observers

of infalling objects onto the black hole, is revealed. We begin with the null radial

geodesics and continue with the time-like ones.

Null geodesics

Letting ϵ = 0, one can then see from Eq. (6.50) that for the radially moving mass-

less particles (e.g. photons), we have Veff(r) = 0. Accordingly, Eqs. (6.49) and (6.51)

become

ṙ = ±E, (6.53)
dr
dt

= ±B(r). (6.54)

Note that, the sign + (−) corresponds to the photons falling onto the cosmological

(event) horizon. Choosing the initial radial distance r = ri for t = τ = 0, and regarding

the expression in Eq. (6.9), the above two equations provide the solutions

τ(r) = ± r − ri

E
, (6.55)

t(r) = ± 1
γ(r++ − r+)

[
r+ ln

∣∣∣∣ r − r+
ri − r+

∣∣∣∣− r++ ln
∣∣∣∣ r++ − r
r++ − ri

∣∣∣∣] . (6.56)

In Fig. 6.8, the above solutions have been demonstrated.

228



6.2. STUDY OF TIME-LIKE AND NULL GEODESICS

0 5 10 15 20
0

20

40

60

80

100

r

ti
m
e
ax
is

t(r)

τ(r)

Figure 6.8: The radial null geodesics plotted for γ = 0.06, E = 0.5 and ri = 5. The diagrams

indicate the asymptotic behavior of t(r) (blue curves) and horizon crossing of τ(r) (black lines).

Time-like geodesics

By letting ϵ = 1 and L = 0 in Eq. (6.50), the radial effective potential Vr(r) for time-

like trajectories is obtained, whose profile has been shown in Fig. 6.9. Accordingly,

the motion becomes unstable where V ′
r (r) = 0, solving which, yields

du =

√
2M
γ

, (6.57)

as the maximum distance of the unstable motion. Taking into account E2
u ≡ Vr(du) =

1 − α − 2
√

2Mγ, the possible radial orbits are then categorized as follows, based on

the value of E compared with its critical value Eu:

• Frontal scatterings of the first and the second kind (FSFK and FSSK): For 0 < E2 < E2
u,

the potential allows for the turning point ds (du < ds < r++) corresponding to

the scattering distance (FSFK). In the case of 0 < E2 < E2
u, another turning point

d f (r+ < d f < du) occurs for those trajectories that fall onto the event horizon

and are captured (RSSK).

• Critical radial motion: For E2 = E2
u, the test particles that come from the initial

distance di (du < di < r++) fall on the unstable radius du, and those that come

from d0 (r+ < d0 < du), cross the horizon.

• Radial capture: For E2 > E2
u, particles approaching a finite distance dj (r+ < dj <

r++), fall directly onto the event horizon.
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Figure 6.9: The effective potential for radially moving massive particles plotted for γ = 0.04.

In this particular case, the maximum distance of unstable orbit, is du = 7.07 in accordance with

E2 = E2
u = 0.23, and the two turning points ds = 12.3 and d f = 4.12 have been indicated in

accordance with the corresponding value E2 = 0.15. The point ds is related to the distance, at

which, the particles 0 < E2 < E2
u, experience their frontal scattering.

Now, to formulate the time-like radial orbits, let us recall the radial velocity relations

ṙ2 =
γ p(r)

r
, (6.58)(

dr
dt

)2

=
γ3(r − r+)2(r++ − r)2p(r)

E2r3 , (6.59)

which are inferred from Eqs. (6.9), (6.49) and (6.51), with

p(r) ≡ r2 −
(

1 − α − E2

γ

)
r +

2M
γ

. (6.60)

In general, the equation p(r) = 0 is satisfied at any turning point for the radial orbits.

We continue by discussing the frontal scatterings.

FSFK and FSSK

The polynomial (6.60) vanishes for the two radii

ds =
1 − α − E2

γ
cos2

(
1
2

arcsin
(

2
√

2Mγ

1 − α − E2

))
, (6.61)

d f =
1 − α − E2

γ
sin2

(
1
2

arcsin
(

2
√

2Mγ

1 − α − E2

))
. (6.62)

For the case of FSFK that occurs at r = rs, the differential equation (6.58) provides the

solution

τ(U) =
ds

4
√

γd f

[F(Us)− F(U)] , (6.63)
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where

F(U) =
1

℘′(Ωs)

[
ln
∣∣∣∣σ (ß(U)− Ωs)

σ (ß(U) + Ωs)

∣∣∣∣+ 2ζ(Ωs)ß(U)

]
. (6.64)

In Eq. (6.64)

U(r) =
ds

4r
−

ds + d f

12d f
, (6.65a)

Us =
1
4
−

ds + d f

12d f
, (6.65b)

Ωs = ß
(
−

ds + d f

12d f

)
, (6.65c)

(6.65d)

and the corresponding Weierstraß invariants are

g2 =
1

12d2
f

(
d2

s − dsd f + d2
f

)
, (6.66a)

g3 =
1

432d3
f
(ds − 2d f )(ds − d f )(2ds − d f ). (6.66b)

The solution in Eq. (6.63) corresponds to the radial evolution of the proper time for

comoving observers. For the case of distant observers, one can integrate Eq. (6.59),

that yields

t(U) = δ0

2

∑
k=1

δk [Fk(Us)− Fk(U)] , (6.67)

with the same expressions for U(r) and Us as in Eqs. (6.65a) and (6.65b). In the above

solution, we have defined

Fk(U) =
1

℘′(Ωk)

[
ln
∣∣∣∣σ (ß(U)− Ωk)

σ (ß(U) + Ωk)

∣∣∣∣+ 2ζ(Ωk)ß(U)

]
, (6.68)

for which the Weierstraß invariants are those in Eqs. (6.66), and

δ0 =
Eds

4γ
√

γd f (r++ − r+)
, (6.69a)

δ1 = 1, (6.69b)

δ2 = −1, (6.69c)

Ω1 = ß
(

ds

4r++
−

ds + d f

12d f

)
, (6.69d)

Ω2 = ß
(

ds

4r+
−

ds + d f

12d f

)
. (6.69e)
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Figure 6.10: The plots of FSFK (blue) and FSSK (red), for γ = 0.04 and in accordance with

three different energies E2 = 0.1, 0.15 and 0.21 (from bottom to top), corresponding to three

different initial points for each of the cases (i.e. ds for FSFK and d f for FSSK). The thick curves

show the radial evolution of the proper time τ(r), whereas the thin ones demonstrate that of

the coordinate time t(r).

The above solutions describe radially moving particles on the FSFK, which are scat-

tered at the distance ds. Accordingly, to obtain the solutions for the FSSK, it is enough

to do the change ds → d f in the above solutions, and reverse the direction of the ra-

dial propagation. The frontal scatterings of time-like geodesics have been shown in

Fig. 6.10, for both of the FSFK and FSSK.

Critical radial motion

Particles with E2 = E2
u, can approach from two directions, initiating from either the

radial distance di (du < di < r++), or from d0 (r+ < d0 < du), each of which, lead

to a different fate. We distinguish these fates, respectively by regions (I) and (II), as

indicated in Fig. 6.11. Solving the temporal equation (6.58), and by taking into account

the fact that for critical orbits the characteristic polynomial changes its form to p(r) =

(r − du)2, we then obtain

τI(r) = ± [τA(r, du)− τA(di, du)] , (6.70a)

τII(r) = ∓ [τA(r, du)− τA(d0, du)] , (6.70b)
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Figure 6.11: The critical radial motion in regions (I) and (II), plotted for comoving (thick

curves) and distant (thin curves) observers, for the case of γ = 0.04. This value provides

du = 7.07 corresponding to E2
u = 0.23. The trajectories have been specified for particles ap-

proaching from d0 = 5 and di = 12.

where we have defined the function

τA(r, y) = 2
√

r
γ
− 2
√

y
γ

arctanh
(√

r
y

)
. (6.71)

For the distant observes and to obtain the evolution of the t-coordinate, we integrate

Eq. (6.59), which results in

tI(r) = ±Eu

3

∑
n=1

ϖn [tn(r)− tn(di)] , (6.72a)

tII(r) = ∓Eu

3

∑
n=1

ϖn [tn(r)− tn(d0)] , (6.72b)

with

t1(r) = τA(r, r++), (6.73a)

t2(r) = τA(r, r+), (6.73b)

t3(r) = τA(r, du), (6.73c)
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and

ϖ1 =
−r++

γ (r++ − r+)(r++ − du)
, (6.74a)

ϖ2 =
−r+

γ (r++ − r+)(du − r+)
, (6.74b)

ϖ3 =
du

γ (r++ − du)(du − r+)
. (6.74c)

The critical radial motion of the temporal coordinates has been plotted in Fig. 6.11, in

accordance with the above solutions and for the two different initial distances di and

d0, that generate the discussed regions.

6.2.3 Angular motion

Here, we analyze the angular motion of mass-less and massive particles, by solving

the angular equation of motion (6.52). As before, we apply the methods of integrating

the elliptic integrals that appear in the course of this study. In a spacial occasion, a

hyper-elliptic integral is generated for the case of planetary orbits of massive parti-

cles. This integral will be dealt with by means of a particular form of the Lauricella

hypergeometric function.

Null geodesics

For the case of ϵ = 0 in Eq. (6.50), the effective potential for the angular null geodesics

becomes

Vn(r) =
γL2

r3 (r − r+) (r++ − r) , (6.75)

which has been plotted in Fig. 6.12. It can be checked that raising and lowering L,

changes only the scale of the axes, not the shape of the effective potential. So, the one

given in Fig. 6.12, can categorize all the possible null orbits. As before, the turning

points are where E2 = Vn(rt) is satisfied, which for the case of angular geodesics,

correspond to the vanishing of the angular equation of motion (6.52). In Fig. 6.12, these

turning points have been indicated by rd and r f , indicating respectively, the radial

distances for the OFK and the OSK. The other turning point rc, at which the condition

V ′(rc) = 0 is satisfied, provides the unstable orbits of the first and the second kind, i.e.

COFK and COSK.
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Figure 6.12: The effective potential for angular null geodesics plotted for γ = 0.001 and L = 3.

Altering the values of L only affects the scale of the potential and leaves its shape unchanged.

For this particular potential, the turning points are located at rd = 5.81 and r f = 2.93 corre-

sponding to E2 = 0.12, and rc = 3.76 corresponding to E2
c = 0.168.

Period of the unstable circular orbits

The condition V ′
n(rc) = 0 results in the radial distance

rc =
2(1 − α)

γ
sin2

(
1
2

arcsin
(√

6Mγ

1 − α

))
. (6.76)

To compute the proper and the coordinate periods of orbits at rc, we know from the

discussion in chapter 3 that

∆τc =
r2

c
L

∆ϕc, (6.77)

∆tc =
Ec

L
r2

c
B(rc)

∆ϕc. (6.78)

This way, for one complete revolution, one obtains the periods

Tτ ≡ ∆τc|∆ϕc=
π
2
=

2πr2
c

L
, (6.79)

for comoving observers and

Tt ≡ ∆tc|∆ϕc=
π
2
=

2πrc√
B(rc)

, (6.80)

for distant observers.

Deflecting trajectories

The turning points rd and r f can be calculated by solving the equation(
dr
dϕ

)2

=
P4(r)

L2 = 0, (6.81)

235



CHAPTER 6. SCHWARZSCHILD BLACK HOLE WITH QUINTESSENCE AND CLOUD
OF STRINGS

where P4(r) = r
[
E2r3 + L2γr2 − L2(1 − α)r + 2ML2]. Beside the trivial solution r =

0, the equation P4(r) = 0 has the three real roots

rd =

√
ξ2

3
cosh

(
1
3

arccosh

(
3ξ3

√
3
ξ3

2

))
− γb2

3
, (6.82)

rn =

√
ξ2

3
cosh

(
1
3

arccosh

(
3ξ3

√
3
ξ3

2

)
+

2πi
3

)
− γb2

3
, (6.83)

r f =

√
ξ2

3
cosh

(
1
3

arccosh

(
3ξ3

√
3
ξ3

2

)
+

4πi
3

)
− γb2

3
, (6.84)

in which, as expected, the positive-valued ones are only rd and r f , and b ≡ L
E is the

impact parameter. Here, we have defined

ξ2 = 4
[

γb2

3
+ b2(1 − α)

]
, (6.85a)

ξ3 = −4
[

γb4

3
(1 − α) +

2γ3b6

27
+ 2b2M

]
. (6.85b)

This way, one can recast P4(r) = E2

4 r(r − rd)(r − r f )(r − rn), which eases the inter-

gation of the equation of motion. To obtain the analytical solution for the deflect-

ing trajectories, we first consider the OFK at rd. The direct intergation of the relation

L
(

dr
dϕ

)
=
√
P4(r), results in

r(ϕ) =
r f rn

rd

[
ℓ0
3r2

d
− 4℘ (ωd − κdϕ)

] , (6.86)

with the Weierstraß invariants

g̃2 =
ℓ2

0 − 3r f rnℓ1

12r4
d

, (6.87a)

g̃3 = −
27(rdr f rn)2 + 2ℓ3

0 − 9r f rnℓ0ℓ1

432r6
d

, (6.87b)

where ωd = ß(Ud), in which

Ud =
ℓ0 − 3r f rn

12r2
d

, (6.88)

and we have defined the constants

κd =
r f rn

8brd
, (6.89a)

ℓ0 = rdr f + rdrn + r f rn, (6.89b)

ℓ1 = r2
d + rdr f + rdrn. (6.89c)
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Figure 6.13: The deflecting trajectories for null geodesics corresponding to (a) OFK, and

(b) OSK, plotted for different values of E2 and in accordance with the parameters given in

Fig. 6.12.

Pursuing the same procedure for photons approaching from r f , one obtains the ana-

lytical solution

r(ϕ) =
rdrn

r f

[
ℓ0

3r2
f
− 4℘

(
ω f + κ f ϕ

)] , (6.90)

in which, the Weierstraß invariants and the constants ω f and κ f have the same forms

as in Eqs. (6.87)–(6.89), assuming the exchange rd ↔ r f . In Fig. 6.13, the OFK and OSK

have been plotted for several energies.

Note that, the OFK can be used to obtain the lens equation. Accordingly, the angle

of deflection due to the gravitational lensing is calculated as (Misner et al., 2017)

ϑ̂ = 2 (ϕ∞ − ϕd)− π, (6.91)

in which ϕ∞ ≡ ϕ(∞) and ϕd = ϕ(rd), where the radial behavior of the azimuth angle

in the equatorial plane is given as

ϕ(r) = L
∫ dr√

P4(r)
, (6.92)

according to Eq. (6.81). This way, the lens equation is obtained as

ϑ̂ =
2
κd

[
ß

(
1

4r2
d

[
ℓ0

3
− r f rn

])
− ß

(
ℓ0

12r2
d

)]
− π, (6.93)

by taking into account the inversion of Eq. (6.86) for an unbound (flyby) orbit.

Critical trajectories

In the case of E = Ec, the characteristic polynomial gains the form P4(r) = r(r −
rc)2(r − rn), according to which, one can do the intergation of the equation of motion,
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Figure 6.14: The COFK (blue) and the COSK (orange), plotted in accordance with the informa-

tion given in Fig. 6.12.

based on the approaching points rc < ri1 < r++ and r+ < ri2 < rc. This way, and

taking into account b = bc(≡ L
Ec
), one obtains the two solutions

rI(ϕ) = rc −
rn

rc [(rc − rn) tanh (φi1 − κcϕ)− rc]
, (6.94)

that corresponds to the COFK for particles approaching from ri1 , and

rII(ϕ) = rc +
rn

rc [(rc − rn) tanh (φi2 − κcϕ)− rc]
, (6.95)

corresponding to the COSK for particles that approach from ri2 . In these expressions

κc =
rc

2

√
1 − rn

rc
, (6.96a)

φi1,2 = arctanh

(√
r2

c ri1,2 − rn

rc(rc − rn)ri1,2

)
. (6.96b)

In Fig. 6.14 These orbits have been plotted in accordance with the approaching points,

which lead to different fates for the trajectories.

Time-like geodesics

For the case of ϵ = 1, the effective potential (6.50) gains the form

Vt(r) =
γ

r
(r − r+) (r++ − r)

(
1 +

L2

r2

)
, (6.97)
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for the angular time-like geodesics. It is however important to note that, unlike the

null case, the values of the angular momentum L are crucial in the characterization of

the possible orbits for time-like geodesics. In other words, different choices of L can

lead to different available orbits, in accordance with the changes in the shape of the

effective potential. Therefore, one needs to find the corresponding limiting values of

L, that characterize Vt(r).

To elaborate this, we first consider the limit where the points of inflection and ex-

tremums coincide. These points are where the equations V ′(r) = 0 and V ′′(r) = 0 are

satisfied, simultaneously (marginally stable orbits). The corresponding angular mo-

mentums are then ramified to LIS, for which Vt(r) presents a minimum at rIS where the

innermost stable circular orbit (ISCO) occurs, and LOS, for which Vt(r) has a minimum

at rOS where the outermost stable circular orbit (OSCO) happens. Furthermore, for the

critical value L = LC, the effective potential represents two maximum of equal energy

levels, occurring at the radial distances rC1 and rC2 . Based on the above notions, we

can categorize the angular momentums as follows:

• For 0 < L < LIS an unstable orbit is available without the presence of stable

circular orbits.

• For L = LIS an unstable orbit and ISCO are available.

• For LIS < L < LC a stable circular orbit and two unstable orbits are available. In

this case, the first maximum is smaller than the second one, so the energy of the

unstable orbit at the larger radius, is greater than that at the smaller radius.

• For L = LC there are one stable circular orbit, and two unstable orbits of equal

energies.

• For LC < L < LOS there are one stable circular orbit and two unstable orbits.

The energy of the unstable orbit at the smaller radius, is greater than that at the

larger radius.

• For L = LOS an unstable orbit and OSCO are available.

• For L > LOS only an unstable orbit is available.

In Fig. 6.15, several branches of Vt(r) have been plotted, by taking into account the

above limits and values. In what follows, we confine ourselves to the case of L = LC

and the possible time-like orbits are discussed.
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Figure 6.15: The different curves of Vt(r) plotted for γ = 0.001, and ramified in terms of the

limiting values of the angular momentum. The red dots indicate the radii of unstable orbits,

rC1 and rC2 , which are with equal energies and correspond to the LC curve.

Planetary orbits

Planetary orbits are oscillations between two turning points and are, therefore,

bounded between two radii. To discuss the planetary orbits, we select the curve cor-

responding to LC from the effective potential, as demonstrated in Fig. 6.16. In this

diagram, the stable circular orbits and the critical orbits can occur, respectively, at

r = rS and rC1,2 . The planetary orbits, however, are only available for the energy level

E2
U < E2 < E2

C, where the equation(
dr
dϕ

)2

=
P5(r)

L2 = 0, (6.98)

in addition to the trivial solution r = 0, possesses the four real solutions rD (OFK), rA

(apoapsis), rP (periapsis), and rF (OSK). In Eq. (6.98), the characteristic polynomial is

inferred from Eq. (6.52) as P5(r) = r
[
γr4 − (1 − α − E2)r3 + (2M + L2γ)r2 − L2(1 −

α)r + 2ML2]. The equation P5(r) = 0 for this energy level results in the solutions (see

appendix D.1)

rD = M
[

ρ̃ +
√

ρ̃2 − β̃ − ã
4

]
, (6.99)

rA = M
[

ρ̃ −
√

ρ̃2 − β̃ − ã
4

]
, (6.100)

rP = M
[
−ρ̃ +

√
ρ̃2 − λ̃ − ã

4

]
, (6.101)

rF = M
[
−ρ̃ +

√
ρ̃2 − λ̃ − ã

4

]
, (6.102)
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Figure 6.16: The behavior of Vt(r) for L = LC (in accordance with Fig. 6.15). Here, rC1 = 5.85

and rC2 = 34.37, corresponding to E2
C = 0.719, rS = 11.63 corresponding to E2

U = 0.708, and

rD = 53.76, rA = 19.51, rP = 7.77 and rF = 4.96, corresponding to E2 = 0.714.

where

ρ̃ =

√
Ũ − Ã

6
, (6.103a)

β̃ = 2ρ̃2 +
Ã
2
+

B̃
4ρ̃

, (6.103b)

λ̃ = 2ρ̃2 +
Ã
2
− B̃

4ρ̃
, (6.103c)

with

Ã = b̃ − 3ã2

8
, (6.104a)

B̃ = c̃ +
ã3

8
− ãb̃

2
, (6.104b)

C̃ = d̃ +
ã2b̃
16

− 3ã4

256
− ãc̃

4
, (6.104c)

given that

ã = −1 − α − E2

Mγ
, (6.105a)

b̃ =
2M + L2γ

M2γ
, (6.105b)

c̃ = −L2(1 − α)

M3γ
, (6.105c)

d̃ =
2L2

M3γ
, (6.105d)
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and we have defined the function

Ũ =

√
η̃2

3
cosh

(
1
3

arccosh

(
3η̃3

√
3
η̃3

2

))
, (6.106)

that includes the constant coefficients

η̃2 =
Ã2

12
+ C̃, (6.107a)

η̃3 =
Ã3

216
− ÃC̃

6
+

B̃2

16
. (6.107b)

This way, the characteristic polynomial can be recast as P5(r) = r(rD − r)(rA − r)(r −
rP)(r − rF) for the case that the planetary orbits are present.

For particles reaching at the turning point rA (or rP) with the initial azimuth angle

ϕ0 = 0, the planetary orbits are then characterized by the equation

ϕ(r) = −L
∫ r

rA

dr√
P5(r)

, (6.108)

which contains a hyper-elliptic integral on its right hand side. After applying spe-

cific intergation methods and manipulations, this integral results in the solution (see

appendix D.2)

ϕ(r) =
2L√
l3γ

√
1 − r

rA
F(4)

D

(
1
2

,
1
2

,
1
2

,
1
2

,
1
2

;
3
2

; c1, c2, c3, 1 − r
rA

)
, (6.109)

in which l3 = (rD − rA)(rA − rP)(rA − rF), and F(4)
D is the incomplete Lauricella hyper-

geometric function of the fourth order, which is defined in the context of the integral

equation (Exton, 1976; Akerblom & Flohr, 2005)

∫ 1− r
rA

0
u− 1

2 (1 − u)−
1
2

3

∏
i=1

(1 − xiu)−bi du

= 2
√

1 − r
rA

F(4)
D

(
1
2

, b1, b2, b3,
1
2

;
3
2

; c1, c2, c3, 1 − r
rA

)
, (6.110)

where b1 = b2 = b3 = 1
2 , and

c1 = − rA

(rD − rA)
, (6.111a)

c2 =
rA

(rA − rP)
, (6.111b)

c3 =
rA

(rA − rF)
. (6.111c)

In order to simulate the planetary orbits, we use the solution (6.109) to make a list of

points (ϕ(rt), rt) in the domain rP < rt < rA, and then we do the inversion by means
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Figure 6.17: Some examples of time-like planetary orbits, plotted in accordance with the effec-

tive potential in Fig. 6.16, for the energies (a) E2 = 0.709, (b) E2 = 0.710, (c) E2 = 0.712, (d)

E2 = 0.714, (e) E2 = 0.716, (f) E2 = 0.718 and (g) E2 = 0.7194. The inner and outer dashed

circles indicate, respectively, rP and rA for each energy level and the small red circle is r+.

of numerical interpolations. In Fig. 6.17, some examples of planetary orbits have been

plotted for some different ranges of energy E2
S < E2 < E2

C.

Furthermore, the solution (6.109) allows for the determination of the precession of

the periapsis in planetary orbits. This precession is given by Φpl = 2ϕAP − 2π, where

ϕAP is the azimuth angle swiped between rA and rP during the bound orbit. This way,

one obtains

Φpl =
4L√
l3γ

√
1 − rP

rA
F(4)

D

(
1
2

,
1
2

,
1
2

,
1
2

,
1
2

;
3
2

; c1, c2, c3, 1 − rP

rA

)
− 2π, (6.112)

as the exact expression for the precession in the planetary orbits.

OFK and OSK

The same effective potential in Fig. 6.16, offers the OFK and OSK for particles ap-

proaching at rD and rF. So the same solution in Eq. (6.109) holds for these kinds of

orbits, and the only thing that changes is the point of approach. Therefore, follow-

ing the same numerical method as applied for the planetary orbits, in Fig. 6.18, the

deflecting time-like trajectories have been plotted.
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Figure 6.18: The deflecting time-like trajectories, (a) OFK and (b) OSK plotted for the same

values of energy as those used in Fig. 6.17. The thin dashed circles indicate rD for the OFK,

and rF for the OSK. The value of E2 decreases from the inner to the outer circles in the OFK,

and from the outer to the inner circles in the OSK.

Period of the circular orbits

The period of stable and unstable circular orbits at the radial distance rCO, which can

be stable or unstable, respectively at rS or rC, can be calculated in the same way as in

Subsect. 6.2.3, and from Eqs. (6.79) and (6.80). In fact, by solving V ′
t (r) = 0 for L, one

obtains the radial profiles

L(r) = r

√
2M − γr2

2(1 − α)r − 6M − γr2 , (6.113)

E2(r) =
2 [2M − (1 − α − γr)r]2

r [2(1 − α)r − 6M − γr2]
, (6.114)

for the circular orbits. Hence, by means of Eq. (6.79), the proper period for the time-

like circular orbits that exist at the distance rCO, becomes

Tτ = 2πrCO

√
2(1 − α)rCO − 6M − γr2

CO

2M − γr2
CO

, (6.115)

to obtain which, we have let LCO ≡ L(rCO). Accordingly, at the Schwarzschild limit

we have TSch
τ = 2πrCO

√
rCO−3M

M . The period of the coordinate time, on the other hand,

is obtained by using Eq. (6.80) at r = rCO, providing

Tt = 2πrCO

√
rCO

rCO − 2M − αrCO − γr2
CO

, (6.116)

with the Schwarzschild limit TSch
t = 2πrCO

√
rCO

rCO−M . Taking into account the three

important cases of L = LIS, LOS and LC of the effective potential in Fig. 6.15, we have
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Figure 6.19: The behavior of (a) the proper and (b) the coordinate periods of time-like circular

orbits, in accordance with the values of L as in Fig. 6.15. In the diagrams, the red dot-dashed

lines correspond to unstable circular orbits at rC1 (lower line) and rC2 (upper line). The dashed

lines correspond to the stable circular orbits at rIS (orange), rOS (yellow) and rS (green).

plotted the proper and coordinate periods in Fig. 6.19, together with their values at

the distances rIS, rOS, rS, and rC1,2 .

Note that, as they are marginally stable, orbits at the ISCO are sensitive to pertur-

bations along the radial axis, in the sense that the orbiting particles may fall out of the

stable orbits under certain circumstances. This way, one can define a limit, beyond

which, the orbits become unstable. Such limit may be understood, indirectly, by mean

of the radial epicyclic frequency υr, which is related to the formation of accretion disks

around black holes (Abramowicz & Fragile, 2013). Therefore, υr is the frequency of

the oscillations of the accreting particles along the radial direction, and is defined as

(Abramowicz & Kluźniak, 2005; Rayimbaev et al., 2021)

υ2
r = − 1

2grr
V ′′

t (r), (6.117)

given in terms of the effective potential. Taking into account the value of L in

Eq. (6.113) in the effective potential (6.97), we obtain

υ2
r =

[
2M − (1 − α)r + γr2]2 [12M2 − 2M(1 − α)r − 12Mγr2 + 3γ(1 − α)r3 − γr4]

r3 [6M − 2(1 − α)r + γr2]2
.

(6.118)

In Fig. 6.20, the radial profile of υ2
r has been plotted together with its value at rIS.

Recently, the epicyclic frequency for quasi oscillations of massive test particles in cir-

cular accretions has been discussed for the same black hole with an associated electric

charge (Mustafa et al., 2021).
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Figure 6.20: The radial profile of the epicyclic frequency together with its values at the two

radii of marginally stable orbits (rIS and rOS), in accordance with the effective potential in

Fig. 6.15.

Critical orbits

Returning to the effective potential in Fig. 6.16, the two double roots rC1 and rC2 can

provide a particular form of critical orbits. Once E2 = E2
C, the characteristic polyno-

mial can be recast as P5(r) = r(r − rC1)
2(r − rC2)

2, for which, the angular equation of

motion becomes

ϕ(r) = LC

∫ r

rj

dr
|r − rC1 ||r − rC2 |

√
r

, (6.119)

for particles approaching from an initial point rj. After some manipulations, it is found

out that the critical orbits can be described in the context of the relation

Y(r) = exp
[(

rC2 − rC1

2LC

)
ϕ − φ̃j

]
, (6.120)

in which

Y(r) =

1 +
√

r
rC2

1 −
√

r
rC2


1

2√rC2
1 +

√
r

rC1

1 −
√

r
rC1

− 1
2√rC1

, (6.121)

and

φ̃j =
1

√rC2

arctanh

(√
rj

rC2

)
− 1

√rC1

arctanh

(√
rj

rC1

)
. (6.122)

Therefore, the simulation of the orbits can be done by means of numerical interpo-

lations. As before, the orbits can be classified in terms of the three cases rj > rC2 ,

rC1 < rj < rC2 , and r+ < rj < rC1 . In Fig. 6.21, the domain of the changes in the

ϕ-coordinate during the critical orbits has been shown for each of these cases. In

Fig. 6.22, the aforementioned three cases have been considered in Eq. (6.120), in or-

der to simulate the possible forms of the critical orbits. As it is observed, the case of
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Figure 6.21: The change in the ϕ-coordinate during the time-like critical orbits, classified by

colours, in accordance with different ranges of the initial radial distance rj.
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Figure 6.22: The critical orbits of time-like geodesics for L = LC, E2 = E2
C, and different initial

points rj, in accordance with Fig. 6.21.

rj > rC2 is indeed a COFK, whereas the orbits are completely confined between the

two extremums when rC1 < rj < rC2 . Finally, the case of r+ < rj < rC1 , is a COSK.

Accordingly, distant observers will only be able to detect particles coming from rC2 .

6.3 Summary

In this chapter, we studied the astrophysical implications of a SBH which is associated

with cloud of strings and quintessence. This was done by performing standard gen-

eral relativistic tests in the solar system. The corresponding parameters α and γ are

supposed to include the effect of extended sources of gravity, as well as dark matter
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and dark energy. and the four standard tests could infer the ranges 10−9 ≤ α ≤ 10−4

and 10−21 ≤ γM ≤ 10−11. As the smallest values of the parameters appear inside the

confidence range for the experiments related to light propagation in the spacetime, it

can be inferred that null trajectories are the most sensitive to changes in these parame-

ters. This, in fact, confirms the pretty well-known observational principle, that the im-

pacts of the possible dark components of the universe, would be first noticeable within

the optical and spectroscopic astronomical data. The observational constraints we ob-

tained for this black hole could also pave the way for further studies, in the sense that

the physical inferences one obtains can be calibrated within the data reported here. We

also calculated the QNMs as the black hole’s response to gravitational perturbations,

based on particular choices for the parameters, as the most reliable ones. For higher

degrees of ℓ, each of these modes showed to be of stronger damping, and therefore, of

less contribution in the emitted gravitational waves. This feature is in common with

other black hole spacetimes, as studied extensively in the literature.

Moreover, aiming at a theoretical study, we considered the null and time-like

geodesics that propagate in the exterior geometry of this black hole. As observed in

the previous discussions we did, the radial profiles of the proper and coordinate times

show two receding branches towards either of these horizons. Although the radial

evolution of null and time-like geodesics for this black hole has been formerly studied

(Mustafa & Hussain, 2021), here we presented an alternative approach to the analyt-

ical solutions reported in that paper, by employing strict elliptic integration methods

that resulted in the Weierstraßian expressions for the solutions. Furthermore, we cat-

egorized the radial orbits within the corresponding effective potential, and also in ac-

cordance with the turning points for which, we found explicit expressions. The radial

profiles of the time axes were plotted for the particular cases of frontal scattering and

critical motion. The analytical study of the angular trajectories for mass-less particles

(photons) were first approached by means of the ℘-Weierstraßian elliptic functions

which enabled us analyzing the deflecting trajectories from the turning points which

were also found explicitly. We continued the study of angular null geodesics by dis-

cussing the unstable circular (critical) orbits, which was the only remaining possible

motion for mass-less particles. on the other hand, angular motion for massive parti-

cles appeared much more diverse in the sense that the effective potential could offer an

ISCO and an OSCO, that confine the stable circular orbits. The corresponding angu-

lar momentums for these cases were obtained by taking into account the marginality

condition V ′′
t (r) = 0. There would be, therefore, some cases of two double roots for
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the characteristic polynomial. Accordingly, the choice of the angular momentum for

the approaching test particles becomes of crucial importance in the analysis of the tra-

jectories. To proceed, we adopted the switching value L = LC, for which the two

double extremums (maximums) of the effective potential are equal in the value. This

case was analyzed in the context of several types of orbits that it could offer. For the

case of planetary orbits, in addition to the periapsis and apoapsis, the characteristic

polynomial has two other non-zero real roots that result in a hyper-elliptic integral

for the azimuth angle. This integral was solved analytically in terms of the fourth

order Lauricella hypergeometric function. To do the plots of the orbits, we obtained

the inversion of this integral by means of numerical interpolations. The orbits show

larger precession in the periapsis as the particle’s energy approaches its critical value.

The same method was used to plot the deflecting time-like trajectories. We also deter-

mined the proper and coordinate periods of stable circular orbits, and calculated the

epicyclic frequency of accreting particles. We closed our discussion by analyzing the

critical time-like orbits as they approach from three different initial points to either of

the extremums. The simulations indicate that only the particles from the outer critical

distance can escape to the infinity.
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CHAPTER 7

Carathéodory thermodynamics and

adiabatic analysis of black holes

Ever since their advent, the reconciliation of the laws of thermodynamics with black

hole mechanics (Bardeen et al., 1973), the entropy assigned by Bekenstein to the black

holes (Bekenstein, 1972, 1973, 1974, 1975) and the possibility of black hole evaporation

through the Hawking radiation (Hawking, 1975), have been of great interest among

physicists. And although it has not been possible to detect such phenomena from di-

rect observations, nevertheless, strong effort have been being made to mimic similar

processes in black hole analogs, such as the experimental Unruh radiation (Unruh,

1981) in stimulated systems, both theoretically and experimentally (Novello et al.,

2002; Schützhold & Unruh, 2005; Carusotto et al., 2008; Belgiorno et al., 2010; Wein-

furtner et al., 2011; Castelvecchi, 2016; Steinhauer, 2016; Lima et al., 2019; Kolobov

et al., 2021). On the other hand, while the famous Bekenstein-Hawking (B-H) entropy

formula has been applied widely for the regular black holes, nevertheless, its direct

application to the extremal black holes (EBHs) is not that simple. In fact, the special

conjecture of zero entropy for EBHs (Teitelboim, 1995; Carroll et al., 2009), leads to

overlooking the direct relationship between the entropy and the event horizon’s area,

as demanded by the B-H formula. In this chapter, we construct the correct foliation

of the thermodynamics manifold by using the Carathéodory’s approach, for which,

the appropriate Pfaffian form δQrev, representing the infinitesimal heat exchanged re-
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versibly, is taken into account. We should, however, state that the present study aims

at establishing a new method of analyzing black hole thermodynamics and still is not

constrained by the experimental data. Although the method does not require a priori

knowledge of any of the so-called laws of thermodynamics, we will use the already

known results for physical quantities, such as entropy, temperature, ect. Therefore,

the adiabatic surfaces are obtained by solving the Cauchy problem associated to the

Pfaffian equation δQrev = 0.

In this chapter we use the Carathéodory’s approach to thermodynamics, to con-

struct the thermodynamic manifold of the Hayward regular black hole, and a rotating

SDBTZ black hole. The Pfaffian form representing the infinitesimal heat exchange re-

versibly is considered to be δQrev ≡ drs −FdX − · · · , where rs is the Schwarzschild

radius, X is a property peculiar to the black hole, and F is a force associated to that

property. Note that, other terms may appear in this relation, in accordance with the

black hole under consideration. By solving the associated Cauchy problem, the adia-

batic paths are confined to the non-extremal manifold, and therefore, the status of the

second and third laws are preserved. Consequently, the extremal sub-manifold corre-

sponds to the adiabatically disconnected boundary of the manifold. In addition, the

merger of two extremal black holes, for each of he cases, is analyzed.

7.1 The case of the Hayward black hole

In this section, we focus on a particular, non-singular minimal black hole model pro-

posed by Hayward (Hayward, 2006), which constructs a static spherically symmetric

and asymptotically flat spacetime. Recently, this solution has been generalized to cer-

tain scalar-tensor theories (Babichev et al., 2020), and new regular black holes have

been reported, in the context of quasi-topological electromagnetic theories (Cisterna

et al., 2020; Cano & Murcia, 2021, 2020). In fact, the non-singular nature of this black

hole has made it an interesting topic studying its thermodynamics. Accordingly, the

laws of black hole thermodynamics have been investigated for the Hayward black

hole (HBH) through studying the relations between its dynamical parameters {rs, l}
that define the state of the system (Molina & Villanueva, 2021). The Hayward black

hole spacetime, is given by the regular, non-singular, static spherically symmetric met-

ric

ds2 = − f (r)d(ct)2 +
dr2

f (r)
+ r2dθ2 + r2 sin2 θ dϕ2, (7.1)
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in which, the lapse function f (r) is given by (Hayward, 2006)

f (r) = 1 − rs r2

r3 + rs l2 , (7.2)

where rs =
2GM

c2 is the radius of the SBH of mass M, and l is the Hayward’s parameter

(0 ≤ l < ∞), so that for l = 0, the SBH is regenerated. The spacetime admits an event

horizon, which is obtained by solving the cubic equation f (r) = 0, and is given by

(Molina & Villanueva, 2021)

r+ = rs

(
1 + 2 cos α

3

)
≡ rsR+, (7.3)

where α(rs, l) = 1
3 arccos

(
1 − 2 l2

l2
e

)
, le = 2rs√

27
, and 0 ≤ l < le. In the case that l = le,

the roots reduce to the two degenerate positive values, and the EHBH is obtained,

representing the thermodynamic limit of the black hole. Hence, le is the extremal limit

of the Hayward’s parameter. In this section, the thermodynamic manifold of this black

hole is analyzed in terms of the Carathéodory’s thermodynamics (Fathi et al., 2021).

7.1.1 The {rs, l} thermodynamics in the Carathéodory’s ap-

proach

The most usual way to describe the thermo-geometric (or geometrothermodynamic)

processes in black hole spacetimes, goes through the second law of black hole

thermodynamics, which is postulated as (Bardeen et al., 1973; Bekenstein, 1972, 1973,

1974, 1975; Hawking, 1975):

The area of the black hole event horizon cannot decrease; it increases during most of the

physical processes of the black hole.

In fact, the well-known B-H area-entropy formula

S =
kB

4
4πr2

+

ℓ2
p

, (7.4)

relates the entropy with the event horizon, where kB and ℓp are, respectively, the Boltz-

mann constant and the Planck length. Since the event horizon depends on the pair

{rs, l}, it is useful to define the metric entropy function

S(rs, l) ≡
ℓ2

p S
πkB

= r2
s R2

+(rs, l). (7.5)
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On the other hand, the thermodynamics of the system can be approached, geometri-

cally, in the context of the Carathéodory’s formulation, which postulates the integra-

bility of the Pfaffian form

δQrev = T dS , (7.6)

representing the infinitesimal heat exchanged reversibly (Chandrasekhar, 1939; Bel-

giorno, 2003b; Belgiorno & Martellini, 2004; Belgiorno, 2003; Belgiorno, 2003a), and

this way, it is connected with the Gibbs’s thermodynamics (Belgiorno, 2003). Here T
is the integrating factor representing the absolute temperature, defined by

1
T =

(
∂S
∂rs

)
l
> 0, (7.7)

which, by applying Eq. (7.5), yields (Molina & Villanueva, 2021)

T =
Ts

R+(α) [R+(α) + g∗(α)]
, (7.8)

where Ts ≡ (2rs)−1 ≡ (4Ss)−
1
2 is the SBH temperature, and g∗(α) =

4
9 sin α (csc 3α − cot 3α).

Therefore, considering {rs, l} as independent thermodynamic coordinates, the ho-

mogeneity of the system is reflected by the integrable Pfaffian form

δQrev = drs −FHdl. (7.9)

Note that, drs and −FHdl represent, respectively, the internal energy and work, and

the intensive variable (homogeneous of degree zero)

FH =
g∗(α)

R+(α) + g∗(α)
rs

l
, (7.10)

is introduced as the generalized Hayward’s force (Molina & Villanueva, 2021). Here,

an equilibrium geometrical state is compared with the equilibrium states of standard

thermodynamics, by taking the infinitesimal variation of FH in Eq. (7.9), along the

stationary HBH solution. Then, the open non-extremal manifold l < le corresponds

to the thermodynamic domain, and is encompassed by the extremal sub-manifold

(thermodynamic limit T = 0), formed by l = le. The foliation of this thermodynamic

manifold can be generated by the integrability property δQrev ∧ d(δQrev) = 0 (which

is trivial in a two-variable case), specifically, on the submanifolds of codimension one,

which are solutions of the Pfaffian equation δQrev = 0 (see below).

Before continuing, let us turn our attention to Fig. 7.1, which shows the behaviors

of the metric entropy and temperature. The physically accepted segment lies within
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Figure 7.1: The T -S diagram of the HBH, indicating both the EHBH and the SBH limits.

the domain 0 ≤ T ≤ Ts (the blue curve). Note that, if rs is fixed, then ∆S > 0

implies ∆l < 0. Therefore, by varying l while keeping rs fixed (the red curves), the

HBH transits to the SBH. It is also straightforward to see that, going from state (1)

to state (2) (for which, T1 < T2), the variable rs decreases. We can therefore infer

that, in an adiabatic process (the green arrow), both of the variables (rs, l) decrease

simultaneously.

7.1.2 The adiabatic processes and the extremal limit

Letting rs ≡ re
s = F e

H l to be the extremal limit of rs, where F e
H =

√
27
2 is the Hayward’s

force for the EHBH, one gets

drs = F e
H dl. (7.11)

Then, the area for the extremal states become

Ae = 4π (re
+)

2 = 4π (re
sRe

+)
2 =

16
9

πr2
s , (7.12)

which implies that

dAe = 24πldl. (7.13)

Thus, the isoareal condition dAe = 0 is satisfied only if l = const., but these states

still satisfy the Pfaffian equation δQrev = drs − F e
H dl = 0. Consequently, the adia-

batic transformations are not isoareal transformations on the extremal submanifold.

We will return to this point later, but for now, the EHBH is regarded as an extremal

submanifold that resides in the (adiabatic) integral manifold of δQrev in Eq. (7.9).

For non-extremal states the situation is different, since it is possible to obtain solu-

tions for the isoareal equation dA = 0, and therefore, one can generate a foliation of

the parameter space of the HBH, whose leaves are the surfaces A = const. In fact, the
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Carathéodory’s approach allows for foliating the thermodynamic manifold by means

of the solutions to the Pfaffian equation δQrev = 0, that provide a smooth and contin-

uous one-form field residing in the non-extremal sub-manifold. Accordingly, the in-

tegral manifolds of δQrev are surfaces with constant S , which together with the paths

that solve the Pfaffian equation, construct an isentropic surface (i.e. adiabatic and re-

versible) (Belgiorno & Martellini, 2004). To elaborate on this point, let us apply the

changes of variables x .
= r2

s and y .
= (F e

H)
2l2, so that Eq. (7.9) can be recast as

δQrev =
dx

2
√

x
− FH(x, y)

F e
H

dy
2
√

y
, (7.14)

which holds as long as y ≤ x. Accordingly, the states which are connected adiabat-

ically with the initial black hole state (x0, y0), are solutions to the Cauchy problem

dy
dx

=

√
y
x

F e
H

FH(x, y)
, (7.15a)

y(x0) = y0, (7.15b)

where x0 > y0. Applying Eq. (7.10), one can rewrite Eq. (7.15a) as

dy
dx

=
y
x

(
1 +

R+(x, y)
g∗(x, y)

)
,

=
1
8

{
1 + 2 cos

[
1
3

arccos
(

1 − 2y
x

)]}3

. (7.16)

The above problem allows for two solutions, say y1,2, which are given by (see appendix

E.1):

y1(x) = x − y2(x), (7.17)

in which

y2(x) =
27ρ2

16

(
1 − ρ

2
√

x

)
, (7.18)

where ρ is a constant determined by the initial condition. For extremal initial states

y(x0) = x0, the Cauchy problem admits the two solutions ρ = 0, and ρ = 2
√

x0. The

first one corresponds to the adiabatic transformations between the extremal states,

y(x) = x. As we have shown, these types of transformations are not isoareal. This

statement indicates that the postulate S ∝ A is not valid for extremal black holes, and

in particular, the EHBH. The second solution is more complicated because it connects,

adiabatically, the extremal states with non-extremal states. Geometrically, this implies

the change in the topology and, due to the reversibility, problems with the second
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and the third laws of thermodynamics. To prevent any inconsistencies, it is better to

eliminate this kind of solution.

For ρ ̸= {0, 2
√

x0} and considering an arbitrary, non-extremal, initial state, the

functions given by Eqs. (7.17) and (7.18), yield the following equations for ρ:

ρ3 − 2
√

x0 ρ2 +
32
27

√
x0(x0 − y0) = 0, (7.19)

ρ3 − 2
√

x0 ρ2 +
32
27

√
x0 y0 = 0, (7.20)

whose solutions can be written simply as

ρk(x0, y0) =
2
√

x0

3

[
1 + 2 cos

(
ω +

2kπ

3

)]
, (7.21)

where k = 0, 1, 2, and

ω ≡ ω(x0, y0) =
1
3

arccos
∣∣∣∣1 − 2y0

x0

∣∣∣∣ . (7.22)

The above means that, given an initial equilibrium configuration for the HBH, there

are six possible curves adiabatically connected with it, say yjk(x) ≡ yj(x; ρk), with

j = 1, 2 and k = 0, 1, 2. Let us designate by ϵjk and σjk, the value of the x-coordinate at

the intersection of each curve yjk with the EHBH (where y = x), and the SBH (where

y = 0), respectively (green and yellow dots in Fig. 7.2). Then, it is no hard to show

that ϵ1k = σ2k and ϵ2k = σ1k. In addition, since ρ0 > ρ2 > 0, one gets ϵ10 = σ20 > ϵ12 =

σ22 > 0, and consequently, ϵ20 = σ10 > ϵ22 = σ12 > 0. However, because ρ1 < 0, the

function y2(x) is strictly positive and therefore ϵ21 = σ11 > 0 and ϵ11 = σ21 → ∞.

The above result is crucial to exclude the leaf T = 0 from the adiabatic manifold.

In fact, if we delete all the solutions yjk, except y11, then the generated adiabatic surface

does not intersect the extremal surface (see Fig. 7.3). Thus, assuming that the relation

S ∝ A is not followed by the extremal black holes (Teitelboim, 1995), we characterize

the thermodynamics of the HBH by

S(rs, l) =


1
4A, non-extremal states,

0, extremal states.

(7.23)

To ensure the correct foliation of the thermodynamic manifold, and based on the pro-

cesses described above (cf. Fig. 7.1), the following conditions must hold:

1. The slope of the x-y curves is positive,

dy
dx

> 0. (7.24)
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Figure 7.2: Adiabatic solutions for the Cauchy problem given by Eq. (7.16). Top panel: y1(x)

given by Eq. (7.17); Bottom panel: y2(x) given by Eq. (7.18). In both plots we have used as the

initial state i = (x0, y0) = (0.2, 0.1), so that ρ0 = 0.815, ρ1 = −0.218 and ρ2 = 0.298. Green

dots represent the intersection of each function with the EHBH, y(x) = x, whereas the yellow

represent the intersection with the SBH, y(x) = 0.

2. As the variables decrease, the system evolves towards the SBH, while when they

grow, the EHBH is approached.

3. In the neighborhood of any arbitrary state, i, of a physical system there

are neighboring states i′, which are inaccessible from i along adiabatic paths

(Carathéodory’s principle (Carathéodory, 1909; Buchdahl, 1949a,b)).

Therefore, the complete solution to the Cauchy problem that satisfies the physical re-

quirements, can be written as

y(x) = x − 27ρ2
1

16

(
1 +

|ρ1|
2
√

x

)
, (7.25)

whose asymptotic behavior is

y(x) ≃ x − 27ρ2
1

16
, (7.26)

that ensures the condition x > y. We will see in the next section, where the adiabatic

properties of the SDBTZ black hole is discussed, that the correct thermodynamic folia-

tion is possible by building a piecewise argument with a physically accepted segment,

which is the solution (7.25).

7.1.3 Classical scattering of two EHBHs and the second law

Let us assume that the thermodynamic state (xa + xb, ya + yb), is produced by merging

two HBHs of the initial conditions (xa, ya) and (xb, yb), in a process that no exchange
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x

y

y(x)-y

Figure 7.3: Adiabatic volume generated by the physical solution y(x) = y11(x). The construc-

tion corresponds to the foliation of the surfaces y(x) − y by fixing x0 = 0.2 and varying y0

between 0 and 0.198 (with the steps 0.002). The upper limit edge of the surface corresponds to

the extremal surface x-y.

of energy is done with the rest of the universe. Defining the quantity

ζ2(x, y) = x − y, (7.27)

the initial state of the process is now characterized by ζin = ζa + ζb, with ζ2
a ≡

ζ2(xa, ya) ≥ 0 and ζ2
b ≡ ζ2(xb, yb) ≥ 0. In the same manner, the final state becomes

ζfin = ζab, where ζ2
ab ≡ ζ2(xa + xb, ya + yb), and Eq. (7.52) yields

ζ2
ab = ζ2

a + ζ2
b + 2 (xaxb − yayb) . (7.28)

Exploiting Eq. (7.54), we obtain

ζ2
ab − (ζa + ζb)

2 = 2
[

xaxb − yayb −
√
(x2

a − y2
a)(x2

b − y2
b)
]
. (7.29)

In the case that the initial states are constituted by extremal black holes (with zero

entropy according to Eq. (7.23)), we have xa = ya and xb = yb, giving ζa = 0 = ζb

and hence, ζab = 0, which implies that the final black hole is as well, extremal and

therefore, has zero entropy.

If the merger of the black holes is considered irreversible, then the process would

violate the second law of thermodynamics, because they never produce a regular HBH

to increase the total entropy of the system. Although this argument holds for systems

at non-zero temperature, it puts into question the hypothesis S = 0 for the extremal
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states. To relax the above, we could consider a small amount of angular momentum

so that the final state is a non-extremal state, and thus, the final entropy is greater than

the initial one, protecting the second law. This obviously involves a detailed study of

such a situation that will not be addressed here. Another way that could alleviate the

understanding of the process, consists of abandoning the hypothesis of zero entropy

to give rise to a law of the form S = f (A), where f is a function of the area, which can

be proposed in the context of a thin shell for the case of a rotating uncharged SDBTZ

black hole (Lemos et al., 2017).

7.2 The case of a rotating SDBTZ black hole

In this section, based on the same method applied in the previous section, we study

some thermodynamic aspects of the rotating SDBTZ black hole, in the context of the

Carathéodory’s postulate of adiabatic inaccessibility, that ensures the integrability of

the Pfaffian form δQrev. For the case of the (3 + 1)-dimensional black holes, this type of

construction has been studied in detail (Belgiorno, 2003; Belgiorno & Martellini, 2004;

Belgiorno & Cacciatori, 2011) which gives rise to the isoareal transformations, i.e., the

transformations between the black hole states with the same areas. On the other hand,

for the (2 + 1)-dimensional black holes, the adiabatic transformations correspond to

the isoperimetral transformations between states that reside in the non-extremal man-

ifold. We continue by the study of the geometrothermodynamics of a rotating version

of the SDBTZ black hole, in the context of Carathéodory’s approach (Fathi et al., 2021).

7.2.1 The rotating SDBTZ black hole and its thermodynamics

As introduced in chapter 4, the (2+1)-dimensional, uncharged, black hole solution

with a negative cosmological constant Λ = −ℓ−2, is obtained from the action

I =
c

2πG

∫ √
−g
[
R + 2 ℓ−2]d2x dt + B, (7.30)

where B is a surface term (Bañados et al., 1992, 1993). For the stationary circular

symmetry, the corresponding spacetime metric is given in terms of the coordinates

−∞ < t < ∞, 0 < r < ∞, and 0 ≤ ϕ ≤ 2π, and can be written as (Rincón & Koch,

2018b)

ds2 = −N2(r)c2dt2 + N−2(r)dr2 + r2 [Nϕ(r)c dt + dϕ
]2 , (7.31)
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in which, the square lapse function and the angular shift are given, respectively, by

N2(r) = −GM
c2 +

r2

ℓ2 +
G2 J2

4c6r2 , (7.32a)

Nϕ(r) = − GJ
2c3r2 , (7.32b)

where M and J, indicate the mass and the angular momentum of the black hole. This

spacetime possesses an inner (r−), and an event (r+) horizon, that are located at

r± =
c τ± (M,J )√

2
, (7.33)

where

τ± (M,J ) =

√
M±

√
M2 −J 2, (7.34)

and

M ≡ M
mp Ω2

ext
, (7.35a)

J ≡
tp J

h̄ Ωext
. (7.35b)

Here the subscript ”p” is referred to the Planck quantities in (2+1) dimensions1, and

Ωext = cℓ−1 is the angular velocity of the extremal black hole. Note that, the physical

dimension of M and J , is [time2], while the function τ± has the dimension of [time].

Also, in the extremal case the relation M = J is satisfied.

The Bekenstein-Hawking entropy formula, if applied to the SDBTZ black hole,

gives the entropy proportional to the event horizon’s perimeter Pbh = 2πr+ instead of

its area Abh, as it is expected from the dimensional ground. Therefore

S =
kB

4
Pbh

ℓp
=

kB

4

(
2πr+
c tp

)
= aτ+, (7.36)

where S is the entropy, kB is the Boltzmann constant, and a = π√
8
(kB t−1

p ) ≈ 1.1(kB t−1
p ).

Defining S ≡ S a−1 = τ+, and using Eqs. (7.34) and (7.36), we obtain a Christodoulou-

type mass formula, which relates the total mass (energy) M to the entropy and the

angular momentum, in the following form:

M(S ,J ) =
1
2
S2 +

1
2
J 2

S2 . (7.37)

1In the (2+1)-dimensional gravity, the gravitational constant G has the physical dimension of[
length2

mass×time2

]
(Cruz & Lepe, 2004). Therefore, the Planck mass, length and time become mp = c2

G , lp = Gh̄
c3 ,

and tp =
lp
c .
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We base our our study on the framework of Carathéodory’s approach to thermody-

namics, that postulates the integrability of the Pfaffian form δQrev, representing the

infinitesimal heat exchanged reversibly (Buchdahl, 1949a,b,c, 1954, 1955; Landsberg,

1964; Marshall, 1978; Boyling, 1968, 1972; Pogliani & Berberan-Santos, 2000; Belgiorno,

2002; Belgiorno, 2003b; Belgiorno & Martellini, 2004; Belgiorno, 2003; Belgiorno, 2003a;

Belgiorno & Cacciatori, 2011). In particular, we assume that the so-called metrical en-

tropy S and absolute temperature T are as defined in Eq. (7.6), and here,

∂S
∂M ≡ 1

T > 0, (7.38)

so that

T (M,J ) =

(
M+

√
M2 −J 2

)2
−J 2(

M+
√
M2 −J 2

)3/2 . (7.39)

In fact, if we choose the pair (M,J ) as the extensive, independent variables in the

equilibrium thermodynamics (i.e. homogeneous functions of degree one), then the

homogeneity of the system is reflected in the integrability of the Pfaffian form

δQrev = dM−W dJ , (7.40)

where W is the angular velocity of the black hole, given by

W(M,J ) =
J

M+
√
M2 −J 2

. (7.41)

Therefore, it is straightforward to show that, under the scaling transformation

(M,J ) 7→ (λM, λJ ), we get δQrev 7→ λδQrev, which means that the Pfaffian form

is homogeneous of degree one. Consequently, we have an Euler vectorial field, or a

Liouville operator, as the infinitesimal generator of the homogeneous transformations

D = M ∂

∂M + J ∂

∂J , (7.42)

using which, we obtain

DS =
1
2
S , (7.43)

meaning that, S is homogeneous of degree 1
2 . Similarly, the temperature is also ho-

mogeneous of degree 1
2 . Furthermore, it is straightforward to check that the angular

velocity is a homogeneous function of degree zero, or DW = 0, and therefore, it is an

intensive variable.

It is, naturally, tempting to address a comparison with the natural (3+1)-

dimensional counterpart (i.e. the Kerr-(Anti-)de Sitter black hole). In fact, there are

262



7.2. THE CASE OF A ROTATING SDBTZ BLACK HOLE

some differences between these cases that should be analyzed carefully. Further-

more, we have found a mathematical equivalence of a remarkable theoretical poten-

tial. However, for the sake the scope of this study, for now, we strive on present-

ing some immediate results of the above discussed concepts, and leave the aforemen-

tioned mathematical comparison to the future.

7.2.2 The adiabatic-isoperimetral transformations

As discussed in the last section for the case of the HBH, an important result of the

Carathéodory’s approach is that it allows for the generation of a non-extremal mani-

fold foliation. In fact, the non-extremal thermodynamic space is foliated by those sub-

manifolds of co-dimension one, which are solutions of the Pfaffian equation δQrev = 0.

As stated above, for the non-extremal manifold (T > 0), the Pfaffian form is given

by Eq. (7.40). Accordingly, performing the changes of variable x = M2 and y = J 2,

we get

δQrev =
1

2
√

x
dx − 1

2(
√

x +
√

x − y)
dy, (7.44)

that respects the condition x ≥ y. Thus, for the isoperimetral transformation δQrev =

0, that connects, adiabatically, the initial state i ≡ (xi, yi) to the final state f ≡ (x f , y f ),

the adiabatic trajectories are solutions to the Cauchy problem

dy
dx

= 1 +
√

1 − y
x

, (7.45a)

y(xi) = yi, (7.45b)

with yi < xi. It is then straightforward to show that, the solutions to this problem are

ya(x) = 2
√

ζa
√

x − ζa, (7.46a)

yb(x) = 2
√

ζb
√

x − ζb, (7.46b)

where the constants ζa,b ≡ ζa,b(xi, yi) are given by

ζa,b = 2xi − yi ± 2
√

xi(xi − yi), (7.47)

with xi > yi. Each function vanishes at the point (x0, 0), with x0 = 1
4 ζa,b, which cor-

responds to the static SDBTZ black hole. The thermodynamic (extremal) limit, on the

other hand, is reached at (xe, xe), with xe = ζa,b (see Fig. 7.4, showing both functions

intersecting at the initial point i). We will come back to these concepts later in this

subsection.
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Figure 7.4: The plots of the adiabatic solutions to the Cauchy problem, given in Eqs. (7.46a),

(7.46b), (7.49a) and (7.49b). The static black hole limit, for each case, is where the curves hit the

x coordinate, whereas, the extremal limit corresponds to the line y = x.

Note that, it is important to be cautious about the conditions on the extremal sub-

manifold, on which, the condition δQrev = 0 is still satisfied. This implies that the

extremal submanifold is an integral submanifold of the Pfaffian form (Belgiorno, 2003;

Belgiorno & Martellini, 2004). In fact, considering the extremal point i′ ≡ (xi, xi) as

the initial state, the Cauchy problem becomes

dy
dx

= 1 +
√

1 − y
x

, (7.48a)

y(xi) = xi, (7.48b)

which allows for the two solutions

yc(x) = x, (7.49a)

yd(x) = 2
√

xi
√

x − xi. (7.49b)

Now that the solutions to the both cases of non-extremal and extremal cases have

been given, it is of importance discussing their physical features, regrading the adia-

batic processes. In particular, the solution ya given by Eq. (7.49a), indicates that the

extremal states are adiabatically connected to each other. However, the solution yb in

Eq. (7.49b), presents a more complicated situation, because it connects, adiabatically,

the non-extremal states with the extremal ones. This, in fact, poses a contradiction

to the second law of thermodynamics, since it provides the possibility to construct a

Carnot cycle with one hundred percent thermal efficiency, and this, violates the Ost-

wald’s postulate of the second law. Furthermore, it would be possible to transform,
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completely, the heat into work, that is also in contrast with the second law. To elimi-

nate this singular behavior of the thermodynamic foliation, we assume that the surface

T = 0 is a leaf itself, that is, we exclude it from the set of solutions. Accordingly, by

introducing a discontinuity in S between the extremal and non-extremal states, we

construct a foliation of the thermodynamic variety, whose leaves are distinguished by

S(M,J ) =


1
4P , non-extremal states,

0, extremal states.

(7.50)

The choice of the value S = 0 for the extremal states, stems in some topological pref-

erences (Hawking et al., 1995; Teitelboim, 1995), and has been explicitly proposed by

Carroll (Carroll et al., 2009). Nevertheless, it has been shown that this choice, is a

particular case of a well-behaved area-dependent function, that can opt non-zero val-

ues (Lemos et al., 2016). In particular, the thin shells (rings) in the (2+1)-dimensional

gravity, can change their entropy values during their evolution to a black hole (Lemos

& Quinta, 2014; Lemos et al., 2015, 2017).

We can now establish a criteria for the physically acceptable solutions, based on

the results obtained above:

1. Due to the homogeneity of the extensive variables (M,J ) or (x, y), every adia-

batic process must satisfy Eq. (7.24), in the context of the definitions done in this

subsection.

2. An initial state belonging to the submanifold T > 0, can only be adiabatically

connected to another state, if it neither belongs to the submanifold T = 0, nor it

passes through it.

3. In the neighborhood of any equilibrium state of the system, there exists states

that are inaccessible by the reversible adiabatic processes (Carathéodory postu-

late) .

Condition 1, is nothing but the result of expressing the thermodynamic system in

terms of the extensive variables, which are, of course, homogeneous of degree one.

Condition 2, ensures satisfaction of the second and third laws of thermodynamics.

From the geometric point of view, this guarantees that the black hole topology does

not change. The above statements have been visualized, qualitatively, in Fig 7.5.

There, we have exemplified the allowed processes by o ↔ p, r ↔ s, and q ↔ t, and the
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Figure 7.5: The adiabatic solutions to the Cauchy problem and the extremal limit. In order to

avoid violation of the second law, the only allowed processes are o ↔ p; r ↔ s; q ↔ t. The

processes p ↔ q; q ↔ r are, on the other hand, prohibited.

forbidden processes by p ↔ q, and q ↔ r. Accordingly, the non-extremal initial state

i, is connected with the final states, by the adiabatic solution curves

y(x) =


ya(x), for x0 ≤ x < xi,

yb(x), for xi ≤ x < ∞.

(7.51)

In this sense, we can ramify the physically allowed branches of the solutions, as shown

in Fig. 7.6. In this diagram, the physically accepted parts of the solution y(x), are

i

y(x)

x

y = x

x0

Figure 7.6: The physically allowed solutions to the Cauchy problem for the SDBTZ black hole.

The initial state i ≡ (xi, yi), with yi < xi, can be connected, adiabatically, to the final state

f ≡ (x f , y f ), with y f < x f , following the path ya (red curve), if x f < xi, and the path yb (blue

curve), if x f > xi.
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those that connect, adiabatically, the initial state i ≡ (xi, yi), with yi < xi, to another

state f ≡ (x f , y f ), with y f < x f , following the ya branch, if x f < xi, and the yb branch,

if x f > xi.

A direct consequence of the condition 3, is that it prevents forming an adiabatic

cycle (as desired by engineering). Such cycle has been illustrated in Fig. 7.7. Referring

to the triangular path in this diagram, the state i, residing in the submanifold T > 0,

is first connected, adiabatically, to the state i′, and then to the state i′′, which both re-

side in the submanifold T = 0, and finally, it is returned to i. Note that, the process

i′ → i′′ is adiabatic and isothermal. In fact, since these states are inaccessible by the

Carathéodory’s postulate, the above adiabatic cycle is not allowed to form. Accord-

i

y(x)

x

y = x

x0

i’

i’’

Figure 7.7: The Carathéodory’s postulate, prevents the formation of an adiabatic cycle. In such

cycle, the equilibrium state i is adiabatically connected, respectively, to the extremal states i′

and i′′, and then, is returned to itself (see the green triangular path). Such cycle is prohibited,

because the states i′ and i′′ are inaccessible for the state i.

ingly, the extremal limit should be excluded from the adiabatic hypersurface, since

there is no adiabatic process that can reach this state. In fact, either of the solutions

(7.46a) and (7.46b) can produce an adiabatic surface, that lies between the extremal

(y = x) and the static (y = 0) black hole limits (see Fig. 7.8).

Note that, since the conditional solution given by Eq. (7.51) excludes the extremal

states (the T = 0 leaf), we can ensure the satisfaction of the third law through all

isoperimetral (or adiabatic) processes.
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CHAPTER 7. CARATHÉODORY THERMODYNAMICS AND ADIABATIC ANALYSIS
OF BLACK HOLES

Figure 7.8: The adiabatic surface plotted for ζa = 1.2, which is confined by the extremal, and

the static black hole (BH) limits. The adiabatic processes ya and yb, can connect the initial state

i to other points on the surface. Same holds for the adiabatic process yc on the extremal limit,

connecting the initial point i′ to other points on the same line. The transmission i → i′ is,

however, prohibited by the Carathéodory’s postulate.

7.2.3 Scattering of two extremal black holes and the second

law

We now explore the possibility of occurring an isolated merger of two extremal ro-

tating SDBTZ black holes with the initial states (M1,J1) and (M2,J2), to produce

the final state (M1 + M2,J1 + J2). Following the same method as applied in the

previous section for the HBH, we define the quantity

α2(M,J ) = M2 −J 2, (7.52)

so that, for the initial black holes we have αin = α1 + α2, where

α2
1(M1,J1) = M2

1 −J 2
1 ≥ 0, (7.53a)

α2
2(M2,J2) = M2

2 −J 2
2 ≥ 0, (7.53b)

and for the final black hole, αfin = α12, with

α2
12(M1 +M2,J1 + J2) = (M1 +M2)

2 − (J1 + J2)
2

= α2
1(M1,J1) + α2

1(M2,J2) + 2 (M1 M2 −J1 J2) . (7.54)
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Therefore, for two extremal black holes of the initial states α2
1(M

(1)
ext,J

(1)
ext ) =

α2
2(M

(2)
ext,J

(2)
ext ) = 0, and of the positive masses Mext = |Jext| > 0, Eq. (7.54) becomes

α2
12

(
M(1)

ext +M(2)
ext,J

(1)
ext + J (2)

ext

)
= 2

(
M(1)

ext M
(2)
ext −J (1)

ext J
(2)

ext

)
= 2

(∣∣∣J (1)
ext

∣∣∣ ∣∣∣J (2)
ext

∣∣∣−J (1)
ext J

(2)
ext

)
= 2

∣∣∣J (1)
ext

∣∣∣ ∣∣∣J (2)
ext

∣∣∣ (1 − cos β) , (7.55)

where β = ∡(J (1)
ext ,J (2)

ext ). Thus, for extremal black holes rotating in the same direction

(β = 0), the final black hole will be, as well, an extremal one. This is while, for those

rotating in opposite directions (β = π), the final black hole will not be extremal.

In the case of having an extremal final state, a possible violation of the second law

may occur, since, in fact, the process is irreversible and the entropy of the final state

should be greater than that of the initial states (under the assumption that the system

is isolated and there is no exchange of energy with the rest of the universe). On the

other hand, if the final state is non-extremal, then its entropy is, naturally, greater than

that of the initial states. As it was formerly given in Eq. (7.50), the entropy of the

SDBTZ black hole is S = 1
4 gP , where P is the perimeter of the event horizon and g

is the genus, that characterizes the topology of the thermodynamic manifold. In this

sense, the extremal and non-extremal black holes are characterized, respectively, by

g = 0 and g = 1. Hence, the latter corresponds to the change of the topology of the

black hole.

In fact, passing from one black hole topology to another, we encounter the space-

time singularities. And since the above processes accure in the classical environment,

these singularities are inevitable. Therefore, to avoid the complexities associated with

the change in the topology, it is convenient to infer that the scattering of two initially

extremal SDBTZ black holes leads to an extremal SDBTZ black hole, and this, violates

the second law. The above statements can be summarized as

β =

 0 ⇒ violation of the second law,

π ⇒ change of the black hole topology.
(7.56)

7.3 Summary

In this chapter, we constructed the correct foliation of the thermodynamic manifold

for the HBH and the rotating SDBTZ black hole, by applying the Carathéodory’s ax-

iomatic principle. Accordingly, we solved the Cauchy problem associated with the
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Pfaffian equation δQrev = 0, where δQrev represents the infinitesimal heat exchanged

reversibly. It is important to note that, even the procedure of applying the B-H for-

mula, does not demand any priori knowledge of the laws of thermodynamics, in order

to construct the submanifold, although of course, they are mathematically connected.

For the case of the HBH, by developing the aforementioned ideas, we found that,

given an initial state of equilibrium, one can find twelve isoareal connections with

other equilibrium states, through six possible curves, yjk with j = 1, 2 and k = 0, 1, 2.

Five of these curves adiabatically connect the non-extremal states with the extremal

ones, which causes contradictions with the second and the third laws; for example,

it would be possible to get to the zero temperature in a finite sequence of steps, and

therefore, build a heat engine whose efficiency is equal to one. We, however, were able

to find a solution that avoids such unwanted behavior; it generates a manifold that

does not include the extremal sub-manifold T = 0. This can be better understood in

the context of the Carathéodory’s principle (cf. condition 3), by assuming such states

as being inaccessible. On the extremal sub-manifold, the condition δQrev = 0 is still

valid, which gives rise to two kinds of transformations that satisfy the initial extremal

condition y(x0) = x0. One of the solutions, adiabatically connects the extremal states

with the non-extremal ones, that have the same areas (isoareal transformations). The

other solution connects the extremal states with different areas. This solution, how-

ever, can be considered as an adiabatic transformation, by virtue of the null entropy

law. This accounts for the disconnection between the leaves T = 0 and T > 0, which

is expressed, as well, in the metric entropy (7.23). In fact, as stated above, such dis-

connection can be provoked by the exclusion of the solutions yjk (except for y11), that

allows for eliminating any connections between the above varieties, and respects the

second and the third laws. Nevertheless, the scattering process of two static EHBH

leads to questioning this issue, even more profoundly, because of the impossibility of

the increase in entropy in the final state. As in the other cases, the addition of a new

variable seems to be the solution, although the price will be the loss of the homogene-

ity of the system, which gives rise to quasi-homogeneous potentials that do not allow

for fixing the degree of homogeneity of the Pfaffian form, although, a thermodynamic

construction is allowed (Belgiorno, 2003b). In fact, all the standard thermodynamic

parameters can be connected with each other, in order to obtain different quantities

which are of interest. For example, using the Stefan-Boltzmann law together with the

corresponding Hayward’s quantities, one can calculate the evaporation time of the
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HBH, from the differential equation

drs

dt
= −br2

s R2
+(rs, l)T 4(rs, l), (7.57)

where b = 1
120π l2

pc. Expansion of the right hand side of Eq. (7.57) about the

Schwarzschild solution (corresponding to l = 0) and doing the intergation, yields

∆tevap ≃ 16r3
s

3b

(
1 + 6

l2

r2
s

)
, (7.58)

which implies that the lifetime of the HBH is longer than that of the SBH.

We also applied the same approach to study the thermodynamics of the SDBTZ

black hole. The natural extensive variables of the uncharged SDBTZ black hole in the

equilibrium thermodynamics space (i.e. the homogeneous variables of degree one),

are (M,J ), that has an associated Pfaffian form δQrev = dM−WdJ . The symme-

try of the homogeneity for δQrev, can then be inspected by means of the Euler vector

field (Liouville operator) in Eq. (7.42), which indicates the consistency of the meth-

ods given here, with the thermodynamic definition of the temperature. As the first

application of the presented approach, we studied the adiabatic processes, by analyz-

ing the corresponding Cauchy problem. In this sense, the problem is equivalent to

the adiabatic processes in the RN black hole spacetime (Belgiorno & Martellini, 2004),

since, regarding the adiabatic transformations, the electric charge for the RN black

hole plays the same role as the angular momentum for the SDBTZ black hole. Since

the obtained adiabatic solutions allow for two definite constants, they can be therefore

employed in the correct physical description of the acceptable adiabatic paths. As be-

fore, the extremal submanifold must be disconnected from the non-extremal one, and

the entropy of the extremal states is considered to be zero. One again, the classical

merging of two extremal black holes was discussed, which provided us another tool

to inspect the leaf T = 0, and the corresponding property S = 0. The unconformity of

the second law with the aforementioned entropy condition, necessitates the inclusion

of a net electrical charge for the black hole. In this sense, a new equivalence with the

RN black hole could be found, which in that case, relaxes the problem by introducing

a definite angular momentum to the system (Belgiorno & Martellini, 2004).
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CHAPTER 8

Outlook for the future studies

As it is well-known, the observation of planetary orbits has had a two-thousand-year

history. From the lunar orbits to the motion of the moons on heavy planets like Jupiter,

celestial dynamics has appeared as one of the most fascinating field of science to the

humans. After the advent of the Newtonian dynamics which were then equipped with

the advanced mathematical methods by Euler, Lagrange, Hamilton and Weierstraß ,

observational astronomers were granted with a powerful tool to do predictions, esti-

mations, and reliable fittings to their observed data. Despite this, there were still some

anomalies which remained questionable by the Newtonian celestial mechanics, and

were ought to be explained by the fantastic theory of general relativity. Henceforth,

the orbits of celestial objects were given a more precise derivation, however, at the

expense of more complicated and time-taking computational procedures. Although

the advances in the computer hardware and software has helped scientists, signifi-

cantly, to do rather interesting particle tracings in static and stationary spacetime, the

mathematical concepts behind the exact solutions for the orbits continues to rule.

This, mainly, was the aim of this thesis. We have done rigorous investigations

on the particle orbits in strongly gravitating systems (black holes) and in appropriate

places, applied several standard tests. The summary of the work done for each of the

cases has been given at the end of each corresponding chapter, so we skip repeating

them in this stage. It is, however, important to derive the attention of the reader to the

fact that the discussions given in this thesis are not merely theoretical studies, such
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that they give no further insights into the observational astrophysics. In fact, even

the simplest general relativistic corrections to the Newtonian celestial mechanics have

been significantly observed, for example, in the case of precessions in the periapsis

of the stellar orbits at the center of our galaxy (GRAVITY Collaboration et al., 2020).

This shows that, the more we go deeper into the derivation of analytical expressions

for relativistic corrections, the more we can predict unobserved phenomena, as well

as being able to explain modern astronomical observations. For example, the recent

observation of the polarized photon ring and the relevant magnetic fields observed for

M87* (Akiyama et al., 2021a,b), has been given an extensive analytical and numerical

study regarding the polarization in the equatorial imaging of a Kerr black hole (Gelles

et al., 2021). Same methods hold, for example, in debating the existence of a secondary

photon ring (sub-ring) in the confinement of the black hole shadow, which stems in

the difference in the number of non-planar orbits that a percentage of infalling photons

pursue during their geodesic motion (Johnson et al., 2020). Such phenomena, beside

affecting the lensing ring as addressed above, can be also detectable in the accretion

lensing (Bisnovatyi-Kogan & Tsupko, 2022). Therefore, we have in our perspective,

the following proposals:

1. Derivation of the exact analytical solutions to the strong accretion lensing in sta-

tionary spacetimes that go beyond the Kerr solution.

2. Calculation and demonstration of the photon regions for black holes associated

with dark energy components. This can be also extended to the determination

of the possible sub-rings.

Both of the above proposals are of great astrophysical interest, from both the theo-

retical and observational points of view. We hope that the experiences and the meth-

ods developed in this thesis, together with those that are intended to be developed,

will pave the way for the fulfilment of the above research projects.
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A.1 The relation between the ℘-Weierstraß and Ja-

cobi elliptic functions

Let us consider the differential equation for the ℘-Weierstraß elliptic function, which

is read as (
dy
dx

)2

= 4y3 − g2y − g3. (A.1)

Now, applying the transformation

y(x) = αsp(κx) + β, (A.2)

where p ∈ Z ( ̸= 0, 1) and the constants (α, β, κ) have to be determined. Applying the

transformation (A.2), one can recast Eq, (A.1) as(
ds
dz

)2

=
4α

p2κ2 s2+p +
12β

p2κ2 s2 + (12β2 − g2)
s2−p

αp2κ2 + (4β3 − g2 − g3)
s2−2p

α2 p2κ2 , (A.3)

with z = κx. The constants (α, β, κ) and the integer p ̸= 0, 1 are such that the r.h.s. of

Eq. (A.3) has the Jacobi form (1.6). For p = 2, this Jacobi form is recovered if we set

β = −(m + 1)
κ2

3
, (A.4)

as a root of the cubic polynomial 4β3 − g2β − g3 (i.e. β = e1, e2 or e3), and

α = κ2 =
12β2 − g2

4mκ2 . (A.5)
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Hence, the Jacobi elliptic function s(z) is related to the Weierstraß elliptic function y(x)

in the case of p = ±2. An application of the first transformation (p = 2) shows that

for m = e2−e3
e1−e3

and κ =
√

e1 − e3, we find α = e2 − e3 and β = e3, and we obtain the

relation

℘(x + ω2; g2, g3) = e3 + (e2 − e3)cn 2(κx|m), (A.6)

or

℘(x + ω3; g2, g3) = e3 + (e2 − e3)sn 2(κx|m), (A.7)

which oscillates between e2 = ℘(ω2) = ℘(ω + ω3) and e3 = ℘(ω + ω2) = ℘(ω3)

(as indicated in Fig. 1.11). The relation (A.7) plays a crucial role in expressing

the Weierstraß solution of the planar pendulum in terms of its Jacobian solution in

Eq. (1.53). An application of the second transformation (p = −2) shows that for the

same m and κ as the first transformation, we find α = e1 − e3 and β = e3, and we

obtain

℘(x; g2, g3) = e3 +
e1 − e3

sn 2(κx|m)
, (A.8)

which has singularities at x = 0 and 2
κ K(m) ≡ 2ω and a minimum at x = 1

κ K(m) ≡ ω

(the upper part of Fig. 1.9). We note that the relation (A.8) is equivalent to the property

in Eq. (1.42) of the Weierstraß elliptic function

℘ = e3 +
(e1 − e3)(e2 − e3)

℘(x + ω3)− e3
. (A.9)

when substituting Eq. (A.7) into Eq. (A.8).

A.2 Some mathematical details

Assuming (g3, ∆) = (+,+), we discuss the relation between the Weierstraß half-

periods ω and ω′ in Eqs. (1.40), with the quarter periods K and K′ of the Jacobi elliptic

functions. Introducing the change of variable s .
= e3 + (e1 − e3) csc2 ψ (Critchfield,

1989) in the half-period (1.41a), this equation is transformed to

ω(g2, g3) =
∫ π

2

0

dψ√
(e1 − e3)− (e2 − e3) sin2 ψ

≡ K(m)√
e1 − e3

, (A.10)

where the modulus m of the Jacobian quarter period is defined by the relation m =
e2−e3
e1−e3

. On the other hand, for the case of the half-period in Eq. (1.41b), by introducing

276



A.2. SOME MATHEMATICAL DETAILS

the change of variable s .
= e1 − (e1 − e3) csc2 ψ, we get

ω′(g2, g3) = i
∫ π

2

0

dψ√
(e1 − e3)− (e1 − e2) sin2 ψ

≡ iK(m′)√
e1 − e3

, (A.11)

where m′ = 1 − m = e1−e2
e1−e3

. Note that, the relations (A.10) and (A.11) between the

Weierstraß half-periods (ω, ω′) and the Jacobi quarter-periods (K, K′) hold because

the relation (A.7) between the Weierstraß and Jacobi elliptic functions involves the

square of the Jacobi elliptic function, which reduces the latter’s period by half (for

example, the period of sin2 ϕ is π). These relations played an important role in the

Weierstraß solution of the planar pendulum as discussed in subsection. 1.3.1. Under

the transformation ϵ → ϵ̄ = 2 − ϵ generated by the transformation ϕ − 0 → ϕ̄0 ≡
π
2 − ϕ0, the Jacobian modulus m ≡ ϵ

2 (in the case (a) in Table 1.2) transforms into

the Jacobian modulus m̄ = 1 − 1
2 ϵ ≡ m′ (in the case (b) in Table 1.2), which is the

complementary modulus of case (a). According to Eqs. (A.10) and (A.11), since ω1 ≡
ω = K(m) and ω3 ≡ ω′ = iK′(m) = iK(m′), in the cases (a) and (b) we find that ω̄1 = K(m̄) = K′(m) ≡ −iω3

ω̄3 = −iK′(m̄) = −iK(m) ≡ −iω1
, (A.12)

which is in agreement with the transform nation in Eq. (1.51).
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B.1 Switching the values of spacetime coefficients

and dynamical quantities between the geomet-

ric and SI units

The values of the Newton’s gravitational constant and the speed of light are

G = 6.67430 × 10−11 (m3kg−1s−2), (B.1)

c = 299792458 (m s−1). (B.2)

The mass of earth is me = 5.97237 × 1024 kg (Luzum et al., 2011) which in geometric

units becomes

m̃e = me ×
G
c2 = 4.4347 × 103 (m). (B.3)

In the geometric units, the value of time is also given in meters by applying τ̄ (m) =

τ × c (s). For example, one year is about 3.1536 × 107 s, which in meters is equivalent

to 1 yr = 9.45 × 1015 m.

The change of units from Coulomb (C) to meters for the electric charge Q, is also

done as bellow:

[Q (m)] = [Q (C)]×

√
G

4πε0c4 , (B.4)

in which ε0 = 8.854 × 10−12 C2

Nm2 is the vacuum permittivity. This way,

[Q (C)] =
(

1.15964 × 1017
)
[Q (m)]. (B.5)
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So, for example, 1 meter electric charge is approximately 1017 C, which is equivalent

to the charge of 7 × 1035 protons (Qp = 1.62 × 10−19 C).

Furthermore, the factor 1
λ2 in (3.23a), is a density of dimensions m−2. In fact λ is

given by

λ =

[
3ρ̃c +

2
3

c1

]− 1
2

(m), (B.6)

in which ρ̃w is the density of a spherically symmetric charged massive source. Here,

we let c1 = 2.08 × 10−54 m−2 (Payandeh & Fathi, 2012) which is comparable to the

value of the cosmological constant Λ0 = 1.1056 × 10−52 m−2 (?).

In geometric units, the dimension of angular momentum is square meters, which

is transformed to the SI units [kg m2 s−1] by applying a c3

G multiply. However, since

we have ignored the mass of the orbiting objects, the value of the constant of motion L,

in geometric units, is given in meters which is in conformity with the other dynamical

quantities.

Taking into account the above notes and working in the geometric units, the value

of precession will be the same as that in the SI units.

B.2 The method of finding LU in Eq. (3.240)
Equation. (3.236) allows for obtaining an expression for LU , by solving

aL4
U − bL2

U + c = 0, (B.7)

in which

a =
(Q2 − 2r2

U)
2

r6
U

, (B.8a)

b =
2Q2(1 + q2)

r2
U

− Q4(2 + q2)

2r4
U

− 8r2
U − 2Q2(1 − q2)

λ4 , (B.8b)

c =
Q4(1 + 2q2)

4r2
U

− 2q2Q2 +
4r6

U
λ4 − 2Q2r2

U(1 − q2)

λ2 . (B.8c)

Solving Eq. (B.7) for L2
U , then yields the value in Eq. (3.240).

B.3 Finding the angular equation of motion

Since the closest approach happens at rS, to deal with the integral in Eq. (3.248), we

define the following non-linear change of variable:

u .
=

1
r
rS
− 1

, (B.9)
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which reduces Eq. (3.248) to

ϕ(r) = κ0

[∫ ∞

u

du√
P3(u)

− u3

∫ ∞

u

du
(u + u3)

√
P3(u)

]
, (B.10)

where uj
.
= 1

(rj/rS)−1 , with j = {2, 3, 5, 6}, and

P3(u) ≡ u3 + au2 + bu + c, (B.11)

with

a = u2 + u5 + u6, (B.12a)

b = u2(u5 + u6) + u5u6, (B.12b)

c = u2u5u6. (B.12c)

Defining

κ0 =
υ

r2
S

u3
√

u2u5u6, (B.13)

and applying another change of variable

U .
=

1
4

(
u +

a
3

)
, (B.14)

we can rewrite Eq. (B.10) as

ϕ(r) = κ0

[∫ ∞

U

dU√
P3(U)

− u3

4

∫ ∞

U

dU
(U + U3)

√
P3(U)

]
, (B.15)

given that U3 = 1
4

(
u3 +

a
3

)
, and

P3(u) ≡ 4U3 − g2U − g3. (B.16)

Direct integration of Eq. (B.15), results in the expression in Eq. (3.250).

B.4 Solving depressed quartic equations

The condition V ′
r (r) = 0, provides the following equation of eighth degree:

r8 + ãr4 + b̃r2 + c̃ = 0. (B.17)

To solve this equation, we firstly make the change of variable r2 .
= x. Afterwards, we

combine the methods of Ferrari and Cardano to solve a depressed quartic equation of

the form (originally studied by Cardano (Cardano, 1993))

x4 + ãx2 + b̃x + c̃ = 0, (ã, b̃, c̃) ∈ R. (B.18)
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This equation can be rewritten as the product of two quadratic equations, as follows:

x4 + ãx2 + b̃x + c̃ = (x2 − 2α̃x + β̃)(x2 + 2α̃x + γ̃) = 0. (B.19)

Accordingly, we obtain

ã = β̃ + γ̃ − 4α̃2, (B.20a)

b̃ = 2α̃(β̃ − γ̃), (B.20b)

c̃ = β̃γ̃. (B.20c)

Solving the first two equations for β̃ and γ̃, yields

β̃ = 2α̃2 +
ã
2
+

b̃
4α̃

, (B.21a)

γ̃ = 2α̃2 +
ã
2
− b̃

4α̃
, (B.21b)

which together with Eq. (B.20c), results in an equation of sixth degree in α̃:

α̃6 +
ã
2

α̃4 +

(
ã2

16
− c̃

4

)
α̃2 − b̃2

64
= 0. (B.22)

Applying the change of variable

α̃2 = Ũ − ã
6

, (B.23)

we obtain the depressed cubic equation

Ũ3 − η̃2 Ũ − η̃3 = 0, (B.24)

where

η̃2 =
ã2

48
+

c̃
4

, (B.25a)

η̃3 =
ã3

864
+

b̃2

64
− ãc̃

24
. (B.25b)

The real solution to this cubic equation is obtained as (Nickalls, 2006; Zucker, 2008)

Ũ = 2

√
η̃2

3
cosh

(
1
3

arccosh

(
3
2

η̃3

√
3
η̃3

2

))
. (B.26)

Therefore, the roots of Eq. (B.41) are

x1 = α̃ +
√

α̃2 − β̃, (B.27a)

x2 = α̃ −
√

α̃2 − β̃, (B.27b)

x3 = −α̃ +
√

α̃2 − γ̃, (B.27c)

x4 = −α̃ −
√

α̃2 − γ̃. (B.27d)
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B.5 Solving the equation of motion for frontal scat-

tering

Equation (6.58) can be recast as(
dr
dτ

)2

=
m2 (r − rs) p3(r)

λ2r2 , (B.28)

in which

p3(r) ≡ r3 + rsr2 + (r2
s + ā)r + r3

s + rs ā + b̄. (B.29)

Considering rs as the initial position, we can rewrite Eq. (B.28) as

τ(r) =
λ

m

∫ r

rs

rdr√
(r − rs)p3(r)

, (B.30)

which by the linear change of variable

z .
=

r
rs

− 1, (B.31)

reduces to

τ(z) =
λ

m

∫ z

0

(z + 1)dz√
zp̃3(z)

, (B.32)

where

p̃3(z) ≡ z3 + 4z2 + γ1z + γ0, (B.33)

and

γ1 = 6 +
ā
r2

s
, (B.34a)

γ0 = 4 +
2ā
r2

s
+

b̄
r3

s
. (B.34b)

Now, letting

u .
=

1
z

, (B.35)

yields the following reduced integral form of Eq. (B.32):

τ(u) =
−λ

m
√

γ0

(∫ u

∞

du√
p̄3(u)

+
∫ u

∞

du
u
√

p̄3(u)

)
, (B.36)

in which

p̄3(u) ≡ u3 +
γ1

γ0
u2 +

4
γ0

u +
1

γ0
. (B.37)

Applying the last change of variable

u .
= 4U − γ1

3γ0
, (B.38)
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we get

τ(U) =
−λ

m
√

γ0

(∫ U

∞

dU√
P̄3(U)

+
1
4

∫ U

∞

dU

(U − fl1
12fl0

)
√

P̄3(U)

)
, (B.39)

where we have defined

P̄3(U) ≡ 4U3 − ḡ2U2 − ḡ3. (B.40)

The direct integration of the elliptic integral in Eq. (B.39), now results in the expression

in Eq. (6.63).

B.6 The method of solving the quartic equation

x4 − a x2 + b = 0

We are interest in solving a quartic equations of the form

x4 − a x2 + b = 0, (B.41)

where (a, b) > 0 and 2
√

b ≤ a. For this purpose, we make the change of variable

x = Z sin ϑ, and multiply both sides of the equation by a scalar α. This yields

α Z4 sin4 ϑ − α a Z2 sin2 ϑ + α b = 0. (B.42)

Considering the trigonometric identity

4 sin4 ϑ − 4 sin2 ϑ + sin2(2ϑ) = 0, (B.43)

and comparing Eqs. (B.42) and (B.43), we infer

α Z4 = 4, α a Z2 = 4, α b = sin2(2ϑ). (B.44)

Solving the above equation for Z and ϑ, we obtain

Z =
√

a, and ϑn =
1
2

arcsin

(
2
√

b
a

)
+

nπ

2
, (B.45)
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where the period of the trigonometric function is nπ. Therefore, the roots of Eq. (B.43)

are obtained by replacing n = 0, 1, giving

x0 =
√

a sin

(
1
2

arcsin

(
2
√

b
a

))
, (B.46)

x1 =
√

a sin

(
1
2

arcsin

(
2
√

b
a

)
+

π

2

)

=
√

a cos

(
1
2

arcsin

(
2
√

b
a

))
, (B.47)

x2 = −x0, (B.48)

x3 = −x1. (B.49)

The above method enables us to determine the black hole horizons.
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C.1 Obtaining the analytical radial evolution for the

OFK

Applying the method of synthetic division to factorize (r − rD) from the characteristic

polynomial P(r) in Eq. (5.90), we obtain

P(r) = (r − rD)(r3 + G1r2 + G2r + G3), (C.1)

in which

G1 = rD, (C.2a)

G2 = A+ r2
D, (C.2b)

G3 = r3
D +ArD + B. (C.2c)

The deflecting trajectory can be then determined by performing, successively, the

changes of variables

u(r) =
1

r
rD

− 1
, (C.3)

and

U(r) =
u(r)

4
− 6r2

D +A
12(4r3

D + 2ArD + B)
. (C.4)
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C.2 Finding the evolution of the θ-coordinate for

the case of η > 0
In this case, we have from Eq. (5.107) that

γ = − M
ω0

∫ z

zmax

dz√
Θz(z)

, (C.5)

in which, one can recast Θz = a2(z2
max − z2)(z2

0 + z2) = a2(zmax − z)(z + zmax)(z2
0 +

z2) = a2(zmax − z)P̃3(z), where |z0| and |zmax| are the two double zeros of Θz, and

P̃3(z) = z3 + zmaxz2 + z2
0z + zmaxz2

0. Therefore

γ = − M
ω0

∫ z

zmax

dz√
a2P̃3(z)

. (C.6)

Applying the change of variable y .
= zmax − z, the above integral changes to

γ =
M

ω0a

∫ y

0

dy√
y
[
−y3 + 4zmaxy2 + (−z2

0 − 5z2
max)y + 2z2

0zmax + 2z3
max
] . (C.7)

The second change of variable u .
= 1

y , provides

γ =
M

ω0a

∫ ∞

u

du√
δ (u3 − δ2u2 + δ1u − δ0)

, (C.8)

where

δ = 2zmax(z2
0 + z2

max), (C.9a)

δ0 =
1
δ

, (C.9b)

δ1 =
2

z2
0 + z2

max
, (C.9c)

δ2 =
z2

0 + 5z2
max

δ
. (C.9d)

Now, a third change of variable u .
= 4U + δ2

3 , yields

γ =
M

4ω0a
√

δ

∫ ∞

U

dU√
4U3 − g2U − g3

, (C.10)

in which

g2 =
1
4

(
δ3

2
3
− δ1

)
, (C.11a)

g3 = − 1
16

(
δ1δ2

3
− 2δ3

2
27

− δ0

)
. (C.11b)
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η < 0

This way

γ =
ß(U)

κ0
, (C.12)

in which κ0 = 4ω0a
√

δ
M . Hence, U = ℘(κ0γ), and after reversing the applied changes of

variables, we finally obtain

cos θ = zmax −
3

12℘(κ0γ) + δ2
. (C.13)

C.3 Finding the evolution of the θ-coordinate for

the case of η < 0
Let us rewrite Θz as

Θz = −
( a

2
µ2

0µ1

)2
+ a2µ2

0z2 − a2z4. (C.14)

Applying the method of synthetic division, this can be recast as Θz = −a2(z −
¯̄zmax)P̃̃3(z) with P̃̃3(z) = [z3 − ¯̄zmaxz2 + ( ¯̄z2

max − µ2
0)z + ( ¯̄z2

max − µ2
0) ¯̄zmax]. This way,

the integral of evolution turns to

γ = − M
ω0

∫ z

¯̄zmax

dz√
a2( ¯̄zmax − z)P̃̃3(z)

, (C.15)

which after the change of variable y .
= ¯̄zmax − z, changes to

γ =
M

ω0a

∫ y

0

dy√
y
[
−y3 + 4 ¯̄zmaxy2 + (µ2

0 − 6 ¯̄z2
max)y +

(
2 ¯̄z3

max + 2 ¯̄zmax( ¯̄z2
max − µ2

0)
)] .

(C.16)

Now, a second change of variable u .
= 1

y , results in

γ = − M
ω0

∫ ∞

u

du√
¯̄δ
(

u3 − ¯̄δ2u2 + ¯̄δ1u − ¯̄δ0

) , (C.17)

where

¯̄δ = 2 ¯̄zmax(2 ¯̄z2
max − µ2

0), (C.18a)

¯̄δ0 =
1
¯̄δ
, (C.18b)

¯̄δ1 =
4 ¯̄zmax

¯̄δ
, (C.18c)

¯̄δ2 =
6 ¯̄z2

max − µ2
0

¯̄δ
. (C.18d)
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Finally, the third change of variable u .
= 4U +

¯̄δ2
3 , provides

γ =
M

4aω0

√
¯̄δ

∫ ∞

U

dU√
4U3 − ¯̄g2U − ¯̄g3

, (C.19)

in which

¯̄g2 =
1
4

(
¯̄δ2
2

3
− ¯̄δ1

)
, (C.20a)

¯̄g3 =
1
16

(
2 ¯̄δ3

2
27

+ ¯̄δ0 −
¯̄δ1

¯̄δ2

3

)
. (C.20b)

Now, defining the constant κ2 = 4aω0

√
¯̄δ

M , the above integral results in the solution

U = ℘(κ2γ), giving

z = ¯̄zmax −
3

¯̄δ2 + 12℘(κ2γ)
. (C.21)

C.4 Calculation of Φθ for η > 0

After the common change of variable z .
= cos θ, Eq. (5.125a) can be recast as

Φz(γ) = − L
ω0

∫ z

zmax

dz

(1 − z2)
√

a2(zmax − z)P̃3(z)

= − L
aω0

∫ z

zmax

dz

(1 + z)(1 − z)
√
(zmax − z)P̃3(z)

, (C.22)

as introduced in Eq. (C.6). Now applying the change of variable y .
= zmax − z, we get

Φy(γ) =
L

aω0

∫ y

0

dy

(ym − y)(yn + y)
√

yP̃3(y)
, (C.23)

where ym = 1 + zmax, yn = 1 − zmax, and P̃3(y) = −y3 + 4zmaxy2 − (z2
0 + 5z2

max)y +

2z2
0zmax + 2z3

max. The third change of variable u .
= 1

y , and doing a proper partial frac-

tion decomposition, we get to the integral equation

Φu(γ) =
L

aω0
√

δymyn

∫ ∞

u

du√
P̃3(u)

+
1 + zmax

8(1 − zmax)

∫ ∞

u

du

(u + un)
√

P̃3(u)

+
1 − zmax

8(1 + zmax)

∫ ∞

u

du

(u − um)
√

P̃3(u)

 , (C.24)
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with P̃3(u) = u3 − δ2u2 + δ1u− δ0, in which δ, and δ0,1,2 have been defined in Eqs. (C.9),

and um,n = 1
ym,n

. The only remaining task is to apply the change of variable u .
=

4U + δ2
3 , and using the identity∫ ∞

℘(µ)

dx
(x − υ)

√
4x3 − g2x − g3

=
∫ µ

0

dµ

℘(µ)− ℘(υ)

=
1

℘′(µ)

[
ln
(

σ(υ − µ)

σ(υ + µ)

)
+ 2µζ(υ)

]
, (C.25)

we can arrive at the solution in Eq. (5.126).

C.5 Calculation of Φr

Assuming that the particles approach at the initial point ri, the r-dependent equation

(5.125b) can be recast as

Φr(γ) =
1

ω0

∫ r

ri

a2L + 2Maω0r
(r − r+)(r − r−)

√
P(r)

dr, (C.26)

in terms of r± as the solutions to the equation ∆ = 0, in which P(r) has the same form

as that in Eq. (C.1), considering rD → ri. Applying the change of variable u .
= 1(

r
ri

)
−1

,

one obtains

Φu(γ) =
1

ω0

∫ ∞

u

[
2aMriω0u + a (aL + 2Mriω0) u2]du

[ri + u(ri − r+)] [ri + u(ri − r−)]
√
P3(u)

, (C.27)

where P3(u) = α̃u3 + β̃u2 + γ̃u+ δ̃, with α̃ = G2 +
G3
ri
+G1ri + r2

i , β̃ = G2 + 2G1ri + 3r2
i ,

γ̃ = G1ri + 3r2
i , and δ̃ = r2

i , where G1,2,3 are the same as those in Eqs. (C.2), considering

rD → ri. By doing a partial fractional decomposition the integrand is decomposed to

A+

[ri + u(ri − r+)]
√
P3(u)

+
A−

[ri + u(ri − r−)]
√
P3(u)

+
B√
P3(u)

, (C.28)

in which

A± = ∓ ari(aL + 2Mr±ω0)

(ri − r±)(r+ − r−)
, (C.29a)

B =
a(aL + 2Mriω0)

(ri − r+)(ri − r−)
. (C.29b)

Therefore, we can decompose Eq. (C.27) as

Φu(γ) =
A+

ω0

∫ ∞

u

du
[ri + u(ri − r+)]

√
P3(u)

+
A−
ω0

∫ ∞

u

du
[ri + u(ri − r−)]

√
P3(u)

+
B

ω0

∫ ∞

u

du√
P3(u)

. (C.30)
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The other change of variable u .
= 1

α̃

(
4U − β̃

3

)
, provides

ΦU(γ) =
A+

ω0(ri − r+)

∫ ∞

U

dU[
U −

( 4
α̃

)
(ri − r+)−1

(
β̃(ri−r+)

3α̃ − ri

)]√
P3(U)

+
A−

ω0(ri − r−)

∫ ∞

U

dU[
U −

( 4
α̃

)
(ri − r−)−1

(
β̃(ri−r−)

3α̃ − ri

)]√
P3(U)

+
B

ω0

∫ ∞

U

dU√
P3(U)

, (C.31)

where P3(U) = 4U3 − g̃2U − g̃3, with g̃2,3 being

g̃2 =
4
α̃

(
β̃2

3α̃
− γ̃

)
, (C.32a)

g̃3 =

(
β̃γ̃

3α̃
− 2β̃3

27α̃2 − δ̃

)
. (C.32b)

This integral equation (C.31), will then result in the solution (5.137).

C.6 Derivation of the lens equation

Let us Consider the integral in Eq. (5.143) as

I(r) =
∫ ∞

rD

dr
F(r)

=
1

ω0

∫ ∞

rD

G(r)︸︷︷︸.
=I2(r)

× dr√
P(r)︸ ︷︷ ︸.

=I1(r)

, (C.33)

where G(r) = L(r2−2Mr)−2Maω0r
∆ ≡ δ(r)

∆ , and the coefficients of the polynomial P(r) are

the same as those in Eqs. (5.99) and (5.100). The integral I1(r) can be treated in the

same as displayed in appendix C.1. For the case of I2(r), one can rewrite ∆ = r2
D(z +

z+)(z + z−), by applying the successive changes of variables x .
= r

rD
and z .

= x − 1,

and defining z± ≡ 1− r±
rD

. Then the third change of variable u .
= 1

z , and having defined

u± = 1
z± , we get

∆ = r2
D

(
1
u
+

1
u+

)(
1
u
+

1
u−

)
=

r2
D

u+u−

(u + u+)(u + u−)

u2 . (C.34)

On the other hand, assuming the abbreviation m .
= 2M(L + aω0), we have δ(r) =

Lr2 − mr. This way, once again, we apply the change of variable in Eq. (C.3), which

yields

δ(r) =
Lr2

D
u2 +

2Lr2
D − mrD

u
+ Lr2

D − mrD ≡ ν0

u2

[
u2 − u2u + u3

]
, (C.35)
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in which

ν0 = rD(LrD − m), (C.36a)

u2 =
2LrD − m
LrD − m

, (C.36b)

u3 = Lr2
D. (C.36c)

This way, we finally get

I(u) = K0

∫ ∞

0

G̃(u)√
P3(u)

du, (C.37)

where

K0 = − ν0u+u−

r2
Dω0

√
α̃

, (C.38a)

G̃(u) =
u2 + u2u + u3

(u + u+)(u + u−)
, (C.38b)

in which, α̃ has the same expression as that in Eq. (5.140), by taking into account ri →
rD. To proceed further, one needs to do a partial fractional decomposition for the

integrand of Eq. (C.37), in the form

G̃(u) = 1 +
Ã̃

u + u+
+

B̃̃
u + u−

, (C.39)

for which, the coefficients are derived as

Ã̃ =
u2
+ − u2u+ + u3

u− − u+
, (C.40a)

B̃̃ =
u2
− − u2u− + u3

u− − u+
. (C.40b)

Hence, we reach at the integral

I(u) = K0

[
Ã̃
∫ ∞

0

du
(u + u+)

√
P3(u)

+ B̃̃
∫ ∞

0

du
(u + u−)

√
P3(u)

+
∫ ∞

0

du√
P3(u)

]
.

(C.41)

The treatment of these integral, will then be the same as before, as done in appendix

C.5.
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C.7 A guide to the finding the evolution of the t-

coordinate

To obtain the analytical solution for the r-dependent integral, we have also exploited

the identity (Byrd & Friedman, 1971)

∫ dµ[
℘(µ)− ℘(υ)

]2 =
℘′′(υ)

℘′3(υ)
ln
(

σ(µ + υ)

σ(µ − υ)

)
− 1

℘′2(υ)

[
ζ(µ + υ) + ζ(µ − υ)

]
−
[

2℘(υ)
℘′2(υ)

+
2℘′′(υ)ζ(υ)

℘′3(υ)

]
µ. (C.42)
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D.1 Solving quartic equations

The equation of the form

x4 + ax3 + bx2 + cx + d = 0, (D.1)

can be depressed by applying the change of variable x .
= z − a

4 , that yields

z4 + Az2 + Bz + C = 0, (D.2)

where

A = b − 3a2

8
, (D.3a)

B = c +
a3

8
− ab

2
, (D.3b)

C = d +
a2b
16

− 3a4

256
− ac

4
. (D.3c)

The method of finding the roots of Eq. (D.2) has been given in the appendix B.4.

D.2 The angular solution for planetary orbits

Applying the change of variable x .
= r

rA
, the integral equation (6.108) changes its form

to

ϕ(x) = − L√
γ

∫ x

1

dx√
P5(x)

, (D.4)
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where

P5(x) = x(rD − rAx)(1 − x)(rAx − rP)(rAx − rF). (D.5)

Applying a second change of variable x .
= 1 − u, yields

ϕ(u) =
L√
γ

∫ u

0

du√
P5(u)

, (D.6)

in which

P5(u) = (1 − u) [rD − rA(1 − u)] u [rA(1 − u)− rP] [rA(1 − u)− rF]

= u(1 − u)(rD − rA)(rA − rP)(rA − rF)

[
1 +

rAu
rD − rA

] [
1 − rAu

rA − rP

] [
1 − rAu

rA − rF

]
≡ l3u(1 − u)(1 − c1u)(1 − c2u)(1 − c3u). (D.7)

Hence, one can recast Eq. (D.6) as

ϕ(u) =
L√
l3γ

∫ u

0
u− 1

2 (1 − u)−
1
2 (1 − c1u)−

1
2 (1 − c2u)−

1
2 (1 − c3u)−

1
2 du. (D.8)

The incomplete Lauricella function of order n + 1, is defined in terms of the integral

equation (Akerblom & Flohr, 2005)

∫ z

0
ua−1(1 − u)c−a−1

n

∏
i=1

(1 − xiu)−bi du

=
za

a
F(n+1)

D (a, b1, . . . , bn, 1 + a − c; a + 1; x1, . . . , xn, z) . (D.9)

By doing a comparison between Eqs. (D.8) and (D.9), it is inferred that a = 1
2 , c = 1

and n = 3. Accordingly, we get b1 = b2 = b3 = 1
2 , and x1 = c1, x2 = c2 and x3 = c3.

This way, the solution in Eq. (6.109) is obtained.
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E.1 Derivation of the solutions to the Cauchy equa-

tion

Applying the change of variable z
.
= x − 2y Eq. (7.16) can be rewritten as

dz
dx

= −3
4

[
1 + z cos

(
1
3

arccos
( z

x

))]2

− z

2x
+

3
2

. (E.1)

Performing another change of variable u .
= z

x , then changes the above equation to

du
dx

=
3

4x

[
1 − 2u − 4 cos

(
1
3

arccos u
)
− 4 cos2

(
1
3

arccos u
)]

. (E.2)

Defining ω
.
= 1

3 arccos u, now gives

dω

dx
= − P(ω)

4x sin(3ω)
, (E.3)

with

P(ω) = 1 − 2 cos(3ω)− 4 cos ω − 4 cos2 ω. (E.4)

The elements in the numerator and denominator of Eq. (E.4) can then be recast by

means of the identities

cos(3ω) = 4 cos3 ω − 3 cos ω, (E.5)

sin(3ω) = 3 sin ω − 4 sin3 ω. (E.6)
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Accordingly, we have

P(ω) = (1 + 2 cos ω)2(1 − 2 cos ω), (E.7a)

sin(3ω) = − sin ω
(
1 − 4 cos2 ω

)
. (E.7b)

Substitution of Eqs. (E.7) in Eq. (E.3) results in

dω

dx
=

1 + 2 cos ω

4x sin ω
, (E.8)

which by applying the change of variable γ
.
= 1 + 2 cos ω, changes to

dγ

dx
= − γ

2x
. (E.9)

Direct integration of the above equation yields

γ = ± b√
x

, (E.10)

where b is an integration constant. Taking into account the changes of variables ap-

plied above, we get to the solutions

y1,2(x) =
x
2

[
1 ± cos

(
3 arccos

(
1
2

[
b√
x
− 1
]))]

. (E.11)

Defining

φ(x) = arccos
(

1
2

[
b√
x
− 1
])

, (E.12)

the above solutions change their form to

y1(x) = x − b2

4

(
3 − b√

x

)
, (E.13a)

y2(x) =
b2

4

(
3 − b√

x

)
. (E.13b)

Finally, applying the identity (E.5) and defining ρ
.
= 2b

3 , we get

y1(x) = x − 27ρ2

16

(
1 − ρ

2
√

x

)
, (E.14a)

y2(x) =
27ρ2

16

(
1 − ρ

2
√

x

)
. (E.14b)
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Aliev A. N., Özdemir N., 2002, Monthly Notices of the Royal Astronomical Society,

336, 241

Amarilla L., Eiroa E. F., 2012, Phys. Rev., D85, 064019

Amarilla L., Eiroa E. F., 2013, Phys. Rev., D87, 044057

Amarilla L., Eiroa E. F., Giribet G., 2010, Phys. Rev., D81, 124045

Amir M., Singh B. P., Ghosh S. G., 2018, The European Physical Journal C, 78, 399

Anacleto M., Brito F., Campos J., Passos E., 2020, Physics Letters B, 810, 135830

Ashby N., Shahid-Saless B., 1990, Phys. Rev. D, 42, 1118

Astier P., 2012, arXiv e-prints, arXiv:1211.2590

Atamurotov F., Abdujabbarov A., Ahmedov B., 2013, Phys. Rev., D88, 064004

Atamurotov F., Ahmedov B., Abdujabbarov A., 2015, Physical Review D, 92, 084005

Azreg-Aı̈nou M., 2014, Eur. Phys. J., C74, 2865

Azreg-Aı̈nou M., 2014, Phys. Rev., D90, 064041
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