Cholinergic neuromodulation of inhibitory interneurons facilitates functional integration in whole-brain models
Archivos
Fecha
2021
Profesor Guía
Formato del documento
Articulo
ORCID Autor
Título de la revista
ISSN de la revista
Título del volumen
Editor
Plos
Ubicación
ISBN
ISSN
item.page.issne
item.page.doiurl
Facultad
Facultad de Ciencias
Departamento o Escuela
Centro Interdisciplinario de Neurociencia de Valparaiso
Determinador
Recolector
Especie
Nota general
Resumen
Segregation and integration are two fundamental principles of brain structural and functional organization. Neuroimaging studies have shown that the brain transits between different functionally segregated and integrated states, and neuromodulatory systems have been proposed as key to facilitate these transitions. Although whole-brain computational models have reproduced this neuromodulatory effect, the role of local inhibitory circuits and their cholinergic modulation has not been studied. In this article, we consider a Jansen & Rit whole-brain model in a network interconnected using a human connectome, and study the influence of the cholinergic and noradrenergic neuromodulatory systems on the segregation/integration balance. In our model, we introduce a local inhibitory feedback as a plausible biophysical mechanism that enables the integration of whole-brain activity, and that interacts with the other neuromodulatory influences to facilitate the transition between different functional segregation/integration regimes in the brain.
Descripción
Lugar de Publicación
Auspiciador
Palabras clave
NEURONA, CHOLINERGICS, NEUROMODULATION, INTERNEURONS, FUNCTIONAL MAGNETIC RESONANCE IMAGING, SIGNAL TO NOISE RATIO, SIGNAL FILTERING, PYRAMIDAL CELLS
Licencia
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.