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A B S T R A C T

Cortical bone is a complex multiscale medium and its study is of importance for clinical fracture prevention.
In particular, cortical attenuation is known to be linked with shock energy absorption and ability to resist
fracture. However, the links between cortical bone absorption and its multiscale structure are still not well
understood. This work is about the use of homogenized tensors in order to characterize the viscoelastic behavior
of cortical bone at ultrasonic frequencies, i.e., about 0.1 to 10 MHz. Such tensors are derived from the cell
problem via two-scale homogenization theory for linear elastic and Kelvin–Voigt viscoelastic descriptions. The
elliptic formulations obtained from the cell problems are implemented within the range of medically-observed
porosities. Microstructure is assessed considering cubic cells with cylindrical inclusion and transverse isotropic
assumption. A simplified model, adding one temporal parameter 𝜏 per phase, allows a good agreement with
experimental data. The corresponding attenuation is proportional to the square of the frequency, in agreement
with Kramer–Kronig relations. This development is proposed in the context of robust clinical inverse problem
approaches using a restricted number of parameter. Two main properties for the material filling the pores are
adjusted and discussed: absorption and shear contribution. Best agreement with experimental data is observed
for material inside the pores being solid and highly attenuating.
1. Introduction

Complex multiscale problems are often encountered in Biology or
Medicine. One particular example is cortical bone, which study is
of importance for fracture prevention. Cortical bone is a composite
structure with two main phases: a solid part, denoted bone matrix or
extra vascular matrix (EVM), and a porous part containing biological
fluids, such as blood and marrow (Milovanovic et al., 2017). The solid
part is organized at different scales from the nanometric fundamental
elements, i.e., type I collagen stiffened by crystals of calcium hydroxya-
patite (Groetsch et al., 2019) through a micrometer scale, i.e., lamellae
(about 10 μm) (Granke et al., 2013) until sub millimeter scale, i.e. os-
teon (about 0.3 mm). The latter is also known as the fundamental
functional unit of cortical bone. Similarly, the porous network is also
multiscale organized, from the canaliculi (about 1 μm), the lacunae
containing osteocytes and (about 10 μm) to the Volkman’s and Havers’
canals, with typical sizes of about 10 and 50 μm, respectively (Núñez
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et al., 2017). Moreover, unbalanced bone remodeling tends to induce
resorption cavities ranging from 50 to 200 μm. Finally, cortical bone
thickness, embedding both solid and fluid phases, typically ranges from
1 to 6 mm (Karjalainen et al., 2008).

The lower scales have been mainly explored on ex vivo samples
using different techniques (Akhter and Recker, 2021) such as nano
indentation (Vennin et al., 2017), synchrotron micro Computed To-
mography (𝜇CT) (Groetsch et al., 2019), Scanning Acoustic Microscopy
(SAM) (Iori et al., 2020). In vivo measurements, such as Quantitative CT
(QCT) (Ahmed et al., 2015), High Resolution-pQCT (HR-pQCT) (Sundh
et al., 2017), Magnetic Resonance Imaging (MRI) (Hong et al., 2019),
up to 1 MHz Ultrasound (Minonzio et al., 2019) mainly focus on the
mesoscale. Indeed, with typical millimeter resolutions, cortical bone is
thus clinically explored as a homogeneous medium allowing to provide
cortical porosity estimates or index, being potential clinical parame-
ters (Bjørnerem, 2016). Note that recent development aims to explore
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cortical at a lower scale, such HR-pQCT second generation (Hildebrand
et al., 2021) or higher frequency Ultrasound (Yousefian et al., 2021;
Ishimoto et al., 2019).

As for elasticity, viscoelasticity can be experimentally assessed on
ex vivo specimen at lower scale using nanoindentation (Fan and Rho,
2003; Wu et al., 2012) or at the mesoscale using dynamic mechanical
testing (Iyo et al., 2004; Yamashita et al., 2001) or ultrasound using dif-
ferent methods such as transmission (Sasso et al., 2008) and Resonant
Spectroscopy Ultrasound (RUS) (Bernard et al., 2016). In vivo measure-
ment of attenuation has been recently proposed using audible (Aygün,
2019) or ultrasonic (Minonzio et al., 2021) frequencies.

Improving multiscale modeling of cortical bone has already been
explored , with homogenization approaches similar to those applied to
composites (Penta and Gerisch, 2015) or poroelastic (Dehghani et al.,
2018). In 2009, an asymptotic homogenization model was proposed
for cortical bone, in order to interpret the overall elasticity in function
of the mesoscale porosity, i.e., Haversian canals and resorption cavi-
ties (Parnell and Grimal, 2009). Authors considered an isotropic bone
matrix and used an approximated solution of the cell problem proposed
in a previous study (Parnell and Abrahams, 2008). The asymptotic
homogenization model was then improved by taking into account
a transverse anisotropy for the bone matrix (Parnell et al., 2012).
In the same paper, authors used the Mori–Tanaka scheme and the
Hashin–Rosen bounds. Other approaches have completed the asymp-
totic homogenization, such as micromechanical modeling (Salguero
et al., 2014), stochastic homogenization (Gagliardi et al., 2018), three
scales asymptotic homogenization (Ramírez-Torres et al., 2018). The
influence of the fluid presence inside the pores has also been recently
studied (Nguyen et al., 2018; Zhou et al., 2020). Viscoelasticity has
been introduced in homogenization models in a few studies about
composites (Yi et al., 1998; Abdessamad et al., 2009; Cruz González
et al., 2020) or cortical bone (Nguyen et al., 2018).

The aim of this paper is to propose a simplified model to inter-
pret ultrasonic measurements of cortical bone viscoelastic behavior.
This approach is derived from an asymptotic two-scale homogeniza-
tion model taking into account Kelvin–Voigt viscoelasticity at both
scales (Panasenko, 2005). This development is proposed in the context
of robust clinical inverse problem approaches using a restricted number
of parameters (Minonzio et al., 2019). The paper is organized as
follows: in Section 2, modeling assumptions and theoretical description
are presented In Section 3, different sets of parameters are tested
compared to experimental data. Finally in Section 4, the predictions
obtained and their implications are discussed and compared with the
state of the art.

2. Theoretical description

Following the biomedical literature (Parnell and Grimal, 2009; Par-
nell et al., 2012; Cai et al., 2019), we assume from a mechanical point
of view the cortical bone mesoscale as a two-phase composite material,
described by a soft phase formed mainly of pores containing organic
fluids embedded in a hard matrix phase of hydroxyapatite and collagen
fibers. Mesoscale porosities are characterized by two main structures:
the resorption cavities (size of approx. 50–200 [μm]) and haversian
canals (with size approx. 50 [μm]) mainly distributed along the long
axis of bone and periodically over the radial axis. Such distribution
enables us to describe the composite material on macro- and micro-
scopic structures denoting such systems by the variables 𝐱 = [𝑥1, 𝑥2, 𝑥3]
and 𝐲 = [𝑦1, 𝑦2, 𝑦3] respectively, being related by 𝐲 = 𝐱∕𝜖 with 𝜖 > 0 the
atio of high oscillation for the bone associated to its microstructure
imensions (approx. 50 [μm]). Schematically, Fig. 1 describes our ide-
lized composed material under study. The 3D-periodic cell is a fluid
2

illed cylinder included in a unitary cube.
.1. Elastic model

As first approximation, we assume a multiscale mechanical behavior
f cortical bone of linear type, i.e., characterized by a linear elastic
ensor 𝐂(𝐱) = (𝐶𝑖𝑗𝑘𝑙(𝐱))𝑖𝑗𝑘𝑙, a mass density 𝜌 and a scale parameter
> 0 fixed. We assume the domain of interest denoted by 𝛺 ⊂ R3, with
haracteristic microstructure 𝐘 ⊂ R3 described by the displacement
olution 𝑢𝜖(𝐱, 𝑡) satisfying the system:

𝜌𝜖(𝐱)𝜕𝑡𝑡𝑢𝜖(𝐱, 𝑡) − ∇ ⋅ 𝜎𝜖(𝐱, 𝑡) = 𝐟 (𝐱, 𝑡) in 𝛺×(0, 𝑇 )
𝜎𝜖𝑖𝑗 (𝐱, 𝑡) = 𝐶𝜖

𝑖𝑗𝑘𝑙(𝐱)𝐞𝑘𝑙(𝑢
𝜖(𝐱, 𝑡)) in 𝛺×(0, 𝑇 ), (1)

here we use the notation 𝐶𝜖
𝑖𝑗𝑘𝑙(𝐱) = 𝐶𝑖𝑗𝑘𝑙(𝐱∕𝜖) for the elastic periodic

ensor and 𝐞𝑘𝑙 as the symmetric gradient. Here, 𝜌𝜖(𝐱) = 𝜌( 𝐱𝜖 ) is the
periodic material density and 𝐟 (𝐱, 𝑡) are macroscopic external forces. We
also assume homogeneous Dirichlet and Neumann boundary conditions
on the subregions 𝛤𝑁 and 𝛤𝐷 as illustrated in Fig. 1.

The classical expansion from two-scale homogenization theory stud-
ied extensively (Panasenko, 2005; Boughammoura, 2013) seeks in our
case solutions 𝑢𝜖 to (1) in the form:

𝑢𝜖(𝐱, 𝑡) = 𝑢0(𝐱, 𝑡) + 𝜖𝑁𝑟𝑠(𝐱
𝜖
)𝐞𝑟𝑠

(

𝑢0(𝐱, 𝑡)
)

+ 𝑟𝜖(𝐱, 𝑡, 𝜖), (2)

where 𝑟𝜖 is some error term and we use the standard notation 𝑁𝑟𝑠(𝐲)
to describe cell solutions to the so-called cell problems defined as the
elliptic PDE system:

−𝜕𝑦𝑗
(

𝐶𝑖𝑗𝑘𝑙(𝐲)𝐞𝑘𝑙(𝑁𝑟𝑠(𝐲))
)

= 𝜕𝑦𝑗
(

𝐶𝑖𝑗𝑟𝑠(𝐲)
)

in 𝐘,
𝐶𝑖𝑗𝑘𝑙(𝐲)𝐞𝑘𝑙

(

𝑁𝑟𝑠(𝐲)
)

𝑛𝑗 = 𝟎 on 𝜕𝐘,
∫𝐘 𝑁𝑟𝑠(𝐲) 𝑑𝐲 = 𝟎.

(3)

Such cell problems enables the definition of the so-called homog-
nized elastic coefficients 𝐶ℎ𝑜𝑚

𝑖𝑗𝑘𝑙 , that incorporates the intrinsic non-
inearity arising from the microstructure, described by the integral
orm:
ℎ𝑜𝑚
𝑖𝑗𝑟𝑠 = 1

|𝐘| ∫𝐘
(

𝐶𝑖𝑗𝑟𝑠(𝐲) + 𝐶𝑖𝑗𝑘𝑙𝐞𝑘𝑙
(

𝑁𝑟𝑠(𝐲)
))

𝑑𝐲, (4)

n which at the macroscopic scale, the solution 𝑢0 satisfies the homog-
nized linear-elastic PDE system with the homogeneous coefficients:

𝜌0𝜕𝑡𝑡𝑢0(𝐱, 𝑡) − ∇ ⋅ 𝜎0(𝐱, 𝑡) = 𝐟 (𝐱, 𝑡) in 𝛺×(0, 𝑇 ),
𝜎0𝑖𝑗 (𝐱, 𝑡) = 𝐶ℎ𝑜𝑚

𝑖𝑗𝑘𝑙 𝐞𝑘𝑙(𝑢
0(𝐱, 𝑡)) in 𝛺×(0, 𝑇 ), (5)

here mass density satisfies 𝜌0 = 1
|𝐘| ∫𝐘 𝜌(𝐲)𝑑𝐲, with the same original

oundary conditions. For the deduction of the homogenized model,
.e., Eqs. (3) to (5), see for instance Bakhvalov and Panasenko (1989).

.2. Mechanical assumptions

Following the standard biomechanical literature, both phases, solid
collagen and hydroxyapatite matrix) and fluid (saturated porous-like
nclusions) are assumed to follow a linear elastic behavior. Taking
xial symmetry along the long axis of bone, the composite material is
odeled with transverse isotropy for each tensor component 𝐶𝑚

𝑖𝑗𝑘𝑙 , 𝐶
𝑓
𝑖𝑗𝑘𝑙

ssociated with the bone matrix and the material inside the pores
espectively. Thus, the elastic coefficients on the cell 𝐘 are described
n the form:

𝑖𝑗𝑘𝑙(𝐲) ∶= 𝐶𝑚
𝑖𝑗𝑘𝑙I{𝐲∈𝐘𝑚} + 𝐶𝑓

𝑖𝑗𝑘𝑙I{𝐲∈𝐘𝑓 }. (6)

Such component-wise elastic behavior is described explicitly using
oigt notation as the following square matrix with coefficients (Parnell
t al., 2012):

𝑖𝑗 (𝐲) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

𝐶11(𝐲) 𝐶12(𝐲) 𝐶13(𝐲) 0 0 0
𝐶12(𝐲) 𝐶11(𝐲) 𝐶13(𝐲) 0 0 0
𝐶13(𝐲) 𝐶13(𝐲) 𝐶33(𝐲) 0 0 0

0 0 0 𝐶44(𝐲) 0 0
0 0 0 0 𝐶44(𝐲) 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

,

⎣ 0 0 0 0 0 𝐶66(𝐲)⎦
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associated to a transverse isotropic material with the axis 3 correspond-
ing to the bone axis, implying that: 𝐶55(𝐲) = 𝐶44(𝐲) and 𝐶11(𝐲) = 𝐶22(𝐲).
Moreover, we also assumed 𝐶12(𝐲) = 𝐶11(𝐲) − 2𝐶66(𝐲) as in Bernard
et al. (2016). Thus, the bone matrix part can be described using five
independent coefficients, 𝐶𝑚

11, 𝐶
𝑚
33, 𝐶

𝑚
44, 𝐶

𝑚
66 and 𝐶𝑚

13.
The material inside the pores is supposed isotropic, implying 𝐶𝑓

11 =
𝐶𝑓
22 = 𝐶𝑓

33 and 𝐶𝑓
44 = 𝐶𝑓

55 = 𝐶𝑓
66. Non diagonal terms are given by

𝐶𝑓
12 = 𝐶𝑓

13 = 𝐶𝑓
23 = 𝐶𝑓

11 − 2𝐶𝑓
44. Thus, the material inside the pore can

be described using two independent coefficients, 𝐶𝑓
11 and 𝐶𝑓

44. In this
setting, the homogenized coefficients are defined as functions of the
porosity level, i.e. setting the cylindrical inclusion in a unitary cube
(3D cell) with radius 𝑟(𝑝), being 𝑝 ∈ (0, 1) the range of admissible
porosity levels, in the form 𝑝 ∶= |𝐘𝑓 |

|𝐘| The circular fluid inclusion 𝐘𝑓
s illustrated in Fig. 1. The homogenized mass density is defined as
ℎ𝑜𝑚 = 𝜌𝑚(1 − 𝑝) + 𝜌𝑓 𝑝 (Parnell and Grimal, 2009). Note that other
eometry of cell problems, such as hexagonal, have been considered
or composite (Penta and Gerisch, 2015), poroelastic (Dehghani et al.,
018) or cortical bone (Parnell and Grimal, 2009) materials.

.3. Viscoelastic model

The damping effects observed on experimental signals reveal the
resence of viscous-like behavior that should be addressed to correctly
redict the mechanical behavior of cortical bone. In this section we
ropose a generalization of the linear elastic mechanical model of bone
o a Kelvin–Voigt viscoelastic behavior within the two-scale framework,
hich to our knowledge corresponds to the first formal deduction of

uch factors using this approach. Cortical bone relaxation times are
f the order of the second, very large compared to the typical period
onsidered in this study, i.e., 10 μs at 0.1 MHz (Iyo et al., 2004;
amashita et al., 2001; Wu et al., 2012). Thus, more sophisticated
iscoelastic models such as Maxwell model, are not required in the
resent case (Yi et al., 1998; Abdessamad et al., 2009; Nguyen et al.,
018; Cruz González et al., 2020).

As in Section 2.1, we consider a Kelvin–Voigt model for the cortical
one behavior, characterized by elastic 𝐶𝜖

𝑖𝑗𝑘𝑙(𝐱) and viscoelastic 𝐷𝜖
𝑖𝑗𝑘𝑙(𝐱)

ensors that define a solution 𝑢𝜖(𝐱, 𝑡) as

𝜌𝜖(𝐱)𝜕𝑡𝑡𝑢𝜖(𝐱, 𝑡) − ∇ ⋅ �̂�𝜖(𝐱, 𝑡) = 𝐟 (𝐱, 𝑡) in 𝛺 × (0, 𝑇 ),
�̂�𝜖𝑖𝑗 (𝐱, 𝑡) = 𝐶𝜖

𝑖𝑗𝑘𝑙(𝐱)𝐞𝑘𝑙(𝑢
𝜖(𝐱, 𝑡)) +𝐷𝜖

𝑖𝑗𝑘𝑙(𝐱)𝐞𝑘𝑙(𝜕𝑡𝑢
𝜖(𝐱, 𝑡)) in 𝛺 × (0, 𝑇 ),

(7)

Now if we put a fixed positive angular pulsation 𝜔 and 𝑢𝜖(𝐱, 𝑡) =
̂𝜖(𝐱)𝑒𝑖𝜔𝑡 and 𝐟 (𝐱, 𝑡) = 𝐟 (𝐱)𝑒𝑖𝜔𝑡, we arrive to the following problem for
̂𝜖(𝐱):

−𝜔2𝜌𝜖(𝐱)�̂�𝜖(𝐱) − ∇ ⋅ �̂�𝜖(𝐱) = 𝐟 (𝐱) in 𝛺,

�̂�𝜖𝑖𝑗 (𝐱) =
(

𝐶𝜖
𝑖𝑗𝑘𝑙(𝐱) + 𝐢𝜔𝐷𝜖

𝑖𝑗𝑘𝑙(𝐱)
)

𝐞𝑘𝑙(�̂�𝜖(𝐱)) in 𝛺.
(8)

where again 𝜌𝜖(𝐱) = 𝜌(𝐱∕𝝐), 𝐶𝜖
𝑖𝑗𝑘𝑙(𝐱) = 𝐶𝑖𝑗𝑘𝑙(𝐱∕𝝐) and 𝐷𝜖

𝑖𝑗𝑘𝑙(𝐱) =
𝐷𝑖𝑗𝑘𝑙(𝐱∕𝝐) are the periodic density, elastic and viscoelastic parameters
and with the same boundary conditions as for the original model (1).

By expressing the solution �̂�𝜖 as an asymptotic expansion in 𝜖, it is
straightforward to deduce the cell problems, that generalize the elastic
case, described by solutions �̂�𝑟𝑠(𝐲) to the elliptic system:

−𝜕𝑦𝑗
[(

𝐶𝑖𝑗𝑘𝑙(𝐲) + 𝐢𝜔𝐷𝑖𝑗𝑘𝑙(𝐲)
)

𝐞𝑘𝑙(�̂�𝑟𝑠(𝐲))
]

,
= 𝜕𝑦𝑗

[

𝐶𝑖𝑗𝑟𝑠(𝐲) + 𝐢𝜔𝐷𝑖𝑗𝑟𝑠(𝐲)
]

in 𝐘,
(

𝐶𝑖𝑗𝑘𝑙(𝐲) + 𝐢𝜔𝐷𝑖𝑗𝑘𝑙(𝐲)
)

𝐞𝑘𝑙(𝑁𝑟𝑠(𝐲))𝑛𝑗 = 𝟎 on 𝜕𝐘,
∫𝐘 �̂�𝑟𝑠(𝐲) 𝑑𝐲 = 𝟎.

(9)

Now we decouple the solution of this system by splitting the cell
solution into the form:

�̂�𝑟𝑠(𝐲) = �̂�𝑟𝑠
𝑅 (𝐲) + 𝐢�̂�𝑟𝑠

𝐼 (𝐲), (10)

being each vector valued function �̂�𝑟𝑠
𝑅 , �̂�𝑟𝑠 solution of a real valued

coupled cell problem.
3

w

Using this decomposition, from the expression of 𝐶ℎ𝑜𝑚
𝑖𝑗𝑟𝑠 + 𝐢𝜔𝐷ℎ𝑜𝑚

𝑖𝑗𝑟𝑠
similar to (4), it is easy to see by taking real and imaginary parts
that the homogenized elastic and viscous coefficients are given by the
following integral expressions:

𝐶ℎ𝑜𝑚
𝑖𝑗𝑟𝑠 = 1

|𝐘| ∫𝐘
𝐶𝑖𝑗𝑟𝑠(𝐲) +

(

𝐶𝑖𝑗𝑘𝑙(𝐲)𝐞𝑘𝑙(�̂�𝑟𝑠
𝑅 (𝐲)) − 𝜔𝐷𝑖𝑗𝑘𝑙(𝐲)𝐞𝑘𝑙(�̂�𝑟𝑠

𝐼 (𝐲))
)

𝑑𝐲,

ℎ𝑜𝑚
𝑖𝑗𝑟𝑠 = 1

|𝐘| ∫𝐘
𝐷𝑖𝑗𝑟𝑠(𝐲)

+
(

𝜔−1𝐶𝑖𝑗𝑘𝑙(𝐲)𝐞𝑘𝑙(�̂�𝑟𝑠
𝐼 (𝐲)) +𝐷𝑖𝑗𝑘𝑙(𝐲)𝐞𝑘𝑙(�̂�𝑟𝑠

𝑅 (𝐲))
)

𝑑𝐲,

(11)

here the macroscopic homogenized viscoelastic behavior is described
y the solution �̂�0 of the problem:

−𝜔2𝜌0�̂�0(𝐱) − ∇ ⋅ �̂�0(𝐱) = 𝐟 (𝐱) in 𝛺,

�̂�0𝑖𝑗 (𝐱) =
(

𝐶ℎ𝑜𝑚
𝑖𝑗𝑘𝑙 + 𝐢𝜔𝐷ℎ𝑜𝑚

𝑖𝑗𝑘𝑙
)

𝐞𝑘𝑙
(

�̂�0(𝐱)
)

in 𝛺,
(12)

here again 𝜌0 = 1
|𝐘| ∫𝐘 𝜌(𝐲)𝑑𝐲 and with the same boundary conditions

as in the original viscoelastic model (7).

2.4. Introduction of the 𝑄 and 𝜏 factors

The definition of quality factors 𝑄𝑖𝑗𝑘𝑙 proposed in (Bernard et al.,
2016) can be deduced directly in the homogenized framework from
the system (12) in the form:

(𝑄ℎ𝑜𝑚
𝑖𝑗𝑘𝑙 )

−1(𝜔) ∶= 𝜔
𝐷ℎ𝑜𝑚

𝑖𝑗𝑘𝑙

𝐶ℎ𝑜𝑚
𝑖𝑗𝑘𝑙

= 𝜔𝜏ℎ𝑜𝑚𝑖𝑗𝑘𝑙 , (13)

for each angular pulsation 𝜔 of interest. With 𝑄 being dimension-
less, the ratio between 𝐷 and 𝐶 coefficients is homogeneous up to a
temporal factor, denoted 𝜏 in the following.

Regarding the phase composition of the microstructure 𝐘, we model
the viscous coefficients analogous to Eq. (6) in the form:

𝐷𝑖𝑗𝑘𝑙(𝐲) = 𝐷𝑚
𝑖𝑗𝑘𝑙I{𝐲∈𝐘𝑚} +𝐷𝑓

𝑖𝑗𝑘𝑙I{𝐲∈𝐘𝑓 }, (14)

and we define such viscous coefficients (𝐷𝑖𝑗𝑘𝑙)𝑖𝑗𝑘𝑙 as linearly attenu-
ted of its elastic counterparts with parameters (𝑄𝑚

𝑖𝑗𝑘𝑙)
−1(𝜔) > 0 and

𝑄𝑓
𝑖𝑗𝑘𝑙)

−1(𝜔) > 0 for the matrix and fluid phases respectively. More
xplicitly, we assume that:

𝜔𝐷𝑚
𝑖𝑗𝑘𝑙(𝐲) = (𝑄𝑚

𝑖𝑗𝑘𝑙)
−1(𝜔)𝐶𝑚

𝑖𝑗𝑘𝑙(𝐲),

𝜔𝐷𝑓
𝑖𝑗𝑘𝑙(𝐲) = (𝑄𝑓

𝑖𝑗𝑘𝑙)
−1(𝜔)𝐶𝑓

𝑖𝑗𝑘𝑙(𝐲).
(15)

Let us note that by assuming such type of relation for the viscoelastic
escription, we limit the amount of degrees of freedom on the model,
o facilitate the study of the dependence and effects of each controlled
arameter.
.5. Simplified model

The definitions of the two tensors 𝐷𝑚
𝑖𝑗𝑘𝑙(𝐲) and 𝐷𝑓

𝑖𝑗𝑘𝑙(𝐲), associ-
ted with the matrix and fluid phases respectively, are furthermore
implified using proportionality factors 𝜏𝑚 and 𝜏𝑓 as:

𝜔𝐷𝑚
𝑖𝑗𝑘𝑙(𝐲) = 𝜔𝜏𝑚𝐶𝑚

𝑖𝑗𝑘𝑙I{𝐲∈𝐘𝑓 },

𝜔𝐷𝑓
𝑖𝑗𝑘𝑙(𝐲) = 𝜔𝜏𝑓𝐶𝑓

𝑖𝑗𝑘𝑙I{𝐲∈𝐘𝑓 }.
(16)

Combining (15) and (16) , it is possible to express the bone matrix
nd fluid quality factors as (𝑄𝑚)−1(𝜔) and (𝑄𝑓 )−1(𝜔) as 𝜔𝜏𝑚 and
𝜏𝑓 , respectively (Abdessamad et al., 2009). The 𝜏 factor and can
e interpreted as a typical time constant. Thus, if the frequency 𝑓 is
xpressed in MHz, then 𝜏 is in μs. Note that the condition 𝑄−1 = 𝜔𝜏 ≪ 1
orresponds to a weak attenuation case for which the time constant 𝜏
s small compared to the period 𝑇 = 2𝜋∕𝜔.

Ultrasonic attenuation is usually modeled using a power law (Szabo,
995; Holm, 2019), and a complex wavenumber 𝑘 + 𝑖𝛼. In case of

−1
eak attenuation, i.e., 𝛼 ≪ 𝑘, the quality factor 𝑄 is about 2𝛼∕𝑘.
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Fig. 1. Cortical bone is represented as a composite material, using a two-scale assumption for the microstructure and matrix/hard 𝐶𝑚
𝑖𝑗𝑘𝑙 and fluid/soft 𝐶𝑓

𝑖𝑗𝑘𝑙 elastic coefficients,
periodically distributed along the long bone axis 𝑥3. The 3D-periodic cell is a fluid filled cylinder included in a unitary cube.
Fig. 2. Real part of the stiffness coefficients 𝐶𝑖𝑖 factors obtained experimentally in Bernard et al. (2016) (dots), compared against our numerical predictions (FEM, lines), computing
the factors 𝐶𝑖𝑖. In prediction interval is given at high density values, i.e., lower porosity levels where the bigger data samples are available. The four cases are: Soft tissue with
weak attenuation (a), soft tissue with strong attenuation (b), solid with weak attenuation (c) and solid with strong attenuation (d).
With 𝑄−1 = 𝜔𝜏, the attenuation is then proportional to the square of
frequency as:

𝛼(𝜔) ≈ 1
2
𝜏
𝑐0

𝜔2, (17)

with 𝑐0 the low frequency limit bulk velocity. Note that Eq. (17) is
similar to Eq. (30a) derived by O’Donnell et al. (1981) from Kramers–
4

Kronig relationship between ultrasonic attenuation and phase velocity.

2.6. Domain of validity

Following homogenization theory in elasticity with contrasting co-
efficients (see for instance Panasenko, 2005 and Sandrakov, 1999), if 𝜅
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Fig. 3. Homogenized factor 𝜏ℎ𝑜𝑚 = (𝜔𝑄)−1 factors obtained with numerical predictions (FEM, lines), computing the factors 𝐷𝑖𝑖 𝐶𝑖𝑖, compared obtained experimentally in (Bernard
et al., 2016) (dots) for direction 44. In prediction interval is given at high density values, i.e., lower porosity levels where the bigger data samples are available. The four cases
are: Soft tissue with weak attenuation (a), soft tissue with strong attenuation (b), solid with weak attenuation (c) and solid with strong attenuation (d).
Fig. 4. Homogenized slope 𝑑𝜏ℎ𝑜𝑚∕𝑑𝜌ℎ𝑜𝑚 calculated for different combinations of 𝜏𝑓 and
𝐶𝑓
44 values.

is the elastic contrast that could be estimated by:

𝜅 = 𝑚𝑎𝑥𝑖
𝐶𝑚
𝑖𝑖

𝐶𝑓
𝑖𝑖

, (18)

if 𝜀 is the homogenization parameter, then if 𝜅 𝜀2 is small, the ho-
mogenization regime approximation is valid. In our case, these values
correspond to 𝜅 ≈ 30 GPa∕2 GPa = 15 and 𝜀 ≈ 50 μm∕1 mm = 0.05
5

giving 𝜅 𝜀2 ≈ 0.04. Otherwise, in case of large pore or higher elastic con-
trast, a more involved homogenization process called multi-component
homogenization should be used (Panasenko, 2005).
3. Numerical simulations

The implementation of the variational formulation in (3) is done
using the state-of-art library FEniCS for the cubic microstructure 𝐘
including a cylindrical pore on 3-dimensional settings as described
on Fig. 1 (Logg and Wells, 2010; Logg, 2012). The discretization
procedure associated to the variational formulation is obtained by
Finite Element Method and solved using GMRES (Generalized Minimal
Residual Method) with preconditioner 𝚒𝙻𝚄 (incomplete lower–upper
factorization) to tackle the numerical instabilities obtained from the
inversion of the linear system. The viscoelastic extension is done by
defining a unit cubic microstructure 𝐘 where the integral formulations
(11) are computed by FEM. The Kelvin–Voigt model described in 2.3
is then simulated and the derived stiffness coefficients and temporal
factors are then compared to available experimental data (Bernard
et al., 2016).

The numerical values of the bone matrix elasticity used in this study
are equal to (in GPa): 𝐶𝑚

11 = 18.7, 𝐶𝑚
33 = 31.0, 𝐶𝑚

44 = 7.0, 𝐶𝑚
66 = 4.9,

𝐶𝑚
13 = 10.1 (Bernard et al., 2016). The reference fluid values are equal

to (in GPa): 𝐶𝑓
11 = 2.05 and 𝐶𝑓

44 = 0.025. The mass densities 𝜌𝑚 and 𝜌𝑓

are equal to 1.91 an 1.0 g cm−3, for the bone matrix and fluid parts
respectively (Granke et al., 2011). The value of 𝜏𝑚 is fixed equal to
0.025 μs, while the reference value of 𝜏𝑓 is fixed to 0.001 μs. With
typical frequencies ranging from 100 to 300 kHz, the factor 𝜔 ranges
from about 0.5 to 2 rad μs−1. In the following, 𝜔 is fixed to 1 rad
μs−1. Note that different values of 𝜔 have been tested providing the
same values for the coefficients 𝜏ℎ𝑜𝑚. In order to explore different
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Fig. 5. Homogenized slope 𝑑𝜏ℎ𝑜𝑚∕𝑑𝜌 vs 𝜏𝑓 (a) and 𝐶𝑓
44 (b) compared with the approximated values given by Eq. (19).
configurations, the two coefficients 𝜏𝑓 and 𝐶𝑓
44 will range reference

values, i.e., a weakly attenuating (𝜔𝜏𝑓 ≪ 1) soft tissue (𝐶𝑓
44 ≪ 𝐶𝑓

11)
to a strongly attenuating (𝜏𝑓 = 0.2 μs) solid (𝐶𝑓

44 = 0.5 GPa).
In a first approach, four limit cases are considered for the material

inside the pores: soft tissue with weak attenuation (a), soft tissue
with strong attenuation (b), solid with weak attenuation (c) and solid
with strong attenuation (d). The real part of the homogenized stiffness
coefficients are shown in Fig. 2 in function of the homogenized density.
One can observe that the results are slightly affected by the changing
of parameters of the four different cases and that the homogenized
stiffness coefficients are in agreement with the experimental data, in
agreement with previous results shown in (Bernard et al., 2016).

Then, the homogenized 𝜏ℎ𝑜𝑚 factors are shown in Fig. 3, also in
function of the homogenized density. In this case, the changing of
parameters is associated with a modification of the changing in the
slope of the curves. In all case, at low porosity or large density,
the homogenized 𝜏ℎ𝑜𝑚 factor tends to the value of the matrix alone,
i.e., 𝜏𝑚 = 0.025 μs. In cases (a) and (c) of weak attenuation, variations
of 𝜏ℎ𝑜𝑚 are small. On the contrary, in cases (b) and (d) of large
attenuation, variations of 𝜏ℎ𝑜𝑚 are larger. However, in case (b) of soft
tissue with strong attenuation, 𝜏ℎ𝑜𝑚 variations are weaker for shear
coefficients (44 and 66) than for longitudinal coefficients (11 and 33).
Finally, in case (d) of solid with strong attenuation, 𝜏ℎ𝑜𝑚 variations with
density are strong for both shear and longitudinal contributions. The
best agreement with experimental data (𝜏44) is obtained for this last
case.

In a second approach, models associated with different combina-
tions of values of 𝜏𝑓 and 𝐶𝑓

44 within the previously mentioned ranges
are computed. The values of the slopes 𝑑𝜏ℎ𝑜𝑚44 ∕𝑑𝜌ℎ𝑜𝑚 are reported in
Figs. 4 and in Fig. 5. In the last figure, values are and compared with
the following heuristic linear approximation:

𝜏ℎ𝑜𝑚44 ≈ 𝜏𝑚 + 1
2
𝜌ℎ𝑜𝑚(𝜏𝑚 − 𝜏𝑓 )𝐶𝑓

44. (19)

4. Discussion

This paper describes the inclusion of the attenuation into a homog-
enized model, introducing a typical time 𝜏 linked to the frequency and
the quality factor as 𝑄−1 = 𝜔𝜏, using a Kelvin–Voigt type behavior with
damping effects characterized via anisotropic attenuation of the elastic
coefficients. To our knowledge is the first time that this point of view
6

is applied to cortical bone. Similar previous works focused on the real
part of the stiffness coefficient 𝐶𝑖𝑗 (Parnell and Grimal, 2009; Parnell
et al., 2012). Attenuation have been studied at lower frequencies,
less than 1 kHz for vibro acoustic application, scanning the complete
bone (Aygün, 2019). Attenuation has also been recently studied for
higher frequency range, 1 to 8 MHz, using FDTD simulations (Yousefian
et al., 2021), showing the measured attenuation depends not only on
porosity but also on the size and distribution of the pores. On the
contrary, within the homogenization frame, results are not influenced
by the pore distribution. It can be noted that the present work is
devoted to the medium frequency range, from about 10 kHz to 1 MHz,
when typical wavelength about a few millimeters are larger than the
mesoscale typical size, about 100 micrometers.

One of the main interest of this approach is to describe the global
or homogenized behavior as a mix of each part, in the cortical bone
case, bone matrix and fluid. In particular, the model predicts that in
case of weakly attenuated fluid (𝜏𝑓 = 0.001 μs), the homogenized 𝜏ℎ𝑜𝑚

will decrease with porosity. It can be understood as porosity increases,
more fluid is added to the mix, and the fluid has a lower attenuation
than the cortical bone matrix (𝜏𝑚 = 0.025 μs). However, this behavior is
not in agreement with the observed experimental results, for which the
𝜏ℎ𝑜𝑚 increases with porosity or decreased with mass density (Bernard
et al., 2016). In order to obtain a good agreement between the model
and the experiments, two main modifications were made: first increase
the attenuation and then increase the shear coefficient. Indeed, in the
first case, only the attenuation of the longitudinal coefficients 11 and
33, increased with porosity. In conclusion, according to homogeniza-
tion, pores should be filled with a highly attenuated solid in order
to observe a good agreement. One the one hand, to this date only
a few experimental values are available. Values should be comforted
with other studies. One the other hand, this point may be explained by
microfluidic experiments taking into account the size and form of the
pores (Galindo-Rosales et al., 2011). It can be supposed that the fluid
behavior is different in small pores than in bulk conditions, without
boundary interactions.

Values observed in this study can be compared with typical values
obtained for cortical bone in previous studies, using power law (Szabo,
1995; Holm, 2019). The case of order 2 relation, derived from Kramer–
Kronig relations has been used for bone marrow (Kawasaki et al.,
2015). If the coefficient 𝛼 writes as 𝛼0𝑓 2, the typical time 𝜏𝑓 is then
𝛼 𝑐𝑓∕(2𝜋2). With 𝛼 equal to 0.04 dB cm−1 MHz−2 and 𝑐𝑓 equal to
0 0 0 0
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1.4 mm.μs−1, 𝜏𝑓 is about 3.10−5 μs. The case of order 1 relation
orresponds to the slope of a Taylor expansion around the frequency
f interest and is usually used for cortical bone (Sasso et al., 2008;
inonzio et al., 2021). If the coefficient 𝛼 writes as 𝛽𝑓 , the factor
𝜏𝑚 is about 𝛽𝑐𝑚0 ∕𝜋. Note that a recent simulations study suggested

hat an order 2 relation is also adapted for cortical bone at frequencies
igher than 1 MHz (Yousefian et al., 2021). In the experimental data
sed in this study (Bernard et al., 2016), the measured frequencies
anged from 100 to 300 kHz, implying that the angular pulsation 𝜔
anged from 0.6 to 1.9 rad μs−1. The limit 𝜏 value for high density
r low density is about 0.025 μs or 4 dB cm−1 MHz−1, with 𝜔 equal
and 𝑣𝑚44 equal 1.8 mm μs−1. Likewise, the largest experimental 𝜏

value, corresponding to the largest porosity values, is about 0.06 μs or
0 dB cm−1 MHz−1. These values are within the range of attenuation
alues measured ex vivo (Sasso et al., 2008) in cortical bone, even if
he number of experimental studies are currently small.

The idea behind this simplified model is to take into account vis-
oelasticity in robust clinical inverse problem. For example, homoge-
ized elasticity has been used to develop a two parameters, cortical
hickness and porosity, approach associated with guided wave mea-
urements (Minonzio et al., 2019). In that case, stiffness coefficients
f both phases are considered known. Further work will concern the
ddition of one unique attenuation parameter 𝜏𝑚 to the inverse prob-
em. For example, 𝜏 could be studied in comparison with relaxation
imes (Kawada et al., 2006; Holm, 2019). Another approach would
e to include attenuation into multi scale, not only two, asymptotic
omogenization (Ramírez-Torres et al., 2018), as global attenuation
ould result from different phenomena, associated with different scales.
ulti-component homogenization could also be studied in case of large

ores when the regime 𝜅𝜖2 ≪ 1 is not verified (Panasenko, 2005).
inally, the role of mineralization should be taken into account in
ddition to cortical porosity.

. Conclusion

We conclude from this numerical study about characterization of
he viscoelastic behavior in cortical bone via two-scale homogeniza-
ion, that microscopic structures with transverse isotropic assumption
arametrized with porosity lead to realistic predictions of both real
nd imaginary part of stiffness coefficients when compared with ex-
erimental data. This model should indeed be improved by taking
nto account for example the variation of mineralization of the bone
atrix, the shape of the porous canals and the fluid behavior at small

cale. This works opens perspective towards novel ultrasonic clinical
arameters associated with cortical bone attenuation and its ability to
bsorb shock, such as quality 𝑄 and temporal 𝜏 factors.
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