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Abstract The coexistence of electrical and chemi-
cal synaptic communication among excitatory cells has
been evidenced by neuroscientists. Nevertheless, the-
oretical understanding of hybrid synaptic connections
in diverse dynamical states of neural networks for self-
organization and robustness, still has not been fully
studied. Here, we present a model of neural network
that includes chemical excitatory coupling in a way of
small-world topology and electrical synaptic coupling
among adjacent excitatory cells for excitatory popula-
tion. Firstly, we use this model to investigate the effect
of electrical synaptic coupling among excitatory cells
on global network behavior with the goal of theoreti-
cally understanding mechanisms of generating rich fir-
ing patterns. Secondly, we further study the emergence
of various firing ripple events by considering the vari-
ation of chemical synaptic inhibition and other factors,
such as network densities. We found that the excitatory
population has a tendency to synchronization as the
weights of electrical synaptic coupling among exci-
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tatory cells are increased. Moreover, the existence of
these electrical synaptic connections can cause vari-
ous firing patterns of interest by slightly changing the
chemical synaptic weights. Our results pave a way in
the study of the dynamical mechanisms and computa-
tional significance of the contribution ofmixed synapse
in the neural functions.

Keywords Hybrid synapses · Excitatory-inhibitory
networks · Firing pattern

1 Introduction

Over the past decades, a variety of spatiotemporal pat-
terns have been observed in experimental recordings of
neural activity, such as synchronous states [1,2], com-
plex spatiotemporal patterns [3–9] and chimera states
[10,11]. They have long been of interest, but there still
much to be known about their underlying mechanisms.

Neurons can communicatemainly by twomodalities
of synaptic transmission—chemical synapse (CS) and
electrical synapse (ES) [12,13]. At chemical synapses,
information is transferred through the release of a neu-
rotransmitter from presynaptic neuron and detection
of the neurotransmitter by an adjacent postsynaptic
cell [14], whereas in electrical synapses, the cytoplasm
of adjacent cells is directly connected by clusters of
intercellular channels called gap junctions [15]. From
this different characteristics and functionality, chemi-
cal synaptic communication is typically unidirectional
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and episodic. By contrast, electrical synaptic transmis-
sion through gap junctions underlies direct, continu-
ous, and rapid neuronal communication in the cen-
tral nervous system (CNS) [15]. In addition, electrical
synapses are mostly bidirectional and connect neurons
that are spatially very close.

Classically, research efforts to understand the emer-
gence and diversity of firing patterns have been put in
networks connected by chemical synapses. This type
of neuronal communication can be of either excitatory
or inhibitory nature; and while excitatory neurons can
only excite each other, inhibitory neurons can gener-
ate nonlinear effects [16], such as modulating stimulus
response gain, sharpening tuning to stimuli, and pac-
ing cortical oscillations [16,17]. The balance between
coactivated excitatory and inhibitory synaptic inputs is
largely recognized to be important for cortical circuits
and their function [18–21] (for a review see ref. [17]).
For example, when externally driven, circuits of recur-
rently connected by excitatory and inhibitory neurons
settle rapidly into a stable dynamical state [22–24].

Electrical synapses were first evidenced in crayfish
and the vertebrate CNS of teleost fish soon after (see
review [25]). The first strong evidence for mammalian
electrical synapse is in the inferior olivary nucleus [25].
Electrical synapses are now known to be presented
throughout various brain regions, including neocortex,
hippocampus, thalamic reticular nucleus, retina, and
spinal cord [12,25–27]. Excitatory synapses aremainly
located on dendritic spines [28], whereas inhibitory
synapses are located on or near the soma of pyrami-
dal cells as well as on dendritic shafts [29]. Recently,
many experiments have evidenced that diverse neu-
ral circuits use a combination of electrical and chem-
ical synapses—hybrid synapses—coexisting in most
organisms and brain structures [30–33], to convey
signals between neurons (reviewed in [12,27] ). The
corresponding biophysical effects of hybrid synapses
together with their circuits on neuronal dynamics have
been reviewed briefly (see figure 3 in [34]). Electrical
coupling is responsible for a variety of network effects,
particularly in networks that generate rhythmic activity,
some of which are well established, such as regulation
of phase relationships, synchrony, and pattern forma-
tion [35–39], and some are novel, such as a direct role
in rhythmogenesis (also see review [2]).

Awealth of evidence indicates that electrical synapses
are localized primarily in inhibitory neurons [25,40],
widely distributed throughout the CNS [27,40–42].

Computer simulations have greatly contributed to
reveal the impact and functional role of gap junctions
between inhibitory interneurons on network activity.
One of the most distinct and recognizable effects of the
electrical synapses is to enhance synchronizedneuronal
firing [25,43]. Also, the presence of electrical synapses
could mediate close synchronization of subthreshold
and spiking activity among clusters of neurons [13,44].
In all, the role of electrical synapses for network activ-
ity has been the topic of various review articles (see
Ref [40,45]).

More recent reports have provided evidence for
abundant electrical synapses interlinking excitatory
neurons. The best examples of electrical synapses
occur between excitatory glutamatergic inferior olivary
cells [46], glutamatergic excitatory trigeminal mesen-
cephalic primary afferent neurons [47], excitatory glu-
tamatergic retinal ganglion cells [48,49], and others
(reviewed in [27]). However, the role of gap junction
interlinking excitatory population in diversity of neural
activity generation has not been investigated deeply in
networks of varying complexities yet.

The relationship between spatiotemporal patterns
of neuronal activity and the types of synaptic trans-
mission can be investigated in modeling studies [50–
53]. Computational models have shown that the syn-
chronous occurrence of action potentials in many
neurons is mainly due to connections of chemical
inhibitory synapses [54–58] or electrical synapses
between neurons [1,2,59–62]. Synchronous oscilla-
tions often comes from the interplay of chemical
synapses between excitatory cells (E-cells) and inhibitory
cells (I-cells) [54–58,63,64]. In addition, emergence
of synchronization has also been well investigated in
temporal or time-varingmultiplex hypernetworks com-
posed of Hindmarsh-Rose neurons connected by elec-
trical synapses, chemical synapses, or both [65–68].
Synchronous states have traditionally been thought to
involve precise zero-lag synchrony [69,70]. In addi-
tion to synchronous states, there exists a range of
flexible phase offsets—phase differences between two
(or more) oscillations. These flexible phase relation-
ships can, in their simplest form, be traveling waves of
various shapes waves [71]. The combination of mul-
tiple traveling waves can form complex spatiotem-
poral patterns [4,72]. It has been shown, in spiking
neural networks [71,73–75]that transmission delays
[61], the spatial reach of connections [7] and the
strength of inhibition of the excitatory-inhibitory net-
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works influence the emergence of spatiotemporal pat-
terns, such as asynchronous and irregular activity,
or propagating waves. Recently, much attention has
been paid to the chimera state [76–82]. In chimera
state, populations of coupled oscillators may exhibit
two coexisting subpopulations, one with synchronized
oscillations and the other with unsynchronized oscil-
lations, even though all of the oscillators are cou-
pled to each other in an equivalent manner [83,84].
This symmetry-breaking behavior has been studied
in a variety of complex dynamical systems and has
attracted growing attention in neural system studies
from both theoretical and experimental perspectives
[85–87].

All these approaches mentioned above only iden-
tify the essential mechanisms for generating various
complex spatiotemporal patterns, such as synchrony
state, chimeras state, and others, in neural networks
coupled via electrical synapse, chemical synapse or
combination of them—hybrid synapses. Nevertheless,
they give little insight on how the electrical and chem-
ical synapses are related to the emergence of a diver-
sity of dynamical states in neural networks for self-
organization and robustness. In other words, the con-
tribution of electrical coupling between excitatory neu-
rons together with their synaptic weights on neuronal
spatiotemporal patterns has not been systematically
investigated yet. For example, whether gap junction
communicating the excitatory or inhibitory neurons
make significant different contributions to generate fir-
ing patterns , and moreover whether these different
states can coexist in the same parameter space or the
same time windows of interest still have not been fully
studied yet.

In this paper, we study the emergence of several fir-
ing patterns in an excitatory-inhibitory (E/I) balanced
network, combining the effect of electrical and chemi-
cal connections. First, we report the several firing pat-
terns observed in the excitatory population in absence
and presence of gap junction, respectively. Secondly,
we further report these similar network states again,
showing features of robustness with network densities.
Our results imply that, in excitatory-inhibitory balance
networks, gap junction and weights of chemical synap-
tic connections together can make a great contribution
to generate various spatiotemporal patterns.

2 Models and methods

2.1 Neuronal dynamics

Wang-Buzsáki model. TheWang-Buzsaki model [88,
89]resembles the dynamics of fast-spiking neurons in
the cortex and hippocampus, and it is used here only as
a general model of mammalian neuronal excitability.
The Wang-Buzsáki model has three state variables for
each neuron: membrane potential V , the Sodium inac-
tivation variable h and Potassium activation variable
n, corresponding to the spike-generating Na+ and K+
voltage-dependent ion currents (INa and IK ), respec-
tively. Sodium activation variablem is considered to be
instantaneous. The neuronal dynamics is as :

Cm
dV

dt
= −INa − IK − IL − ISyn

dh

dt
= φ(αh(1 − h) − βhh)

dn

dt
= φ(αn(1 − n) − βnn) (1)

where IL = gL(V − EL), INa = gNam3∞h(V − ENa)

and IK = gK n4(V − EK ) represent the leak currents,
transient sodium current and the delayed rectifier cur-
rent, respectively. Isyn stands for the synaptic current
(inμA/cm2). The parameters gL , gNa , gK are themax-
imal conductance density, EL , ENa , EK are the rever-
sal potential and m∞(v) is the steady-state activation
variable m of the Hodgkin-Huxley type [90].

In the simulation, unless stated otherwise, the
parameters and functions used are given in Table 1.

Synaptic dynamics.Byapplying theWang-Buzsáki
model to the nodes of the network that incorpo-
rates both types of synapses, neurons in the network
are connected by electrical (linear diffusive coupling)
and chemical (nonlinear coupling) synapses. The total
synaptic input currents into neuron i within excitatory
population, is given by:

ISynE,i = Jgap

NE∑

j=1, j �=i

Ci j
gap(Vi − Vj ) + JEE

NE∑

j=1, j �=i

Li j
EE gsyn, j (Vi − EsynE )
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Table 1 Parameters and functions of Wang-Buzsáki model(1996) [88]

gL = 0.1 gNa = 35 gK = 9 (mS/cm2)

EL = −65 ENa = 55 EK = −90 (mV)

Cm = 1 (μF) φ = 5 Iapp = 0 (μA/cm2)

αm(V ) = −0.1(V + 35)/[exp(−0.1(V + 35)) + 1] βm(V ) = 4exp[−(V + 60)/18]
αh(V ) = 0.07exp[−(V + 58)/20] βh(V ) = 1/exp[−0.1(V + 28)] + 1

αn(V ) = −0.01(V + 34)/[exp(−0.1(V + 34)) − 1] βn(V ) = 0.125exp[−(V + 44)/80]
m∞ = αm/(αm + βm)

+ JE I

NI∑

j=1, j �=i

Li j
E I gsyn, j (Vi − EsynI )

+
NE∑

i=1

gsyn, j (Vi − EsynE ) (2)

The four terms on right-hand side of Eq. (2) cor-
responds to electrical synaptic inputs, self-excitatory
synaptic inputs, inhibitory synaptic inputs (from
inhibitory population) and external excitatory synap-
tic input to each neuron in the excitatory population,
respectively. The connectionmatricesCi j

gap, L
i j
EE , Li j

E I
are described in the network connectivity section.
Lastly, purely chemical synaptic input currents for
inhibitory population is as follows:

ISynI,i =JI I

NI∑

j=1, j �=i

Li j
I I gsyn, j (Vi − EsynI )

+ JI E

NE∑

j=1, j �=i

Li j
I E gsyn, j (Vi − EsynE ) (3)

The two terms on right-hand side of Eq. (3) represent
self-inhibitory synaptic input and excitatory synaptic
inputs (from excitatory population).

Weuse a second-order differential equation tomodel
chemical synaptic conductances gsyn [91,92], provided
by:

d2gsyn
dt2

=ḡs(E,I,ν) f δ (t0 + td − t)

−
(
1

τ1
+ 1

τ2

)
dgsyn
dt

− gsyn
τ1τ2

(4)

The delta function δ (t0 + td − t) represents the
spike signal from presynatpic cell, that is 1 when

t = t0 + td and 0 otherwise. The time t0 is the time of
the presynaptic spike and td is the synaptic delays from
the presynatpic to postsynaptic cell. The conductance
peaks occurs at time tpeak = t0 + td + τ1τ2

τ1−τ2
ln(τ1/τ2).

The normalization factor f ensures that the maximum
amplitude of the impulse response equals ḡs(E,I,ν),

f = 1

e−tpeak/τ1 − e−tpeak/τ2

tpeak = τ1τ2

τ1 − τ2
ln(τ1/τ2) (5)

In simulations and for practical reasons, second
order differential equations are solved as follows:

dy

dt
= ḡs(E,I,ν) f δ (t0 + td − t) −

(
1

τ1
+ 1

τ2

)
y

− gsyn
τ1τ2

dgsyn
dt

= y (6)

In simulations, both peak synaptic conductances
ḡs(E,I,ν) and synaptic delays td areGaussian distributed
random variables with prescribedmeans gs(E,I ) and D,
and standard deviation σgs(E,I ) and σD . The background
drive vext to each neuron in the excitatory population
was provided by external excitatory inputs, modeled
as independent and identically distributed Poisson pro-
cesses with rate ν for different neurons. Peak conduc-
tances of the external drive were also heterogeneous
and assumed values sampled from a truncated Gaus-
sian distribution with mean gsν and standard deviation
σgsν . These rules are the same as the previous study
[89]. Parameters of synaptic model are summarized in
Table 2.
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Table 2 List of simulation and default network parameters in the E/I balanced networks

A: Global simulation paramters

Description Symbol Value

Simulation duration Tsim 2000 ms

Start-up transient Ttrans 400 ms

Time step dt 0.01 ms

B: Populations and external input

Description Symbol Value

Population size of excitatory neurons NE 1000

Population size of inhibitory neurons NI 250

Possion input rate (external excitatory inputs) ν 6000 Hz

C: Connection parameters

Description Symbol Value

Weight of gap junction Jgap 0.1

Weight of self-excitatory connection JEE 0.05

Weight of self-inhibitory connection JI I 0.04

Weight of inhibitory connections for excitatory population JE I 0.03

Weight of excitatory connections for inhibitory population JI E 0.01

Probability of local inhibitory connections PI 0.2

Synaptic dynamics (Difference of Two Exponentials)

Reversal potential for excitatory synapses EsynE 0 mV

Reversal potential for inhibitory synapses EsynI -80 mV

Excitatory synaptic decay time τ1E 3 ms

Ihibitory synaptic decay time τ1I 4 ms

Excitatory synaptic time τ2E 1 ms

Inhibitory synaptic time τ2I 1 ms

Mean synaptic delay D 1.5 ms

Mean synaptic excitatory conductance gsE 5 nS

Mean synaptic inhibitory conductance gs I 200 nS

Mean synaptic input conductance gsν 3 nS

Standard deviation delay σD 0.1 ms

Standard synaptic excitatory conductance σgsE 1 nS

Standard inhibitory conductance σgs I 10 nS

Standard input conductance σgsν 1 nS

Small-world networks (SW)

Probability of replacing new links Psw 0.01

Degree of nearest neighbours connections K 10

2.2 Network connectivity

To build the connectivity matrix, we consider a bal-
anced neural network, consisting of NE = 1000 exci-
tatory and NI = 250 inhibitory neurons (Fig. 1).
The excitatory population itself is connected by exci-
tatory synapses in small world topology and its adja-

cent neurons are also connected by gap junctions. The
inhibitory population itself is connected all-to-all by
inhibitory synapses. The matrix Li j

kl denotes the con-
nections between the i th neurons of the kth population
and the j th neurons of the lth population. For example,
the matrix of self-excitatory (or self-inhibitory) con-
nections is defined as Li j

EE (or Li j
I I ), while the all-to-
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Fig. 1 Network architecture and parameters. A. The balanced
neural networks containing excitatory (red) and inhibitory pop-
ulation (green). The synaptic input (excitatory synaptic input or
inhibitory synaptic input) between the populations are gener-
ated by all-to-all connections. Their coupling strength between
the populations is denoted with constants JI E and JE I . Self-
inhibitory connections (of the weights JI I ) is all to all connec-
tions. Excitatory (inhibitory) connections are represented in red

(black). νext is the external drive to each neuron in the exci-
tatory population by external excitatory inputs. B. Diagram of
excitatory population, which is connected by excitatory synapses
(with weights JEE , red solid lines ) in a small world topology
and adjacent neurons are also connected by electrical synapses
(with weights Jgap , black dashed lines). We fix JI I = 0.04,
JI E = 0.01. (Color figure online)

all matrix of excitatory-to-inhibitory (or inhibitory-to-
excitatory ) population connections is Li j

I E (or Li j
E I ).

The parameters JEE , JI I and JI E (or JE I ) stand
for corresponding weights of self-excitatory connec-
tions, self-inhibitory connections and excitatory-to-
inhibitory (or inhibitory-to-excitatory) population con-
nections. Here Li j

kl = 1 (or 0) corresponds to connec-
tions between neuron i and j (or not). Besides, the
matrices of adjacent connections by electrical synapses
in excitatory population is Ci j

gap with corresponding
coupling strengths Jgap. The default network parame-
ters used are shown in Table 2.

The small-world topologymentioned above is imple-
mented as two basic steps of the standard algorithm
[93]: 1. Construct a regular ring lattice with N nodes
of mean degree 2K . Each node is connected to its K
nearest neighbors on either side. 2. For every node
i = 0, ..., N − 1 take every edge connecting i to its
K rightmost neighbors – that is every edge (i, j mod
N ) with i < j ≤ i + K , and rewire it with probability
Psw. Rewiring is done by replacing (i, j mod N ) with
(i, k) where k is chosen uniformly at random from all
possible nodes.

2.3 Network activity characterization

In this paper we first use the synchronization index
χ(N ), previously introduced by Ref [94,95] , to
account for the synchronization level of the neural
activity of the considered networks, where:

χ2 = Nσ 2
V (t)∑N

i=1 σ 2
Vi (t)

(7)

Here V (t) = 1
N

∑N
i=1 Vi (t) is population average of

the membrane potential Vi (t). The variables σV (t) and
σVi (t) denote the standard deviation of V (t) over time,
or of the membrane potential traces Vi (t) of each iso-
lated neuron i ,respectively. χ is 1 when all the neurons
have the same trajectory and 0 for an incoherent state
when the fluctuations of V (t) are 0.

To further investigate the global dynamical behavior
of the neural networks, we then introduce the order
parameter and its the variance in time, metastability.
The order parameter R, describes the global level of
phase synchrony in a system of NE oscillators [96,97],
given by:
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R =
〈∣∣∣∣∣

1

NE

NE∑

k=1

e2π i[(t−tnk )/(tn+1
k −tnk )]

∣∣∣∣∣

〉
(8)

where the vertical bars (= φc(t)) denote themodulus of
the complex number and the angle brackets is the tem-
poral average, while the exponent, 2π [(t− tnk )/(tn+1

k −
tnk )], is the phase we assign to each neurons in the exci-
tatory population. The closer to 0 (1) R becomes, the
more asynchronous (synchronous) the dynamics is. NE

is the total number of excitatory population, tnk is the
time of the nth spikes of neurons k and tn+1

k is the time
of the following (n + 1)th spikes.

In order to quantify the metastability and chimera-
likeness of the observed dynamics, the global metasta-
bility Met [98] , is the variance in time of order param-
eter R, by:

Met = 1

T

∑

t≤�t

(φc(t) − R)2 (9)

where T = Tsim in Eq. (9) is the whole simulation time
to quantify the metastability of the excitatory popula-
tion.Metastability is 0 if the system is either completely
synchronized or completely desynchronized – a high
value is present only when periods of coherence alter-
nate with periods of incoherence.

3 Results

3.1 Influence of electrical coupling communicating
excitatory neurons in the generation of several
firing patterns

Networks with mixed excitatory/inhbitory (E/I) neu-
rons, connected by chemical synapses, can display a
variety of firing patterns depending on their E/I bal-
ance. Fig. 2A shows samples of raster plots (action
potentials) and voltage traces resulting from the simu-
lation of a network consisting on 1,000 excitatory and
250 inhibitory neurons, at different values of the E/I
synaptic weights received by the excitatory population
(JEE , JE I , see values in Figure Legend). We charac-
terized these firing regimes by calculating the synchro-
nization index χ(N ) (Eq. 7) for the voltage traces, and
theKuramoto order parameter R for the phase synchro-
nization based on the spike firing (see Eq. 8) for phase
synchronization. We also introduce the metastability
Met Eq. (9) to quantify the metastability and chimera-
likeness of the observed dynamics within the excita-
tory population. Column a shows mostly incoherent

firing, in spite the fact that inhibitory neurons are firing
periodically and in synch. As the inhibitory weight is
increased (b, c, d), we see that excitatory neurons not
only fire less but they show a larger synchronization
index, as has been largely reported [54–58,63]. Panel
d goes further than the spike synchronization, showing
also a high value of synchrony in the voltage traces.
Increasing the excitatory weights, on the other hand,
(e, with an inhibitory drive similar to c) causes the net-
work to fire periodically but in this case we found the
firing to be more irregular as evidenced by a higher
metastability value.

Then, we simulated the same (JEE , JE I ) combina-
tions but in the presence of electrical synapses com-
municating the excitatory neurons in a lattice fash-
ion, where each neuron is reciprocally connected to
its 10 closest neighbors. Fig. 2B–D shows the effect
of the electrical synapses on the firing patterns that
were already described. In the first case (a), there is
an emergence of traveling waves, something that can
not be observed without gap junctions. These travel-
ing waves show a tendency to synchronize and spread
faster as the conductance of gap junction is increased
(compare B,C and D). In the cases of synchronized
firing (b,c) the introduction of electrical coupling fur-
ther increases the synchrony producing a much more
coherent activity also favoring total synchronization of
the voltage time courses. This synchronization with
oscillatory behavior occurs with period 2 (b) and 1
(c) depending on the degree of inhibition. In d we see
that the combination of electrical coupling and stronger
inhibition leads to suppression of spikes, giving rise to
synchronized subthreshold oscillations. An interesting
highly metastable behavior is found in the regime with
higher excitatory level (e). The raster plots in row 3
(Jgap = 0.05) of column e show the appearance of
disordered traveling waves that often take the form of
chimera-like states, where two subpopulations coexist;
one with synchronous activity and the other with ripple
events. More importantly, chimera-like states are also
metastable, meaning that they can stay in the vicinity
of one stable state for a certain time interval and then,
spontaneously move towards another. Again, the fir-
ing patterns in column e have a tendency to synchrony
as electrical connections are increased but neverthe-
less they maintain a high metastability index. Thus, the
introduction of gap junctions into the excitatory popu-
lation can lead to a new variety of firing patterns (wave
propagation, synchronized oscillations, chimera-like
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Fig. 2 A. Samples of raster plots and voltage traces of network
purely connected by chemical synapses. B-D. Samples of raster
plots in the same (JEE , JE I ) combinations but in presence of
electrical synapses communicating the excitatory neurons when
Jgap = 0.05, 0.1, 1.0, respectively. The voltage traces are shown
below each raster plot in B. Values of (χ, Met) pairs are shown
upper each raster plot. Values of (JEE , JE I ) combinations are:
a:(1.1, 0.045), b:(0.48, 0.16), c:(0.5, 0.35), d:(0.8, 0.82), e:(2.4,
0.40). The red Ex (green In) indicate index of excitatory popula-
tion (inhibitory population). The scale bars for all subplots is 10

ms.The presence of a dot in a raster plot, indicates that the neuron
whose index corresponds to that row produced an action poten-
tial (spike) at the time corresponding to that column. For raster
plot and voltage traces calculation, simulations were solved with
both Euler method and fourth-order Runge-Kutta scheme with
integration time step dt = 0.01 written in Python. No detectable
differences were found between these two methods. Data anal-
ysis and plotting was performed with Python and the libraries
Numpy, Scipy, and Matplotlib. (Color figure online)

and metastable state) that cannot be induced solely by
chemical synapses.

In order to appreciate better the effects of electrical
coupling on network dynamics, we swept a full region
of the JEE , JE I parameter space, characterizing the
behavior of the network by means of the previously
mentioned synchrony and metastability indexes. The

results from a network connected solely by chemical
synapses is shown in 3A. The letters a-e represent the
location of the raster plots and voltage traces shown
in Fig 2. As widely reported before [54–58,63] the
general synchronization index χ is highly dependent
on the strength of inhibitory connections, showing a
graded increase from top to bottom. The synchroniza-
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Fig. 3 The effect of electrical coupling on firing patterns of
excitatory neurons in JEE/JE I parameter space. A.Collective
dynamics behavior of excitatory neurons connected by purely
chemical synapses. (a-c) Incoherent state; (d)Metastable state;
(e) Generalized synchronous state. B–D. Significant emergence

of neural network state in presence of electrical coupling between
excitatory neurons. (a) Travelingwave ; (b,c) Synchronous states;
(d) Metastable state or chimera-likeness;(e) Subthreshold syn-
chronous states. The electrical synaptic weights for each subplot
are B. Jgap = 0.05, C. Jgap = 0.1, D. Jgap = 1
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tion of spikes, that we measure with the Kuramoto’s
order parameter R, shows a similar pattern although the
synchronized region appears less homogeneous than
in the case of the general index χ . The metastability
index also shows this, with a metastable region sep-
arating the synchrony regions c and d. As hinted by
Fig. 2, an increase in the excitation strength causes the
appearance of a region with higher metastability (e) in
the first transition from asynchronous to synchronous
firing.

The effect of electrical coupling between excita-
tory neurons is appreciated in Fig. 3B–D. There is a
dramatic increase in the synchrony measures although
this effect is not evenly distributed across the whole
parameter space. Some regions show a high increase in
synchrony (b,c) but they get separated by an interme-
diate synchrony region, and this intermediate region
is also characterized by high metastability (more on
this later). Other regions (a) show a gradual increase
in synchrony, as if their dynamics was less susceptible
to electrical coupling. Nevertheless, a high synchrony
regime is reached with the maximal conductance Jgap.
As shown in Fig. 2 (column a), this region is charac-
terized by traveling waves of activity that do not show
metastable behavior. The region containing the d point,
looses the spiking activity and falls into a subthreshold
oscillatory regime readily with the lowest Jgap value.
As the electrical coupling conductance is increased, this
region grows and is seen at progressively lower val-
ues of the inhibitory strength JE I . Finally, the region
e remains the same (in terms of synchrony) regardless
of the presence of electrical coupling and its conduc-
tance value. This is striking, as Fig. 2 already showed a
dramatic change in the firing patterns that are thus not
captured by the global behavior indexes χ , R and Met .
Looking at the firing patterns, we can see that the most
important difference is the spatial organization of the
irregular and metastable firing activity.

In summary, two significant results are observed in
the previous simulations. Firstly, we found that net-
works of excitatory neurons solely connected by chem-
ical synapses, can exhibit a variety of firing patterns
depending on their E/I balance. Secondly, we further
found that the introduction of gap junctions into the
excitatory population can cause a new variety of firing
patterns, such as traveling wave, synchronized oscilla-
tions, chimera-like and metastable state that can not be
induced solely by the chemical synapses.

In the following, we will examine in more detail
the transitions between the firing regimes caused by
the increase in inhibitory strength. To do this, we will
focus in two values of excitatory strength: JEE = 0.5,
roughly sweeping the areas near a-d, and JEE = 2.5,
that contains the e point.

3.2 The transitions between different firing
regimes

We investigated the various firing patterns at a fixed
excitatory level JEE = 0.5, to characterize the transi-
tions between the firing patterns represented by a to d
in Fig. 2. Fig. 4 shows the evolution of the synchrony
R and Metastability as JE I is swept from 0 to 1.0; in
absence (Fig. 4A,C) and presence (Fig. 4B,D) of elec-
trical coupling.

In the absence of electrical coupling (Fig. 4A,C), the
network reaches some degree of synchrony at JE I ≈
0.15 however full synchrony is never observed. The
activity is mostly incoherent, with varying values of R
and Met . Some regimes can be defined based on the
different values of Met but they don’t appear much
different and the transition between them is smooth.
In contrast, the presence of electrical coupling (Fig.
4B, D) produces the appearance of clearly synchro-
nized states as well as the already mentioned travel-
ing waves pattern when JE I < 0.1. The finer sweep
of the inhibitory strength now allows to observe that
the transition between the two-spike firing pattern (2)
and the one-spike pattern (4) occurs with a more disor-
dered pattern (3), characterized by high metastability
and the existence of unstable and transient traveling
waves. Unstable traveling waves appear again ((5) and
(6)) in the transition to the non-firing oscillatory regime
when JE I > 0.5. It is evident that the inhibitory level
JE I is a significant system parameter which plays a
major role in determining the emergence of the above
mentioned firing patterns, including traveling wave,
synchrony state with one-spike (or two-spike), a pecu-
liar chimera-likeness behavior and subthreshold syn-
chronous states.More importantly, there are transitions
between dynamical states depending on the inhibitory
level among individual neurons.

We repeated the same exploration at a higher level of
excitatory strength, JEE = 2.5 (Fig. 5), therefore char-
acterizing the e point in Fig. 2. Both in absence (Fig.
5A, C) and presence (Fig. 5B, D) of electrical coupling,
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Fig. 4 Influence of the inhibitory level JE I on the emergence of
spatiotemporal dynamical states in absence( A and C. Jgap = 0)
and presence of (B and D. Jgap = 0.1) electrical coupling where
JEE = 0.5. The emergence of collective dynamics in the exci-

tatory population quantified by the order parameters (blue circle
lines) and metastability (red star lines). C and D show a detail
of the typical spatiotemporal firing patterns in each dynamics
regimes of sweeping parameter JE I . (Color figure online)

the firing patterns that we observe are much more dis-
ordered than in the previously explored case. Without
gap junctions, the network always shows a somewhat
incoherent firing, although synchrony increases with
the inhibitory strength.

In contrast, the presence of electrical coupling (Fig.
5D) produces firing patterns that are much more struc-
tured without being fully synchronized. Three differ-
ent types of neuronal activity in the excitatory popu-
lation can be recognized. There is a much more reg-

ular population activity, for weak inhibitory synaptic
connections. The range of JE I becomes narrower for
traveling waves and wider for chimera-like state with
increasing excitability levels that are shown in Fig. 3D.
Traveling waves vanish at very high excitability lev-
els, similar to a previous study [87]. If the inhibitory
coupling strength is sufficiently increased among range
0.25 < JE I � 0.7 where both R and Met are high, we
observe chimera-like behavior. In addition, we also see
metastable states that alternate between synchronous
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Fig. 5 Distinct types of dynamical behavior as JE I varies as illustrated in A (Jgap = 0 ) and B (Jgap = 0.1) but with high excitatory
level where JEE = 2.5. C and D present typical firing patterns of these two cases in each dynamics regimes

and incoherent behaviors with different time windows.
If JE I is further increased (JE I > 0.7), spiking ceases
and instead subthreshold oscillations (without spikes)
emerge.

3.3 Effect of electrical connections in a different
chemical synapse topology

To present a broader perspective on variety of firing
patterns in presence of electrical coupling among exci-
tatory neurons, and understand its robustness under
well-defined assumptions, we choose a higher prob-
ability Psw (= 0.5) of rewiring excitatory connections,

resulting in a network closer to a random topology
rather than small-world connectivity. Fig. 6 character-
izes the collective behavior of excitatory neurons in
absence (Fig. 6A ) and presence (Fig. 6B–D) of elec-
trical coupling on (JEE , JE I ) plane. It is clear that the
similar firing patterns have been observed in this case,
emerging as five different dynamical regimes that were
already mentioned in Fig. 3. In order to better reveal
these firing pattern in each dynamical regimes, Fig.
7 shows samples of raster plots of excitatory neurons
in absence (A) and presence (B–D) of electrical cou-
pling. Introduction of electrical coupling still induces
a variety of firing pattern shown in Fig. 7B–D , such
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Fig. 6 The effect of electrical coupling on dynamical regimes
of spatiotemporal firing patterns when Psw = 0.5, showing
the similar dynamical behavior and a good robustness effect
under a clear comparison with Fig. 3. A.Collective dynamics
behavior of excitatory neurons connected by purely chemical
synapses. (a–c) Incoherent state; (d)Metastable state; (e) Gener-

alized synchronous state. B–D. Significant emergence of neural
network state in presence of electrical coupling between exci-
tatory neurons. (a) Traveling wave ; (b,c) Synchronous states;
(d) Metastable state or chimera-likeness;(e) Subthreshold syn-
chronous states
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Fig. 7 Samples of raster plots of E/I neuronal network both in absence (A) and presence of (B–D) electrical synaptic connections
among excitatory neurons when Psw = 0.5, the other parameters are the same as Fig.2

as traveling waves, two types of synchronous states,
chimera-like (or metastable state) with various ripples
events, and subthreshold synchronous states. By chang-
ing parameters such as weights of gap junction and
inhibitory connections, the way of synaptic connec-
tions per excitatory neurons, we observed these similar
network states again, showing features of robustness
with network densities. Similarly, we found our results
to be robust with respect to the values of JI I and JI E ,
obtaining the same effect of electrical synapses as long
as the excitation/inhibition balance is conserved.

To sum up, using statistical measurement of syn-
chronization index, order parameter and metastability,
we found that excitatory neurons connected by both
chemical and electrical synapses of E/I balance net-
work, can display various types of different levels of
synchronous activity, implying vastly different compu-
tational properties. For weak excitatory coupling, the
excitatory population displays rich collective dynamics
– traveling waves, two-spike (or one-spike) synchrony

firing pattern, metastable state, chimera-likeness (or
metastable state) and lastly oscillation without spikes
– as inhibitory level JE I varies. However, for strong
excitatory couplings, we found that the increasing
inhibitory level JE I in the networks of excitatory popu-
lation only leads to three fundamentally different types
of neuronal activity, namely, less regular population
activity, chimera-like behavior (ormetastable state) and
subthreshold synchronous states (oscillation without
spikes).

4 Discussion

In this paper, we investigated how electical synapses
among excitatory (pyramidals) cells can affect collec-
tive dynamics of E/I balanced networks. While several
works have focused on electrical synapses among cor-
tical interneurons experimentally and their functional
roles by both computational neuroscientist and exper-
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imentalists, few studies have explored the impact of
synaptic connections among pyramidal cells to neural
networks. Experimental evidence for the similar junc-
tions in the cortex has, however, remained elusive due
to the apparent rarity of these coupling among exci-
tatory neurons. An interesting study by Jennifer et al
[99]. has shown that the presence or absence of pair-
wise ES-coupled neurons does little to influence global
network behavior, the ES-coupled excitatory neurons
themselves, however, only exhibit pair-wise synchrony
and oscillations.

With the goal of understanding what role of elec-
trical communication between excitatory cells might
play in influencing network dynamics, we systemat-
ically swept the connection parameters of synaptic
weights, trying to keep other variables, such as param-
eters of synaptic dynamics. At first glance, our results
are not as straightforward to interpret as in the pre-
viously mentioned works [43,85–87,100,101].This is
not surprising, as various synchrony firing events arises
in networks purely connected by electrical or chemical
synapses together with synaptic weights and seems to
depend on other factors such as time delay and net-
works topology. However, we found that the whole
excitatory population has a tendency to synchroniza-
tion as the weights of ES-coupling among excitatory
cells are increased. Moreover, the existence of these
ES-connections can cause a new various firing patterns
of interest (such as synchronous firing, various rip-
ples events) by slightly changing the chemical synaptic
weights, that can not be induced by solely synaptic con-
nections.

Since we have shown that ES-coupled excitatory
cells can allow for significant neural firing changes
in the network dynamics due to addition of electri-
cal synapses, we next further investigated that chemi-
cal synaptic inhibition from inhibitory neurons to ES-
coupled excitatory population are enhanced. In this
case, we showed that the variation of this inhibition can
induce more than 5 firing patterns with different time-
scale ripples events at weaker excitatory level. More
importantly, the increasing inhibition does not simply
result in the similar firing modes at stronger excita-
tory level, but instead results in the excitatory popula-
tion with three fundamental firing patterns compared
to those studies that do not (see [18–21]) . These simu-
lation finding imply that addition and variation of inhi-
bition in networks induce various firing patterns due
to generating nonlinear effects. In other words, in the

absence of inhibition, any type of external input would
generate more or less the same one-way patterns.

Brain dynamics is often inherently variable and
unstable, consisting of sequences of transient spa-
tiotemporal patterns [102,103]. These sequences of
transients are a hallmark of metastable dynamics that
are neither entirely stable nor completely unstable. Our
results pave a possible way to uncover the underlying
mechanisms of generating metastable dynamics, such
as chimera-likeness, that may mediate perception and
cognition.
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