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Abstract—Osteoporosis is a skeletal disorder characterized by
low bone mass, which compromises its resistance and increases
the risk of fractures, and is a widespread problem worldwide.
Currently, the gold standard for assessing fracture risk is the
measurement of the areal bone mineral density with Dual-Energy
X-ray Absorptiometry. Several ultrasound techniques have been
presented as alternatives. It has been shown that the estimation of
cortical thickness and porosity, obtained by Bi-Directional Axial
Transmission, are associated with non-traumatic fractures in
postmenopausal women. Cortical parameters were derived from
the comparison between experimental and theoretical guided
modes. However, this model-based inverse approach tends to fail
for the patients associated with poor guided mode information. A
recent study has shown the potential of an automatic classification
tool, Support Vector Machine, to analyze guided wave spectrum
images independently of any waveguide model. The aim of
this study is to explore how the classification accuracy varies
with the number of features. Optimization was done using the
Particle Swarm Optimization algorithm, while adjustment was
made considering age, body mass index, and cortisone intake.
The results show that adjusting the data and optimizing the
parameters improved classification. Moreover, the number of
features was reduced from 32 to 15, with 73.5% accuracy
comparable to the gold standard.

Index Terms—Ultrasonic guided waves, cortical bone, fracture
classification, support vector machine, particle swarm optimiza-
tion algorithm.

I. INTRODUCTION

Osteoporosis is recognized as a skeletal disorder, caused by
an imbalance in bone remodeling, which is influenced by the
genetic code and several other factors, including the adequate
level of physical, hormonal, and nutritional activity [1], [2].
Osteoporotic bone has increased porosity and decreased thick-
ness that increases the risk of fracture. Worldwide, 1.6 million
hip fractures occur annually and are expected to increase to
6.3 million by 2050 [3]. In addition, 1 in 3 women and 1 in 5
men over 50 years are expected to suffer from an osteoporotic
fracture [2].

Currently, the gold standard for fracture risk assessment
is dual-energy X-ray absorptiometry (DXA) [4], [5]. This
technique generates a calibrated gray level image by applying
a small dose of X-rays. This image provides bone mineral
density by area as well as its normalized T-score counterpart.
In fact, osteoporosis in adults is diagnosed on the basis of a T-

score equal to or lower than -2.5. However, most people who
suffer fragility fractures are above this limit [6], [7].

Within ultrasound techniques [8], another alternative is
the bidirectional axial transmission device (BDAT) [9]. This
device makes it possible to measure the propagation of guided
waves, with a wavelength comparable to the cortical thick-
ness [10]. One of the main results of the device is an guided
wave spectrum image (GWSI) obtained with the SVD-based
method applied to multiple transmitters and receivers [11].
With this image it is possible to implement an inverse problem
providing porosity and cortical thickness values. However, this
approach tends to fail for patients associated with poor guided
mode information [12].

Recently, a parallel approach using machine learning has
been proposed [13]. In this case, the structural and textural
properties of the GWSI are studied without the need for
any physical model. Machine learning is an area of Artificial
Intelligence that, through computational methods, allows us to
identify patterns and make predictions [14].

The support vector machine is one of the most popular
machine learning algorithms, its objective is to find a hy-
perplane in an N -dimensional space that provides the best
discrimination between two groups [15]. The hyperplane acts
as the separating boundary, and can be linear or more complex
such as Gaussian, polynomial, among others. Each dimension
is called a feature and corresponds to a parameter of interest.
In this study, these features come from clinical factors of the
patient and the structural and textural analysis of the GWSIs.
The problem arises that as the number of dimensions increases,
the more complex it becomes to find a hyperplane that
discriminates the groups. Several machine learning approaches
have already been applied to osteroporosis, mainly for X-Ray
modalities [16].

The objective of this study is to explore how the accuracy
varies with the number of features sorted following their statis-
tical significance, in order to search if a optimal combination
of features exist. Finally, the results were compared with the
gold standard DXA and the previous BDAT approach.

This document is organized as follows. Section II presents
the materials and methods, Section III presents the results and
finally, Section IV presents the conclusions and future work
proposed for the study.
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II. MATERIALS AND METHODS

A. Materials
We used the patient database of the BDAT pilot clinical

study [17]. This is a cross-sectional or retrospective study,
which means that two groups of patients are measured and
their fracture history is taken into account. This study involved
211 patients, 110 without fracture and 104 with non-traumatic
fracture. A total of 12.515 measurements were obtained with
the 1 MHz BDAT device. Each measurement, as illustrated
in Figure 1, is composed of two directions, Direction 1
corresponds to the distal wave propagation direction, i.e., from
the elbow to the wrist, while the opposite proximal direction
is denoted as direction 2. For both directions, GWSIs were
obtained using the SVD method [11]. The GWSIs, denoted
by Norm(f, k), expressed in the frequency f - wavenumber
domain k, can be interpreted as an enhanced spatiotemporal
Fourier transform. The pixel value reflects on a scale from 0
to 1 the presence rate of the tested plane wave in the measured
signals.

Fig. 1. Database construction: measurements are obtained on 211 patients
with the BDAT device with two directions of propagation, the angle correction
is then applied, finally the two images are merged and the noise is filtered.

B. Construction of the Support Vector
The same features of a previous study were considered [13].

The Support Vector contains 32 features: 4 from the structural
similarity index measure (SSIM), 4 from the mean squared
error (MSE) and 24 from the Grey Level Co-occurrence
Matrices (GLCM) of three region of interest (ROI). First the
features are considered alone or unadjusted. Then, the feature
are adjusted using three clinical features, age, Body Mass
Index (BMI) and used of glucocorticoids. Finally, the features
were sorted considering their statistical significance obtained
from the logistic regression analysis [13].

Finally, six random combinations of patients, with the same
ratio of non fractured and fractured patients, were generated.
These groups were used for training and testing.

C. Optimization algorithm

RBF Kernel SVM depends on two parameters γ and C, be-
ing real and positive. It is possible to optimize these parameters
in order to improve the classification process. In this study,
the Particle Swarm Optimization algorithm was used [18] to
compute the best values of γ and C allowing to increase the
accuracy. Similar works about parameter tuning of optimizer
algorithms can be found in [19]–[21].

In our work, we previously define ranges for the two
parameters γ and C, in order to suitably guide the search
for the optimizer. Thus, γ takes vales from [10−5, 10+2],
and C varies in [10−2, 10+2]. The accuracy was optimized
for each one of the 6 patient combinations and for each
feature combination in order to extract the mean accuracy
and the associated standard deviation. The optimized accuracy
is then compared to the accuracy obtained on the 6 patient
combinations using default parameters, C = 1.0 and γ = 0.1.

III. RESULTS

Accuracy results in function of the feature number are
shown in Figure 2, for default (left) and optimized with PSO
(right) C and γ parameters.

Fig. 2. Accuracy in function of feature number, considering default (left) or
optimized (right) C and γ parameters of the RBF Kernel SVM for unadjusted
and adjusted cases. Mean and standard deviations are obtained from the
6 patient combinations. Features are sorted with respect to their statistical
significance,

Unadjusted and adjusted cases are considered. One can
observed that in both cases, the accuracy increases with the
age, BMI and cortisone intake adjustement. Likewise, accuracy
also increases with optimization. In the default case, one can
observe that accuracy presents a plateau for feature number
ranging from 10 to 20, suggesting that an optimal feature
combination exists. In the optimized case, the best accuracy
is obtained for about 15 features. No significant accuracy
improvement are observed with a larger feature number. The
highest accuracy 73.5% [68.5 - 78.5] is comparable to the
DXA performance 73% [66 - 79], obtained on the same patient
database using logistic regression of the adjusted femoral neck
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bone mineral density [13]. However, it is worth to notice that
the parameters γ and C differs for each evaluation.

IV. CONCLUSIONS

In this study, we considered a Support Vector including
features obtained from textural and structural analysis of
guided wave spectrum images as well as clinical factors,
in order to classify two groups of patients, with or without
non-traumatic fractures. This approach can be included in an
affordable and portable device for osteoporosis evaluation such
as the one developed by Azalée.

An advantage of this technique is that it does not require
any physical models. The best accuracy is obtained using
20 adjusted features and optimized C and γ parameters.
Optimization was done using the Particle Swarm Optimiza-
tion algorithm, while adjustement was done considering age,
body mass index and cortisone intake. The performance is
comparable to the current gold standard DXA.

As future work, we propose to increase the number of
patients in order to test other machine learning approaches. In
particular, it is known that the effectiveness of deep learning
increases with the size of the database [22]. In addition, we
propose to study how these new approaches, from the point
of knowing their interpretability [23], i.e. knowing how to
explain the decisions and predictions of machines to justify
their reliability.
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