Examinando por Autor "Belloni, Diogo"
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem Breaking the Degeneracy in Magnetic Cataclysmic Variable X-Ray Spectral Modeling Using X-Ray Light Curves(American Astronomical Society (Aas), 2021) Belloni, Diogo; Rodrigues, Claudia; Schreiber, Matthias R.; Castro, Manuel; Costa, Joaquim E. R.; Hayashi, Takayuki; Lima, Isabel J.; Luna, Gerardo J. M.; Martins, Murilo; Oliveira, Alexandre S.; Parsons, Steven G.; Silva, Karleyne M. G.; Stecchini, Paulo E.; Stuchi, Teresa J.; Zorotovic, MonicaWe present an analysis of mock X-ray spectra and light curves of magnetic cataclysmic variables using an upgraded version of the 3D cyclops code. This 3D representation of the accretion flow allows us to properly model total and partial occultation of the postshock region by the white dwarf as well as the modulation of the X-ray light curves due to the phase-dependent extinction of the preshock region. We carried out detailed postshock region modeling in a four-dimensional parameter space by varying the white dwarf mass and magnetic field strength as well as the magnetosphere radius and the specific accretion rate. To calculate the postshock region temperature and density profiles, we assumed equipartition between ions and electrons; took into account the white dwarf gravitational potential, the finite size of the magnetosphere, and a dipole-like magnetic field geometry; and considered cooling by both bremsstrahlung and cyclotron radiative processes. By investigating the impact of the parameters on the resulting X-ray continuum spectra, we show that there is an inevitable degeneracy in the four-dimensional parameter space investigated here, which compromises X-ray continuum spectral fitting strategies and can lead to incorrect parameter estimates. However, the inclusion of X-ray light curves in different energy ranges can break this degeneracy, and it therefore remains, in principle, possible to use X-ray data to derive fundamental parameters of magnetic cataclysmic variables, which represents an essential step toward understanding their formation and evolution.Ítem Evidence for reduced magnetic braking in polars from binary population models(Royal Astronomical Society, 2020) Belloni, Diogo; Schreiber, Matthias R.; Zorotovic, MónicaWe present the first population synthesis of synchronous magnetic cataclysmic variables, called polars, taking into account the effect of the white dwarf (WD) magnetic field on angular momentum loss. We implemented the reduced magnetic braking (MB) model proposed by Li, Wu & Wickramasinghe into the Binary Stellar Evolution (BSE) code recently calibrated for cataclysmic variable (CV) evolution. We then compared separately our predictions for polars and non-magnetic CVs with a large and homogeneous sample of observed CVs from the Sloan Digital Sky Survey. We found that the predicted orbital period distributions and space densities agree with the observations if period bouncers are excluded. For polars, we also find agreement between predicted and observed mass transfer rates, while the mass transfer rates of non-magnetic CVs with periods ≳3 h drastically disagree with those derived from observations. Our results provide strong evidence that the reduced MB model for the evolution of highly magnetized accreting WDs can explain the observed properties of polars. The remaining main issues in our understanding of CV evolution are the origin of the large number of highly magnetic WDs, the large scatter of the observed mass transfer rates for non-magnetic systems with periods ≳3 h, and the absence of period bouncers in observed samples.Ítem Magnetic dynamos in white dwarfs – I. Explaining the dearth of bright intermediate polars in globular clusters(Royal Astronomical Society, 2021) Belloni, Diogo; Schreiber, Matthias R.; Salaris, Maurizio; Maccarone, Thomas J.; Zorotovic, MonicaRecently, Bahramian et al. investigated a large sample of globular clusters (GCs) and found that bright intermediate polars (IPs) are a factor of 10 less frequent in GCs than in the Galactic field. We theoretically investigate here this discrepancy based on GC numerical simulations. We found that, due to disruptive dynamical interaction, there is on average a reduction of only half of bright IP progenitors, which is clearly not enough to explain the observed deficiency. However, if the rotation- and crystallization-driven dynamo scenario recently proposed by Schreiber et al. is incorporated in the simulations, the observed rareness of bright IPs in GCs can be reproduced. This is because bright cataclysmic variables (CVs) in GCs are typically very old systems (≳10 Gyr), with white dwarfs that almost fully crystallized before mass transfer started, which does not allow strong magnetic fields to be generated. The observed mass density of bright IPs in GCs can be recovered if around one-third of the bright CVs dynamically formed through mergers have magnetic field strengths similar to those of IPs. We conclude that the observed paucity of bright IPs in GCs is a natural consequence of the newly proposed rotation- and crystallization-driven dynamo scenario.Ítem The origin and evolution of magnetic white dwarfs in close binary stars(Springer, 2021) Schreiber, Matthias R.; Belloni, Diogo; Gänsicke, Boris T.; Parsons, Steven G.; Zorotovic, MonicaThe origin of magnetic fields in white dwarfs remains a fundamental unresolved problem in stellar astrophysics. In particular, the very different fractions of strongly (more than about a megagauss) magnetic white dwarfs in evolutionarily linked populations of close white dwarf binary stars cannot be reproduced by any scenario suggested so far. Strongly magnetic white dwarfs are absent among detached white dwarf binary stars that are younger than approximately a billion years. In contrast, of cataclysmic variables (semi-detached binary star systems that contain a white dwarf) in which the white dwarf accretes from a low-mass star companion, more than a third host a strongly magnetic white dwarf1. Here we present binary star evolutionary models that include the spin evolution of accreting white dwarfs and crystallization of their cores, as well as magnetic field interactions between the stars. We show that a crystallization- and rotation-driven dynamo similar to those working in planets and low-mass stars2 can generate strong magnetic fields in the white dwarfs in cataclysmic variables, which explains their large fraction among the observed population. When the magnetic field generated in the white dwarf connects with that of the secondary star in the binary system, synchronization torques and reduced angular momentum loss cause the binary to detach for a relatively short period of time. The few known strongly magnetic white dwarfs in detached binaries, such as AR Scorpii3, are in this detached phase.