Examinando por Autor "Canas Rodrigues, Paulo"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem A Spatio-Temporal Visualization Approach of PM10 Concentration Data in Metropolitan Lima(MDPI, 2021) Encalada-Malca, Alexandra Abigail; Cochachi-Bustamante, Javier David; Canas Rodrigues, Paulo; Salas, Rodrigo; López-Gonzales, Javier LinkolkLima is considered one of the cities with the highest air pollution in Latin America. Institutions such as DIGESA, PROTRANSPORTE and SENAMHI are in charge of permanently monitoring air quality; therefore, the air quality visualization system must manage large amounts of data of different concentrations. In this study, a spatio-temporal visualization approach was developed for the exploration of data of the PM10 concentration in Metropolitan Lima, where the spatial behavior, at different time scales, of hourly concentrations of PM10 are analyzed using basic and specialized charts. The results show that the stations located to the east side of the metropolitan area had the highest concentrations, in contrast to the stations located in the center and north that reported better air quality. According to the temporal variation, the station with the highest average of biannual and annual PM10 was the HCH station. The highest PM10 concentrations were registered in 2018, during the summer, highlighting the month of March with daily averages that reached 435 μμg/m3. During the study period, the CRB was the station that recorded the lowest concentrations and the only one that met the Environmental Quality Standard for air quality. The proposed approach exposes a sequence of steps for the elaboration of charts with increasingly specific time periods according to their relevance, and a statistical analysis, such as the dynamic temporal correlation, that allows to obtain a detailed visualization of the spatio-temporal variations of PM10 concentrations. Furthermore, it was concluded that the meteorological variables do not indicate a causal relationship with respect to PM10 levels, but rather that the concentrations of particulate material are related to the urban characteristics of each district.Ítem Air quality assessment and pollution forecasting using artifcial neural networks in Metropolitan Lima‐Peru(Springer, 2021) Hoyos Cordova, Chardin; Lopez Portocarrero, Manuel Niño; Salas, Rodrigo; Torres, Romina; Canas Rodrigues, Paulo; López‐Gonzales, Javier LinkolkThe prediction of air pollution is of great importance in highly populated areas because it directly impacts both the management of the city’s economic activity and the health of its inhabitants. This work evaluates and predicts the Spatio-temporal behavior of air quality in Metropolitan Lima, Peru, using artificial neural networks. The conventional feedforward backpropagation known as Multilayer Perceptron (MLP) and the Recurrent Artificial Neural network known as Long Short-Term Memory networks (LSTM) were implemented for the hourly prediction of PM10 based on the past values of this pollutant and three meteorological variables obtained from five monitoring stations. The models were validated using two schemes: The Hold-Out and the Blocked-Nested Cross-Validation (BNCV). The simulation results show that periods of moderate PM10 concentration are predicted with high precision. Whereas, for periods of high contamination, the performance of both models, the MLP and LSTM, were diminished. On the other hand, the prediction performance improved slightly when the models were trained and validated with the BNCV scheme. The simulation results showed that the models obtained a good performance for the CDM, CRB, and SMP monitoring stations, characterized by a moderate to low level of contamination. However, the results show the difficulty of predicting this contaminant in those stations that present critical contamination episodes, such as ATE and HCH. In conclusion, the LSTM recurrent artificial neural networks with BNCV adapt more precisely to critical pollution episodes and have better predictability performance for this type of environmental data.