Examinando por Autor "Helena, D."
Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
Ítem The Use of 3D Printing Technology for Manufacturing Metal Antennas in the 5G/IoT Context(Sensors (Basel), 2021) Helena, D.; Ramos, A.; Varum, T.; Matos, J. N.With the rise of 5G, Internet of Things (IoT), and networks operating in the mmWave frequencies, a huge growth of connected sensors will be a reality, and high gain antennas will be desired to compensate for the propagation issues, and with low cost, characteristics inherent to metallic radiating structures. 3D printing technology is a possible solution in this way, as it can print an object with high precision at a reduced cost. This paper presents different methods to fabricate typical metal antennas using 3D printing technology. These techniques were applied as an example to pyramidal horn antennas designed for a central frequency of 28 GHz. Two techniques were used to metallize a structure that was printed with polylactic acid (PLA), one with copper tape and other with a conductive spray-paint. A third method consists of printing an antenna completely using a conductive filament. All prototypes combine good results with low production cost. The antenna printed with the conductive filament achieved a better gain than the other structures and showed a larger bandwidth. The analysis recognizes the vast potential of these 3D-printed structures for IoT applications, as an alternative to producing conventional commercial antennas.