Examinando por Autor "Monachesi, Antonela"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem An environmental dependence of the physical and structural properties in the Hydra Cluster galaxies(Royal Astronomical Society, 2021) Lima-Dias, Ciria; Monachesi, Antonela; Torres-Flores, Sergio; Cortesi, Arianna; Hernández-Lang, Daniel; Barbosa, Carlos Eduardo; Mendes De Oliveira, Claudia; Olave-Rojas, Daniela; Pallero, Diego; Sampedro, Laura; Molino, Alberto; Herpich, Fabio R; Jaffé, Yara L; Amorín, Ricardo; Chies-Santos, Ana L; Dimauro, Paola; Telles, Eduardo; Lopes, Paulo A A; Alvarez-Candal, Alvaro; Ferrari, Fabricio; Kanaan, Antonio; Ribeiro, Tiago; Schoenell, WilliamThe nearby Hydra cluster (∼50 Mpc) is an ideal laboratory to understand, in detail, the influence of the environment on the morphology and quenching of galaxies in dense environments. We study the Hydra cluster galaxies in the inner regions (1R200) of the cluster using data from the Southern Photometric Local Universe Survey, which uses 12 narrow and broad-band filters in the visible region of the spectrum. We analyse structural (Sérsic index, effective radius) and physical (colours, stellar masses, and star formation rates) properties. Based on this analysis, we find that ∼88 per cent of the Hydra cluster galaxies are quenched. Using the Dressler–Schectman test approach, we also find that the cluster shows possible substructures. Our analysis of the phase-space diagram together with density-based spatial clustering algorithm indicates that Hydra shows an additional substructure that appears to be in front of the cluster centre, which is still falling into it. Our results, thus, suggest that the Hydra cluster might not be relaxed. We analyse the median Sérsic index as a function of wavelength and find that for red [(u − r) ≥2.3] and early-type galaxies it displays a slight increase towards redder filters (13 and 18 per cent, for red and early type, respectively), whereas for blue + green [(u − r)<2.3] galaxies it remains constant. Late-type galaxies show a small decrease of the median Sérsic index towards redder filters. Also, the Sérsic index of galaxies, and thus their structural properties, do not significantly vary as a function of clustercentric distance and density within the cluster; and this is the case regardless of the filter.Ítem Final Targeting Strategy for the SDSS-IV APOGEE-2S Survey(American Astronomical Society (Aas), 2021) Santana, Felipe A.; Beaton, Rachael L.; Covey, Kevin R.; O’Connell, Julia E.; Longa-Peña, Penélope; Cohen, Roger; Fernández-Trincado, José G.; Hayes, Christian R.; Zasowski, Gail; Sobeck, Jennifer S.; Majewski, Steven R.; Chojnowski, S. D.; De Lee, Nathan; Oelkers, Ryan J.; Stringfellow, Guy S.; Almeida, Andrés; Anguiano, Borja; Donor, John; Frinchaboy, Peter M.; Hasselquist, Sten; Johnson, Jennifer A.; Kollmeier, Juna A.; Nidever, David L.; Price-Whelan, Adrian M.; Rojas-Arriagada, Alvaro; Schultheis, Mathias; Shetrone, Matthew; Simon, Joshua D.; Aerts, Conny; Borissova, Jura; Drout, Maria R.; Geisler, Doug; Law, C. Y.; Medina, Nicolas; Minniti, Dante; Monachesi, Antonela; Muñoz, Ricardo R.; Poleski, Radosław; Roman-Lopes, Alexandre; Schlaufman, Kevin C.; Stutz, Amelia M.; Teske, Johanna; Tkachenko, Andrew; Van Saders, Jennifer L.; Weinberger, Alycia J.; Zoccali, ManuelaAPOGEE is a high-resolution (R ∼ 22,000), near-infrared, multi-epoch, spectroscopic survey of the Milky Way. The second generation of the APOGEE project, APOGEE-2, includes an expansion of the survey to the Southern Hemisphere called APOGEE-2S. This expansion enabled APOGEE to perform a fully panoramic mapping of all of the main regions of the Milky Way; in particular, by operating in the H band, APOGEE is uniquely able to probe the dust-hidden inner regions of the Milky Way that are best accessed from the Southern Hemisphere. In this paper we present the targeting strategy of APOGEE-2S, with special attention to documenting modifications to the original, previously published plan. The motivation for these changes is explained as well as an assessment of their effectiveness in achieving their intended scientific objective. In anticipation of this being the last paper detailing APOGEE targeting, we present an accounting of all such information complete through the end of the APOGEE-2S project; this includes several main survey programs dedicated to exploration of major stellar populations and regions of the Milky Way, as well as a full list of programs contributing to the APOGEE database through allocations of observing time by the Chilean National Time Allocation Committee and the Carnegie Institution for Science. This work was presented along with a companion article, Beaton et al. (2021), presenting the final target selection strategy adopted for APOGEE-2 in the Northern Hemisphere.