Examinando por Autor "Nordsletten, David"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Altered Aortic Hemodynamics and Relative Pressure in Patients with Dilated Cardiomyopathy(Springer, 2022) Marlevi, David; Mariscal‐Harana, Jorge; Burris, Nicholas S.; Sotelo, Julio; Ruijsink, Bram; Hadjicharalambous, Myrianthi; Asner, Liya; Sammut, Eva; Chabiniok, Radomir; Uribe, Sergio; Winter, Reidar; Lamata, Pablo; Alastruey, Jordi; Nordsletten, DavidVentricular-vascular interaction is central in the adaptation to cardiovascular disease. However, cardiomyopathy patients are predominantly monitored using cardiac biomarkers. The aim of this study is therefore to explore aortic function in dilated cardiomyopathy (DCM). Fourteen idiopathic DCM patients and 16 controls underwent cardiac magnetic resonance imaging, with aortic relative pressure derived using physics-based image processing and a virtual cohort utilized to assess the impact of cardiovascular properties on aortic behaviour. Subjects with reduced left ventricular systolic function had significantly reduced aortic relative pressure, increased aortic stiffness, and significantly delayed time-to-pressure peak duration. From the virtual cohort, aortic stiffness and aortic volumetric size were identified as key determinants of aortic relative pressure. As such, this study shows how advanced flow imaging and aortic hemodynamic evaluation could provide novel insights into the manifestation of DCM, with signs of both altered aortic structure and function derived in DCM using our proposed imaging protocol.Ítem Comprehensive Assessment of Left Intraventricular Hemodynamics Using a Finite Element Method: An Application to Dilated Cardiomyopathy Patients(MDPI, 2021) Franco, Pamela; Sotelo, Julio; Montalba, Cristian; Ruijsink, Bram; Kerfoot, Eric; Nordsletten, David; Mura, Joaquín; Hurtado, Daniel; Uribe, SergioIn this paper, we applied a method for quantifying several left intraventricular hemodynamic parameters from 4D Flow data and its application in a proof-of-concept study in dilated cardiomyopathy (DCM) patients. In total, 12 healthy volunteers and 13 DCM patients under treatment underwent short-axis cine b-SSFP and 4D Flow MRI. Following 3D segmentation of the left ventricular (LV) cavity and registration of both sequences, several hemodynamic parameters were calculated at peak systole, e-wave, and end-diastole using a finite element approach. Sensitivity, inter- and intra-observer reproducibility of hemodynamic parameters were evaluated by analyzing LV segmentation. A local analysis was performed by dividing the LV cavity into 16 regions. We found significant differences between volunteers and patients in velocity, vorticity, viscous dissipation, energy loss, and kinetic energy at peak systole and e-wave. Furthermore, although five patients showed a recovered ejection fraction after treatment, their hemodynamic parameters remained low. We obtained several hemodynamic parameters with high inter- and intra-observer reproducibility. The sensitivity study revealed that hemodynamic parameters showed a higher accuracy when the segmentation underestimates the LV volumes. Our approach was able to identify abnormal flow patterns in DCM patients compared to volunteers and can be applied to any other cardiovascular diseases.