Examinando por Autor "Schreiber, Matthias R."
Mostrando 1 - 8 de 8
Resultados por página
Opciones de ordenación
Ítem Breaking the Degeneracy in Magnetic Cataclysmic Variable X-Ray Spectral Modeling Using X-Ray Light Curves(American Astronomical Society (Aas), 2021) Belloni, Diogo; Rodrigues, Claudia; Schreiber, Matthias R.; Castro, Manuel; Costa, Joaquim E. R.; Hayashi, Takayuki; Lima, Isabel J.; Luna, Gerardo J. M.; Martins, Murilo; Oliveira, Alexandre S.; Parsons, Steven G.; Silva, Karleyne M. G.; Stecchini, Paulo E.; Stuchi, Teresa J.; Zorotovic, MonicaWe present an analysis of mock X-ray spectra and light curves of magnetic cataclysmic variables using an upgraded version of the 3D cyclops code. This 3D representation of the accretion flow allows us to properly model total and partial occultation of the postshock region by the white dwarf as well as the modulation of the X-ray light curves due to the phase-dependent extinction of the preshock region. We carried out detailed postshock region modeling in a four-dimensional parameter space by varying the white dwarf mass and magnetic field strength as well as the magnetosphere radius and the specific accretion rate. To calculate the postshock region temperature and density profiles, we assumed equipartition between ions and electrons; took into account the white dwarf gravitational potential, the finite size of the magnetosphere, and a dipole-like magnetic field geometry; and considered cooling by both bremsstrahlung and cyclotron radiative processes. By investigating the impact of the parameters on the resulting X-ray continuum spectra, we show that there is an inevitable degeneracy in the four-dimensional parameter space investigated here, which compromises X-ray continuum spectral fitting strategies and can lead to incorrect parameter estimates. However, the inclusion of X-ray light curves in different energy ranges can break this degeneracy, and it therefore remains, in principle, possible to use X-ray data to derive fundamental parameters of magnetic cataclysmic variables, which represents an essential step toward understanding their formation and evolution.Ítem Cataclysmic variable evolution and the white dwarf mass problem: A Review(Elsevier, 2020) Zorotovic, Mónica; Schreiber, Matthias R.Although the theory of cataclysmic variable (CV) evolution is able to explain several observational aspects, strong discrepancies have existed for decades between observations and theoretical predictions of the orbital period distribution, the location of the minimum period, and the space density of CVs. Moreover, it has been shown in the last decade that the average white dwarf (WD) mass observed in CVs is significantly higher than the average mass in single WDs or in detached progenitors of CVs, and that there is an absence of helium-core WDs in CVs which is not observed in their immediate detached progenitors. This highly motivated us to revise the theory of CV formation and evolution. A new empirical model for angular momentum loss in CVs was developed in order to explain the high average WD mass observed and the absence of systems with helium-core WDs. This model seems to help, at the same time, with all of the above mentioned disagreements between theory and observations. Moreover, it also provides us with a very likely explanation for the existence of low-mass WDs without a companion. Here we will review the standard model for CV evolution and the disagreements that have existed for decades between simulations and observations with their possible solutions and/or improvements. We will also summarize the recently confirmed disagreement related to the average WD mass and the fraction of helium-core WDs among CVs, as well as the development of an empirical model that allows us to solve all the disagreements, discussing the physics that could be involved.Ítem Evidence for reduced magnetic braking in polars from binary population models(Royal Astronomical Society, 2020) Belloni, Diogo; Schreiber, Matthias R.; Zorotovic, MónicaWe present the first population synthesis of synchronous magnetic cataclysmic variables, called polars, taking into account the effect of the white dwarf (WD) magnetic field on angular momentum loss. We implemented the reduced magnetic braking (MB) model proposed by Li, Wu & Wickramasinghe into the Binary Stellar Evolution (BSE) code recently calibrated for cataclysmic variable (CV) evolution. We then compared separately our predictions for polars and non-magnetic CVs with a large and homogeneous sample of observed CVs from the Sloan Digital Sky Survey. We found that the predicted orbital period distributions and space densities agree with the observations if period bouncers are excluded. For polars, we also find agreement between predicted and observed mass transfer rates, while the mass transfer rates of non-magnetic CVs with periods ≳3 h drastically disagree with those derived from observations. Our results provide strong evidence that the reduced MB model for the evolution of highly magnetized accreting WDs can explain the observed properties of polars. The remaining main issues in our understanding of CV evolution are the origin of the large number of highly magnetic WDs, the large scatter of the observed mass transfer rates for non-magnetic systems with periods ≳3 h, and the absence of period bouncers in observed samples.Ítem Magnetic dynamos in white dwarfs – I. Explaining the dearth of bright intermediate polars in globular clusters(Royal Astronomical Society, 2021) Belloni, Diogo; Schreiber, Matthias R.; Salaris, Maurizio; Maccarone, Thomas J.; Zorotovic, MonicaRecently, Bahramian et al. investigated a large sample of globular clusters (GCs) and found that bright intermediate polars (IPs) are a factor of 10 less frequent in GCs than in the Galactic field. We theoretically investigate here this discrepancy based on GC numerical simulations. We found that, due to disruptive dynamical interaction, there is on average a reduction of only half of bright IP progenitors, which is clearly not enough to explain the observed deficiency. However, if the rotation- and crystallization-driven dynamo scenario recently proposed by Schreiber et al. is incorporated in the simulations, the observed rareness of bright IPs in GCs can be reproduced. This is because bright cataclysmic variables (CVs) in GCs are typically very old systems (≳10 Gyr), with white dwarfs that almost fully crystallized before mass transfer started, which does not allow strong magnetic fields to be generated. The observed mass density of bright IPs in GCs can be recovered if around one-third of the bright CVs dynamically formed through mergers have magnetic field strengths similar to those of IPs. We conclude that the observed paucity of bright IPs in GCs is a natural consequence of the newly proposed rotation- and crystallization-driven dynamo scenario.Ítem NaCo polarimetric observations of Sz 91 transitional disc: a remarkable case of dust filtering(Royal Astronomical Society, 2020) Mauco, Karina; Olofsson, Johan; Schreiber, Matthias R.; Bayo, Amelia; Cáceres, Claudio; Montesinos, MatíasWe present polarized light observations of the transitional disc around Sz 91 acquired with VLT/NaCo at H (1.7μm) and Ks (2.2μm) bands. We resolve the disc and detect polarized emission up to ∼0.5 arcsec (∼80 au) along with a central cavity at both bands. We computed a radiative transfermodel that accounts for themain characteristics of the polarized observations. We found that the emission is best explained by small, porous grains distributed in a disc with a ∼45 au cavity. Previous ALMA observations have revealed a large sub-mm cavity (∼83 au) and extended gas emission from the innermost (<16 au) regions up to almost 400 au from the star. Dynamical clearing by multiple low-mass planets arises as the most probable mechanism for the origin of Sz 91’s peculiar structure. Using new L -band ADI observations, we can rule out companions more massive than Mp ≥ 8 MJup beyond 45 au assuming hot-start models. The disc is clearly asymmetric in polarized light along the minor axis, with the north side brighter than the south side. Differences in position angle between the disc observed at sub-mm wavelengths with ALMA and our NaCo observations were found. This suggests that the disc around Sz 91 could be highly structured. Higher signal-to-noise near-IR and sub-mm observations are needed to confirm the existence of such structures and to improve the current understanding of the origin of transitional discs.Ítem The Characterization of the Dust Content in the Ring Around Sz 91: Indications of Planetesimal Formation?(American Astronomical Society, 2021) Maucó, Karina; Carrasco-González, Carlos; Schreiber, Matthias R.; Sierra, Anibal; Olofsson, Johan; Bayo, Amelia; Caceres, Claudio; Canovas, Hector; Palau, AinaOne of the most important questions in the field of planet formation is how millimeter- and centimeter-sized dust particles overcome radial drift and fragmentation barriers to form kilometer-sized planetesimals. ALMA observations of protoplanetary disks, in particular transition disks or disks with clear signs of substructures, can provide new constraints on theories of grain growth and planetesimal formation, and therefore represent one possibility for progress on this issue. We here present ALMA band 4 (2.1 mm) observations of the transition disk system Sz 91, and combine them with previously obtained band 6 (1.3 mm) and band 7 (0.9 mm) observations. Sz 91, with its well-defined millimeter ring, more extended gas disk, and evidence of smaller dust particles close to the star, constitutes a clear case of dust filtering and the accumulation of millimeter-sized particles in a gas pressure bump. We compute the spectral index (nearly constant at ∼3.34), optical depth (marginally optically thick), and maximum grain size (∼0.61 mm) in the dust ring from the multi-wavelength ALMA observations, and compare the results with recently published simulations of grain growth in disk substructures. Our observational results are in strong agreement with the predictions of models for grain growth in dust rings that include fragmentation and planetesimal formation through streaming instability.Ítem The origin and evolution of magnetic white dwarfs in close binary stars(Springer, 2021) Schreiber, Matthias R.; Belloni, Diogo; Gänsicke, Boris T.; Parsons, Steven G.; Zorotovic, MonicaThe origin of magnetic fields in white dwarfs remains a fundamental unresolved problem in stellar astrophysics. In particular, the very different fractions of strongly (more than about a megagauss) magnetic white dwarfs in evolutionarily linked populations of close white dwarf binary stars cannot be reproduced by any scenario suggested so far. Strongly magnetic white dwarfs are absent among detached white dwarf binary stars that are younger than approximately a billion years. In contrast, of cataclysmic variables (semi-detached binary star systems that contain a white dwarf) in which the white dwarf accretes from a low-mass star companion, more than a third host a strongly magnetic white dwarf1. Here we present binary star evolutionary models that include the spin evolution of accreting white dwarfs and crystallization of their cores, as well as magnetic field interactions between the stars. We show that a crystallization- and rotation-driven dynamo similar to those working in planets and low-mass stars2 can generate strong magnetic fields in the white dwarfs in cataclysmic variables, which explains their large fraction among the observed population. When the magnetic field generated in the white dwarf connects with that of the secondary star in the binary system, synchronization torques and reduced angular momentum loss cause the binary to detach for a relatively short period of time. The few known strongly magnetic white dwarfs in detached binaries, such as AR Scorpii3, are in this detached phase.Ítem The White Dwarf Binary Pathways Survey −III. Contamination from hierarchical triples containing a white dwarf(Royal Astronomical Society, 2020) Lagos, Felipe; Schreiber, Matthias R.; Hernández, M-H; Tappert, Claus; Zorotovic, Mónica; Cáceres, C.The White Dwarf Binary Pathways Survey aims at increasing the number of known detached A, F, G, and K main-sequence stars in close orbits with white dwarf companions (WD+AFGK binaries) to refine our understanding about compact binary evolution and the nature of Supernova Ia progenitors. These close WD+AFGK binary stars are expected to form through common envelope evolution, in which tidal forces tend to circularize the orbit. However, some of the identified WD+AFGK binary candidates show eccentric orbits, indicating that these systems are either formed through a different mechanism or perhaps they are not close WD+AFGK binaries. We observed one of these eccentric WD+AFGK binaries with SPHERE and find that the system TYC 7218-934-1 is in fact a triple system where the WD is a distant companion. The inner binary likely consists of the G-type star plus an unseen low-mass companion in an eccentric orbit. Based on this finding, we estimate the fraction of triple systems that could contaminate the WD+AFGK sample. We find that less than 15 per cent of our targets with orbital periods shorter than 100 d might be hierarchical triples.