Examinando por Autor "Vogt, N."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem How many suns are in the sky? A SPHERE multiplicity survey of exoplanet host stars I. Four new close stellar companions including a white dwarf(European Southern Observatory (ESO), 2021) Ginski, C.; Mugrauer, M.; Adam, C.; Vogt, N.; Van Holstein, R. G.Aims. We are studying the influence of stellar multiplicity on exoplanet systems and, in particular, systems that have been detected via radial-velocity searches. We are specifically interested in the closest companions as they would have a strong influence on the evolution of the original planet-forming disks. In this study, we present new companions that have been detected during our ongoing survey of exoplanet hosts with VLT/SPHERE (Spectro-Polarimetric High-Contrast Exoplanet Research). Methods. We are using the extreme adaptive optics imager SPHERE at the ESO/VLT to search for faint (sub)stellar companions. We utilized the classical coronagraphic imaging mode to perform a snapshot survey (3–6 min integration time) of exoplanet host stars in the Ks-band. Results. We detected new stellar companions to the exoplanet host stars HD 1666, HIP 68468, HIP 107773, and HD 109271. With an angular separation of only 0.38′′ (40 au of projected separation), HIP 107773 is among the closest companions found for exoplanet host stars. The presence of the stellar companion explains the linear radial-velocity trend seen in the system. At such a small separation, the companion likely had a significant influence on the evolution of the planet-forming disk around the primary star. We find that the companion in the HD 1666 system may well be responsible for the high orbit eccentricity (0.63) of the detected Jupiter class planet, making this system one of only a few where such a connection can be established. A cross-match with the Gaia DR2 catalog shows, furthermore, that the near infrared faint companion around HD 109271 was detected in the optical and it is significantly brighter than in the near infrared, making it a white dwarf companion.Ítem Life after eruption VIII: The orbital periods of novae(Royal Astronomical Society, 2021) Fuentes-Morales, I.; Tappert, C.; Zorotovic, M.; Vogt, N.; Puebla, E. C.; Schreiber, M. R.; Ederoclite, A.; Schmidtobreick, L.The impact of nova eruptions on the long-term evolution of Cataclysmic Variables (CVs) is one of the least understood and intensively discussed topics in the field. A crucial ingredient to improve with this would be to establish a large sample of post-novae with known properties, starting with the most easily accessible one, the orbital period. Here we report new orbital periods for six faint novae: X Cir (3.71 h), IL Nor (1.62 h), DY Pup (3.35 h), V363 Sgr (3.03 h), V2572 Sgr (3.75 h), and CQ Vel (2.7 h). We furthermore revise the periods for the old novae OY Ara, RS Car, V365 Car, V849 Oph, V728 Sco, WY Sge, XX Tau, and RW UMi. Using these new data and critically reviewing the trustworthiness of reported orbital periods of old novae in the literature, we establish an updated period distribution. We employ a binary-star evolution code to calculate a theoretical period distribution using both an empirical and the classical prescription for consequential angular momentum loss. In comparison with the observational data we find that both models especially fail to reproduce the peak in the 3–4 h range, suggesting that the angular momentum loss for CVs above the period gap is not totally understood.