Examinando por Autor "Vučković, Maja"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem About the existence of warm H-rich pulsating white dwarfs(European Southern Observatory (ESO), 2020) Althaus, Leandro G.; Córsico, Alejandro H.; Uzundag, Murat; Vučković, Maja; Baran, Andrzej S.; Bell, Keaton J.; Camisassa, María E.; Calcaferro, Leila M.; De Gerónimo, Francisco C.; Oliveira Kepler, Souza; Silvotti, RobertoContext. The possible existence of warm (Teff ∼ 19 000 K) pulsating DA white dwarf (WD) stars, hotter than ZZ Ceti stars, was predicted in theoretical studies more than 30 yr ago. These studies reported the occurrence of g-mode pulsational instabilities due to the κ mechanism acting in the partial ionization zone of He below the H envelope in models of DA WDs with very thin H envelopes (MH/M⋆ ≲ 10−10). However, to date, no pulsating warm DA WD has been discovered, despite the varied theoretical and observational evidence suggesting that a fraction of WDs should be formed with a range of very low H content. Aims. We re-examine the pulsational predictions for such WDs on the basis of new full evolutionary sequences. We analyze all the warm DAs observed by the TESS satellite up to Sector 9 in order to search for the possible pulsational signal. Methods. We computed WD evolutionary sequences of masses 0.58 and 0.80 M⊙ with H content in the range −14.5 ≲ log(MH/M⋆)≲ − 10, appropriate for the study of pulsational instability of warm DA WDs. Initial models were extracted from progenitors that were evolved through very late thermal pulses on the early cooling branch. We use LPCODE stellar code into which we have incorporated a new full-implicit treatment of time-dependent element diffusion to precisely model the H–He transition zone in evolving WD models with very low H content. The nonadiabatic pulsations of our warm DA WD models were computed in the effective temperature range of 30 000 − 10 000 K, focusing on ℓ = 1 g modes with periods in the range 50 − 1500 s. Results. We find that traces of H surviving the very late thermal pulse float to the surface, eventually forming thin, growing pure H envelopes and rather extended H–He transition zones. We find that such extended transition zones inhibit the excitation of g modes due to partial ionization of He below the H envelope. Only in the cases where the H–He transition is assumed much more abrupt than predicted by diffusion do models exhibit pulsational instability. In this case, instabilities are found only in WD models with H envelopes in the range of −14.5 ≲ log(MH/M⋆)≲ − 10 and at effective temperatures higher than those typical for ZZ Ceti stars, in agreement with previous studies. None of the 36 warm DAs observed so far by TESS satellite are found to pulsate. Conclusions. Our study suggests that the nondetection of pulsating warm DAs, if WDs with very thin H envelopes do exist, could be attributed to the presence of a smooth and extended H–He transition zone. This could be considered as indirect proof that element diffusion indeed operates in the interior of WDs.Ítem Looking into the cradle of the grave: J22564-5910, a young post-merger hot subdwarf?(European Southern Observatory (ESO), 2021) Vos, Joris; Pelisoli, Ingrid; Budaj, Jan; Reindl, Nicole; Schaffenroth, Veronika; Bobrick, Alexey; Geier, Stephan; Hermes, Jj; Nemeth, Peter; Østensen, Roy; Reding, Joshua S.; Uzundag, Murat; Vučković, MajaContext. We present the discovery of J22564–5910, a new type of hot subdwarf (sdB) which shows evidence of gas present in the system and it has shallow, multi-peaked hydrogen and helium lines which vary in shape over time. All observational evidence points towards J22564–5910 being observed very shortly after the merger phase that formed it. Aims. Using high-resolution, high signal-to-noise spectroscopy, combined with multi-band photometry, Gaia astrometry, and TESS light curves, we aim to interpret these unusual spectral features. Methods. The photometry, spectra, and light curves were all analysed, and their results were combined in order to support our interpretation of the observations: the likely presence of a magnetic field combined with gas features around the sdB. Based on the triple-peaked H lines, the magnetic field strength was estimated and, by using the SHELLSPEC code, qualitative models of gas configurations were fitted to the observations. Results. All observations can either be explained by a magnetic field of ∼650 kG, which enables the formation of a centrifugal magnetosphere, or a non-magnetic hot subdwarf surrounded by a circumstellar gas disc or torus. Both scenarios are not mutually exclusive and both can be explained by a recent merger. Conclusions. J22564–5910 is the first object of its kind. It is a rapidly spinning sdB with gas still present in the system. It is the first post-merger star observed this early after the merger event, and as such it is very valuable system to test merger theories. If the magnetic field can be confirmed, it is not only the first magnetic sdB, but it hosts the strongest magnetic field ever found in a pre-white dwarf object. Thus, it could represent the long sought-after immediate ancestor of strongly magnetic white dwarfs.