Extremal Coalitions for Influence Games Through Swarm Intelligence-Based Methods

Fecha

2022

Profesor Guía

Formato del documento

Articulo

ORCID Autor

Título de la revista

ISSN de la revista

Título del volumen

Editor

Tech Science Press

ISBN

ISSN

item.page.issne

Departamento o Escuela

Escuela de Ingenieria Informatica

Determinador

Recolector

Especie

Nota general

Resumen

An influence game is a simple game represented over an influence graph (i.e., a labeled, weighted graph) on which the influence spread phenomenon is exerted. Influence games allow applying different properties and parameters coming from cooperative game theory to the contexts of social network analysis, decision-systems, voting systems, and collective behavior. The exact calculation of several of these properties and parameters is computationally hard, even for a small number of players. Two examples of these parameters are the length and the width of a game. The length of a game is the size of its smaller winning coalition, while the width of a game is the size of its larger losing coalition. Both parameters are relevant to know the levels of difficulty in reaching agreements in collective decision-making systems. Despite the above, new bio-inspired metaheuristic algorithms have recently been developed to solve the NP-hard influence maximization problem in an efficient and approximate way, being able to find small winning coalitions that maximize the influence spread within an influence graph. In this article, we apply some variations of this solution to find extreme winning and losing coalitions, and thus efficient approximate solutions for the length and the width of influence games. As a case study, we consider two real social networks, one formed by the 58 members of the European Union Council under nice voting rules, and the other formed by the 705 members of the European Parliament, connected by political affinity. Results are promising and show that it is feasible to generate approximate solutions for the length and width parameters of influence games, in reduced solving time.

Descripción

Lugar de Publicación

Auspiciador

Palabras clave

INFLUENCE GAME, INFLUENCE SPREAD, COLLECTIVE BEHAVIOR, SWARM INTELLIGENCE, BIO-INSPIRED COMPUTING

Licencia

URL Licencia