Managing slow-moving item: a zero- inflated truncated normal approach for modeling demand

dc.contributor.authorRojas, Fernando
dc.contributor.authorWanke, Peter
dc.contributor.authorColuccio, Giuliani
dc.contributor.authorVega-Vargas, Juan
dc.contributor.authorHuerta-Canepa, Gonzalo F.
dc.date.accessioned2022-03-17T15:14:16Z
dc.date.available2022-03-17T15:14:16Z
dc.date.issued2020
dc.description.abstractThis paper proposes a slow-moving management method for a system using of intermittent demand per unit time and lead time demand of items in service enterprise inventory models. Our method uses zero-inflated truncated normal statistical distribution, which makes it possible to model intermittent demand per unit time using mixed statistical distribution. We conducted numerical experiments based on an algorithm used to forecast intermittent demand over fixed lead time to show that our proposed distributions improved the performance of the continuous review inventory model with shortages.Weevaluated multi-criteria elements (total cost, fill-rate, shortage of quantity per cycle, and the adequacy of the statistical distribution of the lead time demand) for decision analysis using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). We confirmed that our method improved the performance of the inventory model in comparison to other commonly used approaches such as simple exponential smoothing and Croston's method. We found an interesting association between the intermittency of demand per unit of time, the square root of this same parameter and reorder point decisions, that could be explained using classical multiple linear regression model. We confirmed that the parameter of variability of the zeroinflated truncated normal statistical distribution used to model intermittent demand was positively related to the decision of reorder points. Our study examined a decision analysis using illustrative example. Our suggested approach is original, valuable, and, in the case of slow-moving item management for service companies, allows for the verification of decision-making using multiple criteria.en_ES
dc.facultadFacultad de Farmaciaen_ES
dc.identifier.doi10.7717/peerj-cs.298
dc.identifier.urihttp://repositoriobibliotecas.uv.cl/handle/uvscl/3864
dc.language.isoenen_ES
dc.publisherPeerJ Publishingen_ES
dc.rightsDistributed under Creative Commons CC-BY 4.0en_ES
dc.sourcePeerJ computer Scienceen_ES
dc.subjectDEMAND DURING LEAD TIMEen_ES
dc.subjectINVENTORY MODELSen_ES
dc.subjectZERO-INFLATED TRUNCATED NORMAL STATISTICAL DISTRIBUTIONen_ES
dc.titleManaging slow-moving item: a zero- inflated truncated normal approach for modeling demanden_ES
dc.typeArticuloen_ES
uv.catalogadorRCR DIBRAen_ES
uv.departamentoEscuela de Nutricion y Dieteticaen_ES

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
peerj-cs-298.pdf
Tamaño:
1.03 MB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
384 B
Formato:
Item-specific license agreed upon to submission
Descripción: