Clique immersions in graphs of independence number two with certain forbidden subgraphs

dc.contributor.authorQuiroz, Daniel A.
dc.date.accessioned2022-11-30T02:46:50Z
dc.date.available2022-11-30T02:46:50Z
dc.date.issued2021
dc.description.abstractThe Lescure–Meyniel conjecture is the analogue of Hadwiger’s conjecture for the immersion order. It states that every graph contains the complete graph as an immersion, and like its minor-order counterpart it is open even for graphs with independence number 2. We show that every graph with independence number and no hole of length between 4 and satisfies this conjecture. In particular, every -free graph with satisfies the Lescure–Meyniel conjecture. We give another generalisation of this corollary, as follows. Let and be graphs with independence number at most 2, such that . If is -free, then satisfies the Lescure–Meyniel conjecture.en_ES
dc.facultadFacultad de Ingenieríaen_ES
dc.file.nameQuiroz_Cli2021.pdf
dc.identifier.doihttps://doi.org/10.1016/j.disc.2021.112365
dc.identifier.urihttp://repositoriobibliotecas.uv.cl/handle/uvscl/7506
dc.languageen
dc.publisherElsevier
dc.sourceDiscrete Mathematics
dc.subjectGRAPH IMMERSIONen_ES
dc.subjectINDEPENDENCE NUMBERen_ES
dc.subjectFORBIDDEN SUBGRAPHSen_ES
dc.subjectCHROMATIC NUMBERen_ES
dc.subjectHADWIGER’S CONJECTUREen_ES
dc.subjectCLIQUEen_ES
dc.titleClique immersions in graphs of independence number two with certain forbidden subgraphs
dc.typeArticulo
uv.departamentoInstituto de Ingenieria Matematica
uv.notageneralNo disponible para descarga

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Quiroz_Cli2021_noaccesible_.pdf
Tamaño:
455.34 KB
Formato:
Adobe Portable Document Format
Descripción: