Human Behaviour Based Optimization Supported With Self-Organizing Maps for Solving the S-Box Design Problem
Archivos
Fecha
2021
Profesor Guía
Formato del documento
Articulo
ORCID Autor
Título de la revista
ISSN de la revista
Título del volumen
Editor
IEEE
Ubicación
ISBN
ISSN
item.page.issne
item.page.doiurl
Facultad
Facultad de Ingeniería
Departamento o Escuela
Escuela de Ingenieria Informatica
Determinador
Recolector
Especie
Nota general
Resumen
The cryptanalytic resistance of modern block and stream encryption systems mainly depends on the substitution box (S-box). In this context, the problem is thus to create an S-box with higher value of nonlinearity because this property can provide some degree of protection against linear and differential cryptanalysis attacks. In this paper, we design a scheme built on a human behavior-based optimization algorithm, supported with Self-Organizing Maps to prevent premature convergence and improve the nonlinearity property in order to obtain strong 8 ×8 substitution boxes. The experiments are compared with S-boxes obtained using other metaheuristic algorithms such as Ant Colony Optimization, Genetic Algorithm and an approach based on chaotic functions and show that the obtained S-boxes have good cryptographic properties. The obtained S-box is investigated against standard tests such as bijectivity, nonlinearity, strict avalanche criterion, bit independence criterion, linear probability and differential probability, proving that the proposed scheme is proficient to discover a strong nonlinear component of encryption systems.
Descripción
Lugar de Publicación
Auspiciador
Palabras clave
CRYPTOGRAPHY, SUBSTITUTION BOX, SELF-ORGANIZING MAPS, METAHEURISTICS