On the consistency of least squares estimator in models sampled at random times driven by long memory noise: the Jittered case.
Archivos
Fecha
2023
Profesor Guía
Formato del documento
Articulo
ORCID Autor
Título de la revista
ISSN de la revista
Título del volumen
Editor
Institute Of Statistical Science, Academia Sinica
Ubicación
ISBN
ISSN
item.page.issne
item.page.doiurl
Facultad
Facultad de Ingeniería
Departamento o Escuela
CIMFAV
Determinador
Recolector
Especie
Nota general
Resumen
In numerous applications, data are observed at random times. Our main purpose is to study a model observed at random times that incorporates a long-memory noise process with a fractional Brownian Hurst exponent H. We propose a least squares estimator in a linear regression model with long-memory noise and a random sampling time called “jittered sampling”. Specifically, there is a fixed sampling rate 1/N, contaminated by an additive noise (the jitter) and governed by a probability density function supported in [0, 1/N]. The strong consistency of the estimator is established, with a convergence rate depending on N and the Hurst exponent. A Monte Carlo analysis supports the relevance of the theory and produces additional insights, with several levels of long-range dependence (varying the Hurst index) and two different jitter densities.
Descripción
Lugar de Publicación
Auspiciador
Palabras clave
LONG-MEMORY NOISE, LEAST SQUARES ESTIMATOR, RANDOM TIMES, REGRESSION MODEL.