Direct inhibition of CaV2.3 by Gem is dynamin dependent and does not require a direct alfa/beta interaction

Fecha

2022

Profesor Guía

Formato del documento

Articulo

ORCID Autor

Título de la revista

ISSN de la revista

Título del volumen

Editor

Elsevier

Ubicación

ISBN

ISSN

item.page.issne

Facultad

Facultad de Ciencias

Departamento o Escuela

Centro Interdisciplinario de Neurociencia de Valparaiso

Determinador

Recolector

Especie

Nota general

Resumen

The Rad, Rem, Rem2, and Gem/Kir (RGK) sub-family of small GTP-binding proteins are crucial in regulating high voltage-activated (HVA) calcium channels. RGK proteins inhibit calcium current by either promoting endocytosis or reducing channel activity. They all can associate directly with Ca2+ channel β subunit (CaVβ), and the binding between CaVα1/CaVβ appears essential for the endocytic promotion of CaV1.X, CaV2.1, and CaV2.2 channels. In this study, we investigated the inhibition of CaV2.3 channels by RGK proteins in the absence of CaVβ. To this end, Xenopus laevis oocytes expressing CaV2.3 channels devoid of auxiliary subunit were injected with purified Gem and Rem and found that only Gem had an effect. Ca currents and charge movements were reduced by injection of Gem, pointing to a reduction in the number of channels in the plasma membrane. Since this reduction was ablated by co-expression of the dominant-negative mutant of dynamin K44A, enhanced endocytosis appears to mediate this reduction in the number of channels. Thus, Gem inhibition of CaV2.3 channels would be the only example of a CaVβ independent promotion of dynamin-dependent endocytosis.

Descripción

Lugar de Publicación

Auspiciador

Palabras clave

RGK PROTEINS, HIGH-VOLTAGE ACTIVATED CALCIUM CHANNELS, GEMCAV2.3, DYNAMIN, ENDOCYTOSIS

Licencia

URL Licencia