On the consistency of the least squares estimator in models sampled at random times driven by long memory noise: the renewal case.
Archivos
Fecha
2023
Profesor Guía
Formato del documento
Articulo
ORCID Autor
Título de la revista
ISSN de la revista
Título del volumen
Editor
Institute Of Statistical Science, Academia Sinica
Ubicación
ISBN
ISSN
item.page.issne
item.page.doiurl
Facultad
Facultad de Ingeniería
Departamento o Escuela
CIMFAV
Determinador
Recolector
Especie
Nota general
Resumen
In this article, we prove the strong consistency of the least squares estimator in a random sampled linear regression model with long memory noise and an independent set of random times given by renewal process sampling. Additionally, we illustrate how to work with a random number of observations up to the time T = 1. A simulation study is provided to illustrate the behavior of the different terms involved and the performance of the estimator under different values of the Hurst parameter H.
Descripción
Lugar de Publicación
Auspiciador
Palabras clave
LONG-MEMORY NOISE, LEAST SQUARES ESTIMATOR, RANDOM TIMES, RENEWAL MODEL