On the consistency of the least squares estimator in models sampled at random times driven by long memory noise: the renewal case.

Fecha

2023

Profesor Guía

Formato del documento

Articulo

ORCID Autor

Título de la revista

ISSN de la revista

Título del volumen

Editor

Institute Of Statistical Science, Academia Sinica

Ubicación

ISBN

ISSN

item.page.issne

item.page.doiurl

Facultad

Facultad de Ingeniería

Departamento o Escuela

CIMFAV

Determinador

Recolector

Especie

Nota general

Resumen

In this article, we prove the strong consistency of the least squares estimator in a random sampled linear regression model with long memory noise and an independent set of random times given by renewal process sampling. Additionally, we illustrate how to work with a random number of observations up to the time T = 1. A simulation study is provided to illustrate the behavior of the different terms involved and the performance of the estimator under different values of the Hurst parameter H.

Descripción

Lugar de Publicación

Auspiciador

Palabras clave

LONG-MEMORY NOISE, LEAST SQUARES ESTIMATOR, RANDOM TIMES, RENEWAL MODEL

Licencia

URL Licencia