Universal arrays
dc.contributor.author | Pavez-Signé, Matías | |
dc.contributor.author | Quiroz, Daniel A. | |
dc.contributor.author | Sanhueza-Matamala, Nicolás | |
dc.date.accessioned | 2022-11-30T02:46:46Z | |
dc.date.available | 2022-11-30T02:46:46Z | |
dc.date.issued | 2021 | |
dc.description.abstract | A word on q symbols is a sequence of letters from a fixed alphabet of size q. For an integer , we say that a word w is k-universal if, given an arbitrary word of length k, one can obtain it by removing letters from w. It is easily seen that the minimum length of a k-universal word on q symbols is exactly qk. We prove that almost every word of size is k-universal with high probability, where is an explicit constant whose value is roughly . Moreover, we show that the k-universality property for uniformly chosen words exhibits a sharp threshold. Finally, by extending techniques of Alon (2017) [1], we give asymptotically tight bounds for every higher dimensional analogue of this problem. | en_ES |
dc.facultad | Facultad de Ingeniería | en_ES |
dc.file.name | Pavez_Uni2021.pdf | |
dc.identifier.doi | https://doi.org/10.1016/j.disc.2021.112626 | |
dc.identifier.uri | http://repositoriobibliotecas.uv.cl/handle/uvscl/7488 | |
dc.language | en | |
dc.publisher | Elsevier | |
dc.source | Discrete Mathematics | |
dc.subject | UNIVERSAL STRUCTURE | en_ES |
dc.subject | ARRAY | en_ES |
dc.subject | WORD | en_ES |
dc.subject | UNIFORMLY CHOSEN | en_ES |
dc.subject | SUBWORD MATRIX | en_ES |
dc.title | Universal arrays | |
dc.type | Articulo | |
uv.departamento | CIMFAV | |
uv.notageneral | No disponible para descarga |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Pavez_Uni2021_noaccesible_.pdf
- Tamaño:
- 324.99 KB
- Formato:
- Adobe Portable Document Format
- Descripción: