The ALPINE-ALMA [C II] survey: Molecular gas budget in the Early Universe as traced by [C II]

Fecha

2020

Profesor Guía

Formato del documento

Articulo

ORCID Autor

Título de la revista

ISSN de la revista

Título del volumen

Editor

European Southern Observatory

Ubicación

ISBN

ISSN

item.page.issne

Facultad

Departamento o Escuela

Determinador

Recolector

Especie

Nota general

Varios autores

Resumen

The molecular gas content of normal galaxies at z >  4 is poorly constrained because the commonly used molecular gas tracers become hard to detect at these high redshifts. We use the [C II] 158 μm luminosity, which was recently proposed as a molecular gas tracer, to estimate the molecular gas content in a large sample of main sequence star-forming galaxies at z = 4.4 − 5.9, with a median stellar mass of 109.7 M⊙, drawn from the ALMA Large Program to INvestigate [C II] at Early times survey. The agreement between the molecular gas masses derived from [C II] luminosities, dynamical masses, and rest-frame 850 μm luminosities extrapolated from the rest-frame 158 μm continuum supports [C II] as a reliable tracer of molecular gas in our sample. We find a continuous decline of the molecular gas depletion timescale from z = 0 to z = 5.9, which reaches a mean value of (4.6 ± 0.8) × 108 yr at z ∼ 5.5, only a factor of between two and three shorter than in present-day galaxies. This suggests a mild enhancement of the star formation efficiency toward high redshifts. Our estimates also show that the previously reported rise in the molecular gas fraction flattens off above z ∼ 3.7 to achieve a mean value of 63%±3% over z = 4.4 − 5.9. This redshift evolution of the gas fraction is in line with that of the specific star formation rate. We use multi-epoch abundance-matching to follow the gas fraction evolution across cosmic time of progenitors of z = 0 Milky Way-like galaxies in ∼1013 M⊙ halos and of more massive z = 0 galaxies in ∼1014 M⊙ halos. Interestingly, the former progenitors show a monotonic increase of the gas fraction with redshift, while the latter show a steep rise from z = 0 to z ∼ 2 followed by a constant gas fraction from z ∼ 2 to z = 5.9. We discuss three possible effects, namely outflows, a pause in gas supply, and over-efficient star formation, which may jointly contribute to the gas fraction plateau of the latter massive galaxies.

Descripción

Lugar de Publicación

Auspiciador

Palabras clave

GALAXIES: EVOLUTION, GALAXIES: HIGH-REDSHIFT, GALAXIES: ISM, ISM: MOLECULES

Licencia

URL Licencia