VALES VI: ISM enrichment in star-forming galaxies up to z ∼ 0.2 using 12CO(1–0), 13CO(1–0), and C18O(1–0) line luminosity ratios
Archivos
Fecha
2020
Autores
Profesor Guía
Formato del documento
Articulo
ORCID Autor
Título de la revista
ISSN de la revista
Título del volumen
Editor
Royal Astronomical Society
Ubicación
ISBN
ISSN
item.page.issne
item.page.doiurl
Facultad
Departamento o Escuela
Determinador
Recolector
Especie
Nota general
Varios autores
Resumen
We present Atacama Large Millimeter/sub-millimeter Array (ALMA) observations towards 27 low-redshift (0.02 < z < 0.2) star-forming galaxies taken from the Valparaíso ALMA/APEX Line Emission Survey. We perform stacking analyses of the 12CO(1–0), 13CO(1–0), and C18O(1–0) emission lines to explore the L′ [12CO(1–0)]/L′ [13CO(1–0)] [hereafter L′ (12CO)/L′ (13CO)] and L′ [13CO(1–0)]/L′ [C18O(1–0)] [hereafter L′ (13CO)/L′ (C18O)] line luminosity ratio dependence as a function of different global galaxy parameters related to the star formation activity. The sample has far-IR luminosities of 1010.1−11.9 L⊙ and stellar masses of 109.8–10.9 M⊙ corresponding to typical star-forming and starburst galaxies at these redshifts. On average, we find an L′ (12CO)/L′ (13CO) line luminosity ratio value of 16.1 ± 2.5. Galaxies with pieces of evidence of possible merging activity tend to show higher L′ (12CO)/L′ (13CO) ratios by a factor of 2, while variations of this order are also found in galaxy samples with higher star formation rates (SFRs) or star formation efficiencies (SFEs). We also find an average L′ (13CO)/L′ (C18O) line luminosity ratio of 2.5 ± 0.6, which is in good agreement with those previously reported for starburst galaxies. We find that galaxy samples with high LIR, SFR, and SFE show low L′ (13CO)/L′ (C18O) line luminosity ratios with high L′ (12CO)/L′ (13CO) line luminosity ratios, suggesting that these trends are produced by selective enrichment of massive stars in young starbursts.
Descripción
Lugar de Publicación
Auspiciador
Palabras clave
METHODS: STATISTICAL, TECHNIQUES: INTERFEROMETRIC, GALAXIES: STAR FORMATION, GALAXIES: ISM