Tied monoids

dc.contributor.authorArcis, Diego
dc.contributor.authorJuyumaya, Jesús
dc.date.accessioned2022-11-30T02:46:10Z
dc.date.available2022-11-30T02:46:10Z
dc.date.issued2021
dc.description.abstractWe construct certain monoids, called tied monoids. These monoids result to be semidirect products finitely presented and commonly built from braid groups and their relatives acting on monoids of set partitions. The nature of our monoids indicate that they should give origin to new knot algebras; indeed, our tied monoids include the tied braid monoid and the tied singular braid monoid, which were used, respectively, to construct new polynomial invariants for classical links and singular links. Consequently, we provide a mechanism to attach an algebra to each tied monoid; this mechanism not only captures known generalizations of the bt-algebra, but also produces possible new knot algebras. To build the tied monoids it is necessary to have presentations of set partition monoids of types A, B and D, among others. For type A we use a presentation due to FitzGerald and for the other type it was necessary to built them.en_ES
dc.facultadFacultad de Cienciasen_ES
dc.file.nameArcis_Tie2021.pdf
dc.identifier.citationArcis, D., Juyumaya, J. Tied monoids. Semigroup Forum 103, 356–394 (2021). https://doi.org/10.1007/s00233-021-10212-yen_ES
dc.identifier.doihttps://doi.org/10.1007/s00233-021-10212-y
dc.identifier.urihttp://repositoriobibliotecas.uv.cl/handle/uvscl/7225
dc.languageen
dc.publisherSpringer
dc.sourceSemigroup Forum
dc.subjectTIED STRUCTURESen_ES
dc.subjectTIED BRAIDSen_ES
dc.subjectBRAIDSen_ES
dc.subjectSET PARTITIONSen_ES
dc.subjectKNOT ALGEBRASen_ES
dc.titleTied monoids
dc.typeArticulo
uv.departamentoInstituto de Matematicass

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Arcis_Tie2021.pdf
Tamaño:
1.14 MB
Formato:
Adobe Portable Document Format