A proof of consistency of the MLE for nonlinear Markov-switching AR processes

Fecha

2022

Profesor Guía

Formato del documento

Articulo

ORCID Autor

Título de la revista

ISSN de la revista

Título del volumen

Editor

Elsevier

Ubicación

ISBN

ISSN

item.page.issne

Facultad

Facultad de Ingeniería

Departamento o Escuela

CIMFAV

Determinador

Recolector

Especie

Nota general

No disponible para descarga

Resumen

We propose a new approach to demonstrate the consistency of the maximum likelihood estimator for nonlinear Markov-switching AR processes (abbreviated MS-NAR). We obtain a uniform exponential memory loss property for the prediction filter by approximating it by a filter with finite memory. From the -mixing property for the MS-NAR process we obtain an ergodic theorem. Finally, we show that in the linear and Gaussian case our assumptions are fully satisfied.

Descripción

Lugar de Publicación

Auspiciador

Palabras clave

NONLINEAR AUTOREGRESSIVE PROCESS, MARKOV SWITCHING, ASYMPTOTIC NORMALITY, CONSISTENCY, HIDDEN MARKOV CHAIN

Licencia

URL Licencia