A proof of consistency of the MLE for nonlinear Markov-switching AR processes
Fecha
2022
Profesor Guía
Formato del documento
Articulo
ORCID Autor
Título de la revista
ISSN de la revista
Título del volumen
Editor
Elsevier
Ubicación
ISBN
ISSN
item.page.issne
item.page.doiurl
Facultad
Facultad de Ingeniería
Departamento o Escuela
CIMFAV
Determinador
Recolector
Especie
Nota general
No disponible para descarga
Resumen
We propose a new approach to demonstrate the consistency of the maximum likelihood estimator for nonlinear Markov-switching AR processes (abbreviated MS-NAR). We obtain a uniform exponential memory loss property for the prediction filter by approximating it by a filter with finite memory. From the -mixing property for the MS-NAR process we obtain an ergodic theorem. Finally, we show that in the linear and Gaussian case our assumptions are fully satisfied.
Descripción
Lugar de Publicación
Auspiciador
Palabras clave
NONLINEAR AUTOREGRESSIVE PROCESS, MARKOV SWITCHING, ASYMPTOTIC NORMALITY, CONSISTENCY, HIDDEN MARKOV CHAIN