The ALPINE-ALMA [CII] Survey: Kinematic Diversity & Rotation in Massive Star Forming Galaxies at z 44 59

Fecha

2021

Profesor Guía

Formato del documento

Articulo

ORCID Autor

Título de la revista

ISSN de la revista

Título del volumen

Editor

Royal Astronomical Society

Ubicación

ISBN

ISSN

item.page.issne

Facultad

Facultad de Ciencias

Departamento o Escuela

Instituto de Fisica y Astronomia

Determinador

Recolector

Especie

Nota general

No disponible para descarga

Resumen

While the kinematics of galaxies up to z ∼ 3 have been characterized in detail, only a handful of galaxies at high redshift (z > 4) have been examined in such a way. The Atacama Large Millimeter/submillimeter Array (ALMA) Large Program to INvestigate [C II] at Early times (ALPINE) survey observed a statistically significant sample of 118 star-forming main-sequence galaxies at z = 4.4–5.9 in [C II]158 μm emission, increasing the number of such observations by nearly 10×. A preliminary qualitative classification of these sources revealed a diversity of kinematic types (i.e. rotators, mergers, and dispersion-dominated systems). In this work, we supplement the initial classification by applying quantitative analyses to the ALPINE data: a tilted ring model (TRM) fitting code (3DBAROLO), a morphological classification (Gini-M20), and a set of disc identification criteria. Of the 75 [C II]-detected ALPINE galaxies, 29 are detected at sufficient significance and spatial resolution to allow for TRM fitting and the derivation of morphological and kinematic parameters. These 29 sources constitute a high-mass subset of the ALPINE sample (⁠M∗>109.5M⊙⁠). We robustly classify 14 of these sources (six rotators, five mergers, and three dispersion-dominated systems); the remaining sources showing complex behaviour. By exploring the G-M20 of z > 4 rest-frame far-infrared and [C II] data for the first time, we find that our 1 arcsec ∼ 6 kpc resolution data alone are insufficient to separate galaxy types. We compare the rotation curves and dynamical mass profiles of the six ALPINE rotators to the two previously detected z ∼ 4–6 unlensed main-sequence rotators, finding high rotational velocities (∼50–250 km s−1) and a diversity of rotation curve shapes.

Descripción

Lugar de Publicación

Auspiciador

Palabras clave

GALAXIES: EVOLUTION, GALAXIES: HIGH-REDSHIFT, GALAXIES: KINEMATICS AND DYNAMICS

Licencia

© 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society

URL Licencia