Examinando por Autor "Duarte, Yorley"
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem A physiologic rise in cytoplasmic calcium ion signal increases pannexin1 channel activity via a C-terminus phosphorylation by CaMKII(National Academy Of Science, 2021) Lópeza, Ximena; Palacios-Pradoa, Nicolás; Güizac, Juan; Escamilla, Rosalba; Fernández, Paola; Vega, José L.; Rojas, Maximiliano; Marquez-Miranda, Valeria; Chamorro, Eduardo; Cárdenas, Ana M.; Constanza Maldifassi, María; Martínez, Agustín D.; Duarte, Yorley; González-Nilo, Fernando D.; Sáez, Juan C.Pannexin1 (Panx1) channels are ubiquitously expressed in vertebrate cells and are widely accepted as adenosine triphosphate (ATP)-releasing membrane channels. Activation of Panx1 has been associated with phosphorylation in a specific tyrosine residue or cleavage of its C-terminal domains. In the present work, we identified a residue (S394) as a putative phosphorylation site by Ca2+/calmodulin-dependent kinase II (CaMKII). In HeLa cells transfected with rat Panx1 (rPanx1), membrane stretch (MS)-induced activation—measured by changes in DAPI uptake rate—was drastically reduced by either knockdown of Piezo1 or pharmacological inhibition of calmodulin or CaMKII. By site-directed mutagenesis we generated rPanx1S394A-EGFP (enhanced green fluorescent protein), which lost its sensitivity to MS, and rPanx1S394D-EGFP, mimicking phosphorylation, which shows high DAPI uptake rate without MS stimulation or cleavage of the C terminus. Using whole-cell patch-clamp and outside-out excised patch configurations, we found that rPanx1-EGFP and rPanx1S394D-EGFP channels showed current at all voltages between ±100 mV, similar single channel currents with outward rectification, and unitary conductance (∼30 to 70 pS). However, using cell-attached configuration we found that rPanx1S394D-EGFP channels show increased spontaneous unitary events independent of MS stimulation. In silico studies revealed that phosphorylation of S394 caused conformational changes in the selectivity filter and increased the average volume of lateral tunnels, allowing ATP to be released via these conduits and DAPI uptake directly from the channel mouth to the cytoplasmic space. These results could explain one possible mechanism for activation of rPanx1 upon increase in cytoplasmic Ca2+ signal elicited by diverse physiological conditions in which the C-terminal domain is not cleaved.Ítem Anti-parasitic drugs modulate the non-selective channels formed by connexins or pannexins(Elsevier, 2021) Güiza, Juan; Arriagada, Javiera; Rodríguez, Luis; Gutiérrez, Camila; Duarte, Yorley; Sáez, Juan C.; Vega, José L.The proteins connexins, innexins, and pannexins are the subunits of non-selective channels present in the cell membrane in vertebrates (connexins and pannexins) and invertebrates (innexins). These channels allow the transfer of ions and molecules across the cell membrane or, and in many cases, between the cytoplasm of neighboring cells. These channels participate in various physiological processes, particularly under pathophysiological conditions, such as bacterial, viral, and parasitic infections. Interestingly, some anti-parasitic drugs also block connexin- or pannexin-formed channels. Their effects on host channels permeable to molecules that favor parasitic infection can further explain the anti-parasitic effects of some of these compounds. In this review, the effects of drugs with known anti-parasitic activity that modulate non-selective channels formed by connexins or pannexins are discussed. Previous studies that have reported the presence of these proteins in worms, ectoparasites, and protozoa that cause parasitic infections have also been reviewed.Ítem Contribution of non-selective membrane channels and receptors in epilepsy(Elsevier, 2022) García-Rodríguez, Claudia; Bravo-Tobar, Iván D.; Duarte, Yorley; Barrio, Luis C.; Sáez, Juan C.Overcoming refractory epilepsy's resistance to the combination of antiepileptic drugs (AED), mitigating side effects, and preventing sudden unexpected death in epilepsy are critical goals for therapy of this disorder. Current therapeutic strategies are based primarily on neurocentric mechanisms, overlooking the participation of astrocytes and microglia in the pathophysiology of epilepsy. This review is focused on a set of non-selective membrane channels (permeable to ions and small molecules), including channels and ionotropic receptors of neurons, astrocytes, and microglia, such as: the hemichannels formed by Cx43 and Panx1; the purinergic P2X7 receptors; the transient receptor potential vanilloid (TRPV1 and TRPV4) channels; calcium homeostasis modulators (CALHMs); transient receptor potential canonical (TRPC) channels; transient receptor potential melastatin (TRPM) channels; voltage-dependent anion channels (VDACs) and volume-regulated anion channels (VRACs), which all have in common being activated by epileptic activity and the capacity to exacerbate seizure intensity. Specifically, we highlight evidence for the activation of these channels/receptors during epilepsy including neuroinflammation and oxidative stress, discuss signaling pathways and feedback mechanisms, and propose the functions of each of them in acute and chronic epilepsy. Studying the role of these non-selective membrane channels in epilepsy and identifying appropriate blockers for one or more of them could provide complementary therapies to better alleviate the disease.Ítem Unnexins: Homologs of innexin proteins in Trypanosomatidae parasites(Wiley, 2022) Güiza, Juan; García, Aníbal; Arriagada, Javiera; Gutiérrez, Camila; González, Jorge; Márquez-Miranda, Valeria; Alegría-Arcos, Melissa; Duarte, Yorley; Rojas, Maximiliano; González-Nilo, Fernando; Sáez, Juan C.; Vega, José L.Large-pore channels, including those formed by connexin, pannexin, innexin proteins, are part of a broad family of plasma membrane channels found in vertebrates and invertebrates, which share topology features. Despite their relevance in parasitic diseases such as Chagas and malaria, it was unknown whether these large-pore channels are present in unicellular organisms. We identified 14 putative proteins in Trypanosomatidae parasites as presumptive homologs of innexin proteins. All proteins possess the canonical motif of the innexin family, a pentapeptide YYQWV, and 10 of them share a classical membrane topology of large-pore channels. A sequence similarity network analysis confirmed their closeness to innexin proteins. A bioinformatic model showed that a homolog of Trypanosoma cruzi (T. cruzi) could presumptively form a stable octamer channel with a highly positive electrostatic potential in the internal cavities and extracellular entrance due to the notable predominance of residues such as Arg or Lys. In vitro dye uptake assays showed that divalent cations-free solution increases YO-PRO-1 uptake and hyperosmotic stress increases DAPI uptake in epimastigotes of T. cruzi. Those effects were sensitive to probenecid. Furthermore, probenecid reduced the proliferation and transformation of T. cruzi. Moreover, probenecid or carbenoxolone increased the parasite sensitivity to antiparasitic drugs commonly used in therapy against Chagas. Our study suggests the existence of innexin homologs in unicellular organisms, which could be protein subunits of new large-pore channels in unicellular organisms.