• Iniciar sesión
    ¿Nuevo Usuario? Pulse aquí para registrarse ¿Has olvidado tu contraseña?
Logotipo del repositorio
  • Comunidades
  • Explorar
  • Iniciar sesión
    ¿Nuevo Usuario? Pulse aquí para registrarse ¿Has olvidado tu contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Flores, Christopher"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    A Feature-Based Analysis for Time-Series Classification of COVID-19 Incidence in Chile: A Case Study
    (MDPI, 2021) Flores, Christopher; Taramasco, Carla; Lagos, Maria Elena; Rimassa, Carla; Figueroa, Rosa
    The 2019 Coronavirus disease (COVID-19) pandemic is a current challenge for the world’s health systems aiming to control this disease. From an epidemiological point of view, the control of the incidence of this disease requires an understanding of the influence of the variables describing a population. This research aims to predict the COVID-19 incidence in three risk categories using two types of machine learning models, together with an analysis of the relative importance of the available features in predicting the COVID-19 incidence in the Chilean urban commune of Concepción. The classification results indicate that the ConvLSTM (Convolutional Long Short-Term Memory) classifier performed better than the SVM (Support Vector Machine), with results between 93% and 96% in terms of accuracy (ACC) and F-measure (F1) metrics. In addition, when considering each one of the regional and national features as well as the communal features (DEATHS and MOBILITY), it was observed that at the regional level the CRITICAL BED OCCUPANCY and PATIENTS IN ICU features positively contributed to the performance of the classifiers, while at the national level the features that most impacted the performance of the SVM and ConvLSTM were those related to the type of hospitalization of patients and the use of mechanical ventilators.

Dirección de Bibliotecas y Recursos para el Aprendizaje ©2024

Blanco 951, Valparaíso, Chile. - 56-32-2603246

  • Normativas
  • Politica de privacidad
  • bibliotecas@uv.cl
  • Configuración de cookies

Implementado por Open Geek