Examinando por Autor "Soto, Ricardo"
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem A Knowledge-Based Hybrid Approach on Particle Swarm Optimization Using Hidden Markov Models(MDPI, 2021) Castillo, Mauricio; Soto, Ricardo; Crawford, Broderick; Castro, Carlos; Olivares, RodrigoBio-inspired computing is an engaging area of artificial intelligence which studies how natural phenomena provide a rich source of inspiration in the design of smart procedures able to become powerful algorithms. Many of these procedures have been successfully used in classification, prediction, and optimization problems. Swarm intelligence methods are a kind of bio-inspired algorithm that have been shown to be impressive optimization solvers for a long time. However, for these algorithms to reach their maximum performance, the proper setting of the initial parameters by an expert user is required. This task is extremely comprehensive and it must be done in a previous phase of the search process. Different online methods have been developed to support swarm intelligence techniques, however, this issue remains an open challenge. In this paper, we propose a hybrid approach that allows adjusting the parameters based on a state deducted by the swarm intelligence algorithm. The state deduction is determined by the classification of a chain of observations using the hidden Markov model. The results show that our proposal exhibits good performance compared to the original version.Ítem A Self-Adaptive Cuckoo Search Algorithm Using a Machine Learning Technique(MDPI, 2021) Caselli, Nicolás; Soto, Ricardo; Broderick, Crawford; Valdivia, Sergio; Olivares, RodrigoMetaheuristics are intelligent problem-solvers that have been very efficient in solving huge optimization problems for more than two decades. However, the main drawback of these solvers is the need for problem-dependent and complex parameter setting in order to reach good results. This paper presents a new cuckoo search algorithm able to self-adapt its configuration, particularly its population and the abandon probability. The self-tuning process is governed by using machine learning, where cluster analysis is employed to autonomously and properly compute the number of agents needed at each step of the solving process. The goal is to efficiently explore the space of possible solutions while alleviating human effort in parameter configuration. We illustrate interesting experimental results on the well-known set covering problem, where the proposed approach is able to compete against various state-of-the-art algorithms, achieving better results in one single run versus 20 different configurations. In addition, the result obtained is compared with similar hybrid bio-inspired algorithms illustrating interesting results for this proposal.Ítem Human Behaviour Based Optimization Supported With Self-Organizing Maps for Solving the S-Box Design Problem(IEEE, 2021) Soto, Ricardo; Crawford, Broderick; González Molina, Francisco; Olivares, RodrigoThe cryptanalytic resistance of modern block and stream encryption systems mainly depends on the substitution box (S-box). In this context, the problem is thus to create an S-box with higher value of nonlinearity because this property can provide some degree of protection against linear and differential cryptanalysis attacks. In this paper, we design a scheme built on a human behavior-based optimization algorithm, supported with Self-Organizing Maps to prevent premature convergence and improve the nonlinearity property in order to obtain strong 8 ×8 substitution boxes. The experiments are compared with S-boxes obtained using other metaheuristic algorithms such as Ant Colony Optimization, Genetic Algorithm and an approach based on chaotic functions and show that the obtained S-boxes have good cryptographic properties. The obtained S-box is investigated against standard tests such as bijectivity, nonlinearity, strict avalanche criterion, bit independence criterion, linear probability and differential probability, proving that the proposed scheme is proficient to discover a strong nonlinear component of encryption systems.