An Efficient CNN-Based Deep Learning Model to Detect Malware Attacks (CNN-DMA) in 5G-IoT Healthcare Applications
Archivos
Fecha
2021
Profesor Guía
Formato del documento
Articulo
ORCID Autor
Título de la revista
ISSN de la revista
Título del volumen
Editor
Sensors (Basel)
Ubicación
https://doi.org/10.3390/s21196346
ISBN
ISSN
1424-8220
item.page.issne
item.page.doiurl
Facultad
Departamento o Escuela
Determinador
Recolector
Especie
Nota general
Resumen
The role of 5G-IoT has become indispensable in smart applications and it plays a crucial part in e-health applications. E-health applications require intelligent schemes and architectures to overcome the security threats against the sensitive data of patients. The information in e-healthcare applications is stored in the cloud which is vulnerable to security attacks. However, with deep learning techniques, these attacks can be detected, which needs hybrid models. In this article, a new deep learning model (CNN-DMA) is proposed to detect malware attacks based on a classifier-Convolution Neural Network (CNN). The model uses three layers, i.e., Dense, Dropout, and Flatten. Batch sizes of 64, 20 epoch, and 25 classes are used to train the network. An input image of 32 � 32 � 1 is used for the initial convolutional layer. Results are retrieved on the Malimg dataset where 25 families of malware are fed as input and our model has detected is Alueron.gen!J malware. The proposed model CNN-DMA is 99% accurate and it is validated with state-of-the-art techniques.
Descripción
Lugar de Publicación
Auspiciador
Palabras clave
DEEP LEARNING, DELIVERY OF HEALTH CARE HUMANS NEURAL NETWORKS, COMPUTER 5G-IOT CNN DEEP LEARNING HEALTHCARE MALIMG MALWARE