Tied links and invariants for singular links
Fecha
2021
Autores
Profesor Guía
Formato del documento
Articulo
ORCID Autor
Título de la revista
ISSN de la revista
Título del volumen
Editor
Elsevier
Ubicación
ISBN
ISSN
item.page.issne
item.page.doiurl
Facultad
Facultad de Ciencias
Departamento o Escuela
Instituto de Matematicass
Determinador
Recolector
Especie
Nota general
No disponible para descarga
Resumen
Tied links and the tied braid monoid were introduced recently by the authors and used to define new invariants for classical links. Here, we give a version purely algebraic–combinatoric of tied links. With this new version we prove that the tied braid monoid has a decomposition like a semi–direct group product. By using this decomposition we reprove the Alexander and Markov theorem for tied links; also, we introduce the tied singular knots, the tied singular braid monoid and certain families of Homflypt type invariants for tied singular links; these invariants are five–variables polynomials. Finally, we study the behavior of these invariants; in particular, we show that our invariants distinguish non isotopic singular links indistinguishable by the Paris–Rabenda invariant.
Descripción
Lugar de Publicación
Auspiciador
Palabras clave
TIED LINKS, SET PARTITION, BT–ALGEBRA, INVARIANTS FOR SINGULAR LINKS AND TIED, SINGULAR LINKS
Licencia
© 2021 Elsevier Inc. All rights reserved.