Tied links and invariants for singular links
dc.contributor.author | Aicardi, F. | |
dc.contributor.author | Juyumaya, J. | |
dc.date.accessioned | 2022-11-30T02:46:09Z | |
dc.date.available | 2022-11-30T02:46:09Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Tied links and the tied braid monoid were introduced recently by the authors and used to define new invariants for classical links. Here, we give a version purely algebraic–combinatoric of tied links. With this new version we prove that the tied braid monoid has a decomposition like a semi–direct group product. By using this decomposition we reprove the Alexander and Markov theorem for tied links; also, we introduce the tied singular knots, the tied singular braid monoid and certain families of Homflypt type invariants for tied singular links; these invariants are five–variables polynomials. Finally, we study the behavior of these invariants; in particular, we show that our invariants distinguish non isotopic singular links indistinguishable by the Paris–Rabenda invariant. | en_ES |
dc.facultad | Facultad de Ciencias | en_ES |
dc.file.name | Aicardi_Tie2021.pdf | |
dc.identifier.doi | https://doi.org/10.1016/j.aim.2021.107629 | |
dc.identifier.uri | http://repositoriobibliotecas.uv.cl/handle/uvscl/7210 | |
dc.language | en | |
dc.publisher | Elsevier | |
dc.rights | © 2021 Elsevier Inc. All rights reserved. | |
dc.source | Advances in Mathematics | |
dc.subject | TIED LINKS | en_ES |
dc.subject | SET PARTITION | en_ES |
dc.subject | BT–ALGEBRA | en_ES |
dc.subject | INVARIANTS FOR SINGULAR LINKS AND TIED | en_ES |
dc.subject | SINGULAR LINKS | en_ES |
dc.title | Tied links and invariants for singular links | |
dc.type | Articulo | |
uv.departamento | Instituto de Matematicass | |
uv.notageneral | No disponible para descarga |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Aicardi_Tie2021_noaccesible_.pdf
- Tamaño:
- 888.37 KB
- Formato:
- Adobe Portable Document Format
- Descripción: