Bayesian item response theory and latent dirichlet allocation applied to textual professor performance profiling

Fecha

2019

Formato del documento

Thesis

ORCID Autor

Título de la revista

ISSN de la revista

Título del volumen

Editor

Universidad de Valparaíso

Ubicación

ISBN

ISSN

item.page.issne

item.page.doiurl

Facultad

Facultad de Ciencias

Departamento o Escuela

Facultad de Ciencias, Instituto de Estadística

Determinador

Recolector

Especie

Nota general

Magíster en Estadística. Universidad de Valparaíso. 2019.

Resumen

The evaluation of teaching and the perception about the academic environment are only obtained through students. Measure the teachers’ performance and subject relevance has an increasing importance for universities and academic institutions since these evaluations are subjective. Thus, a natural question is: how to develope an unbiased measure through subjective answers? This thesis uses several statistical tools in order to measure professor performance and subject relevance. An strategic diagram is constructed to compare these latent variables. Item response theory (IRT) is used to propose a method to measure teachers’ performance and subject relevance, also Latent Dirichlet allocation (LDA) is used to model textual data, and clustered in order to profile professors using students’ comments.

Descripción

Lugar de Publicación

Valparaíso

Auspiciador

Palabras clave

ANALISIS BAYESIANO, DESEMPEÑO HUMANO, EVALUACION, ENCUESTAS, ESTUDIANTES

Licencia

Colecciones